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At the time of writing this article, the world population is suffering from more than 2

million registered COVID-19 disease epidemic-induced deaths since the outbreak of

the corona virus, which is now officially known as SARS-CoV-2. However, tremendous

efforts have been made worldwide to counter-steer and control the epidemic by now

labelled as pandemic. In this contribution, we provide an overview on the potential

for computer audition (CA), i.e., the usage of speech and sound analysis by artificial

intelligence to help in this scenario. We first survey which types of related or contextually

significant phenomena can be automatically assessed from speech or sound. These

include the automatic recognition and monitoring of COVID-19 directly or its symptoms

such as breathing, dry, and wet coughing or sneezing sounds, speech under cold,

eating behaviour, sleepiness, or pain to name but a few. Then, we consider potential

use-cases for exploitation. These include risk assessment and diagnosis based on

symptom histograms and their development over time, as well as monitoring of spread,

social distancing and its effects, treatment and recovery, and patient well-being. We

quickly guide further through challenges that need to be faced for real-life usage and

limitations also in comparison with non-audio solutions. We come to the conclusion that

CA appears ready for implementation of (pre-)diagnosis and monitoring tools, and more

generally provides rich and significant, yet so far untapped potential in the fight against

COVID-19 spread.
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1. INTRODUCTION

The World Health Organisation’s (WHO) office in China
was first made aware of the previously unknown SARS-CoV-
2 “Corona” virus on the last day(s) of the last year. On
March 11, 2020, the WHO declared the disease triggered
by the virus—COVID-19—as pandemic. The spread of the
disease induced by the SARS-CoV-2 or “Corona” virus is
assumed to underlie an exponential growth. However, whether
there are long-term effects after recovery is yet to be fully
researched. In the light of this dramatic spread, one is currently
internationally witnessing drastic countermeasures that have
not been seen in this form over decades in many countries.
These include significant public “shut-down” measures to
foster “social distancing” in order to slow down and control
further spread.

As research globally is making massive efforts to contribute
to better understand and fight the phenomenon from a medical
and interdisciplinary point of view, also computer science
and engineering in terms of “Digital Health” solutions aim
at maximum exploitation of available and realisable means.
In particular, in combination with artificial intelligence (AI),
one can exploit a powerful tool, which so far has largely
been tapped for prediction of COVID-19 spread [cf., e.g.,
(1)], and computer vision (CV) approaches in the corona
context such as for automatic screening for COVID-19 on CT
images (2, 3). There is, however, broader belief that also other
signals including such from sensors on a smartphone could
help even in the diagnosis of COVID-19 (4), e.g., the heart
rate sensor.

In the following, we aim to provide an overview on what
computer audition (CA), i.e., the application of computing for
audio processing including “machine listening,” “computational
paralinguistics,” and more general speech and sound analysis, but
also synthesis, could contribute in this situation. To the best of
the authors’ knowledge, this resource is so far not used in practise
despite offering a plethora of opportunities in this context.

The remainder of this overview is structured as follows: We
first summarise phenomena more and less closely related to
the case of COVID-19 that have already been targeted by CA
and would be readily available. Examples include automatic
recognition of speakers suffering from a cold or wearing a mask,
breathing, coughing and sneezing sounds, or recognition of audio
in spatial proximity.We then shift to the introduction of concrete
use-cases how CA could benefit the ongoing global fight against
the corona crisis. Subsequently, we introduce challenges and
entry barriers from a technical as well as ethical and societal point
of view, and discuss limitations before concluding this overview.

2. COMPUTER AUDITION: RELATED
PHENOMENA

In the following, we set out by show-casing what CA has already
successfully targeted as audio use-cases for recognition, and
appears related to the task of interest in this contribution—
fighting the ongoing COVID-19 spread.

2.1. Speech Analysis
Speech analysis by computational means is highly related to
the field of computational paralinguistics (5). The field has
several related recognition tasks on offer. These are often
well-documented in the framework of competitive challenge
events such as the Interspeech Computational Paralinguistics
Challenge (ComParE). The latter has—perhaps closest related
to the COVID-19 case—in its 2017 edition featured the
automatic recognition of speech under cold (6), i.e., automatically
recognising speakers affected by a cold from the acoustics of their
voice. In the challenge of last year, the continuous assessment
of breathing patterns from the speech signal appears relevant
(7), e.g., as basis to recognise often witnessed symptoms of
short-breathiness and breathing difficulties related to COVID-
19. The last ComParE challenge further targets the recognition
of speech under mask, i.e., the automatic recognition whether a
speaker is wearing a facial protective mask, and the recognition of
emotion of elderly, which may become interesting in monitoring
the aftermath of social isolation of elderly, as was discussed,
e.g., in the U.K. for 3 months. On the age scale’s opposite
end, toddlers’ crying sounds seem to be the only indicator to
understand if they are suffering from COVID-19 symptoms. In
the ComParE challenge series, infant crying was investigated in
2018 (8), and the valence, i.e., positivity of baby sounds in 2019
(9). As symptoms of COVID-19 can also include lack of appetite,
it seems further interesting to reference to the EAT challenge
(10): In this event, it was demonstrated that one can infer from
audio whether speech under eating and eating sounds indicate
eating difficulty and “likability” related to whether one enjoys
eating. The assessment of sleepiness—a further symptom of
COVID-19—was first featured in ComParE in 2011 (11) as binary
task, and as continuous sleepiness assessment on the Karolinska
sleepiness scale in 2019 (9). Also pain such as headache or bodily
pain can accompany COVID-19; speech under pain has also been
shown to be automatically accessible (12, 13). When it comes to
individual risk assessment and monitoring, speaker traits may
be of interest. High mortality risk groups include the elderly,
and a (slightly) higher mortality rate was so far seen in male
individuals (14). Age and gender were also shown in the context
of ComParE, and can be automatically determined reliably given
sufficient speech material (15). A history of health issue can
further indicate high risk. A number of health-related speaker
state information relevant in this context has been shown feasible
such as individuals suffering from asthma (16), head-and-neck
cancer (17), or smoking habits (18, 19).

Speaker diarization, i.e., determining who is speaking when,
and speaker counting (20) can become of interest in the ongoing
social distancing. When it comes to counter measures such
as quarantine, or risk assessment of individuals, one could
also consider the usage of automatic recognition of deceptive
speech when people are questioned about their recent contacts
or whereabouts, as their personal work and life interests may
interfere with the perspective of being sent to quarantine.
Deception and sincerity were targeted in ComParE in 2016 (21).
Monitoring well-being of individuals during social distancing
and quarantine can further find interest in depression and fear
recognition. Both were shown feasible to be assessed from speech
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in the Audio/Visual Emotion Challenge (AVEC) event series
(22) including from speech only at reasonable deviation on a
continuous scale.

Generally speaking, speech audio also includes textual cues.
Broadening up to Spoken Language Processing (SLP), this
can also be of help to gather and analyse information from
spoken conversations available in individual communications,
news, or social media. For textual cues, this has already been
considered (23). From a speech analysis perspective, this includes
automatic speech recognition (ASR) and natural language
processing (NLP).

2.2. Sound Analysis
From a sound analysis perspective, one may first consider such
interest for COVID-19 use-cases that are produced by the human
body. In the context of COVID-19, this includes mostly the
automatic recognition of coughs (24–26) including dry vs. wet
coughing (27) and dry vs. productive coughing (28) and sneeze
(26), swallowing, and throat clearing (25) sounds—all showcased
at high recognition rates. As severe COVID-19 symptoms are
mostly linked to developing a pneumonia, which is the cause of
most deaths of COVID-19 as suggested by post-mortem biopsies
(29, 30), it further appears of interest that different breathing
patterns, respiratory sounds, and lung sounds of patients with
pneumonia can be observed through CA (31), even with mass
devices such as smart-phones (32). Of potential relevance could
also be the already possible monitoring of different types
of snoring sounds (33), including their excitation pattern in
the vocal tract and their potential change over time to gain
insight on symptoms also during sleep. Further, highest risk of
mortality from COVID-19 has been seen for such suffering from
cardiovascular disease followed by chronic respiratory disease.
In ComParE 2018, heart beats were successfully targeted from
audio for three types of heart status, namely, normal, mild,
and moderate/severe abnormality. Hearing local proximity from
ambient audio further appears possible (34), and could be used
to monitor individuals potentially too close to each other in
the “social distancing” protective countermeasure scenarios. 3D
audio localisation (35) and diarization further allows for locating
previously recognised sounds and attributing them to sources.
This could further help in the monitoring of public spaces or
providing warnings to users as related to individuals potentially
being locally too close with directional pointers. Audio source
separation and denoising (36) of stethoscope sounds and audio
(37) for clinicians and further processing can additionally serve
as tool.

3. POTENTIAL USE-CASES

Let us next elaborate on use-cases we envision as promising
for CA in the context of COVID-19. A coarse visual overview
on the dependence of CA tasks and these use-cases is provided
in Table 1. Check-marks indicate that the already available
automatic audio analysis tasks listed in the left column appear
of interest in the three major use-case groups listed in the right-
most three columns. Note that these are indicative in nature.
Further, to provide an impression of the “readiness,” performance

indications are given. For a strict comparability of these, they are
only provided for tasks that have been featured in the Interspeech
Computational Paralinguistics Challenge (ComParE) series.1

Shown are the best results after the challenge including by fusion
of best participant systems. Likewise, it is assured that test-
set labels were unknown to participants and a strict subject
independence and challenging conditions including no ability for
“cherry picking” alike preselection of test examples are assured.
The results overall show that under realistic conditions, the
tasks are handled highly above chance level, yet, clearly below
“perfect” recognition.

3.1. Risk Assessment
A first use-case targets the prevention of COVID-19 spread by
individual risk assessment. As shown above, speaker traits such
as age, gender, or health state can be assessed automatically from
the voice to provide an estimate on the individual mortality risk
level. In addition, one can monitor if oneself or others around are
wearing a mask when speaking, count speakers around oneself,
and locate these and their distance to provide a real-time ambient
risk assessment and informative warning.

3.2. Diagnosis
While the standard for diagnosis of COVID-19 is currently a
nasopharyngeal swab, several other possibilities exist including
chest CT-based analysis as very reliable resource as outlined
above. Here, we consider whether an audio-based diagnosis could
be possible. While it seems clear that such an analysis will not be
suited to compete with the state-of-the-art in professional testing
previously named, its non-invasive and ubiquitously available
nature would allow for individual pre-screening “anywhere,”
“anytime,” in real-time, and availablemore or less to “anyone.” To
the best of the authors’ knowledge, no study has yet systematically
investigated audio from COVID-19 patients vs. highly varied
control group data including such suffering from influenza
or cold and healthy individuals. Unfortunately, coughing and
sneezing of COVID-19 patients does not differ significantly to
human perception from “normal” patients. This includes lung
and breathing sounds. However, (38) assume that abnormal
respiratory patterns can be a clue for diagnosis. Overall, by
that, it seems unclear if diagnosis from short audio samples
of patients could be directly possible, given that most speech
or body sounds are likely not to show significant differences
for closely related phenomena such as influenza or cold, but a
number of encouraging results show that breathing, coughing,
and speech sounds could be suited (39). The current Interspeech
2021 ComParE event therefore features COVID-19 recognition
from forced cough and speech.

Rather, we believe that a histogram of symptoms over time in
combination with their onset appears highly promising. Table 2
visualises this concept in a qualitative manner by coarse ternary
quantification of each symptom or “feature” from a machine

1http://www.compare.openaudio.eu
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TABLE 1 | Interdependence of computer audition (CA) tasks and potential use-cases in the context of the corona crisis.

CA task COVID-19 relation Performance Risk assessment Diagnosis Monitoring

SPEECH ANALYSIS

Age & Gender L 53.6/85.7% UAR (4 age, 3 gender classes)
√

Breathing H 0.778 CCr (with breathing sensor in [−1,1])
√ √

Cold H 71.0% UAR (2 classes: yes/no)
√

COVID-19 H
√ √ √

Crying (infants) L 78.6% UAR (3 valence classes)
√

Deception and sincerity L 72.1%/.654 CCp (2 classes: yes/no/in [0,1])
√

Depression L
√

Emotion (incl. of elderly) L 63.8% UAR (mean 2 dimensions × 3 levels)
√

Health state H
√ √

Lung sounds H
√ √

Mask H 82.6% UAR (2 classes: yes/no)
√ √

Pain L
√ √

Personality L 70.4% UAR (mean 5D × 2-classes: ±)
√ √

Sleepiness L 72.5% UAR (2 classes)
√ √

SLP L
√

Speaker count L
√ √

SOUND ANALYSIS

Coughing (dry, wet, productive) H
√ √

Cardiovascular disease L 56.2% UAR (3 classes)
√ √

Diarization L
√ √

Localisation L
√ √

Proximity L
√ √

Sneezing H
√ √

Snoring L 58.5% UAR (4 classes)
√ √

Source separation L
√ √

Swallowing H
√ √

Throat clearing H
√ √

The first column indicates the degree of immediate relation to COVID-19 as high (“H”) or low (“L”). The column performance gives an impression of the reliability; for comparability, this

is only shown for tasks featured under the same subject-independent challenging conditions in the Interspeech Computational Paralinguistics Challenge (ComParE)—the number of

classes or scale and measure of performance are given together with the best result at the end of the event including by fusion of participating systems. UAR, unweighted average

recall, i.e., sum of recall divided by number of classes, CCr /CCp: Pearon’s/Spearman’s correlation coefficient. SLP, spoken language processing. Health state encompasses a wider

range of health factors such as asthma, head and neck cancer, or smoking habits that can be inferred from speech audio.

learning perspective.2 Each of the symptoms in the table can—
as outlined above—(already) be assessed automatically from
an intelligent audio sensor. In a suited personal application
such as on a smartphone or smartwatch, smart home device
with audio abilities, or via a telephone service, etc., one
could collect frequency of symptoms over time and from the
resulting histogram differentiate with presumably high success
rate between COVID-19, influenza, and cold. By suited means
of AI, a probability could be given to users how likely their
symptoms speak for COVID-19. Of particular interest thereby is
also the “Onset Gradient” feature in Table 2. It alludes to whether
the onset of symptoms over time is gradual (i.e., over the span
of up to 2 weeks or more) or rather abrupt (i.e., within hours
or a few days only), which can be well-observed by AI analysis
in a histogram sequence updated over time. Collecting such
information from many users, this estimate for histogram-based

2based on https://www.qld.gov.au, https://www.medicinenet.com/, https://www.

medicalnewstoday.com, all assessed on March 20, 2020.

diagnosis of COVID-19 can be improved in precision over time
if users “donate their data.” In addition, clinicians could be given
access to the histogram or be pointed to typical audio examples in
a targeted manner remotely that have been collected over longer
time to speed up the decision whether the users should go for
other more reliable forms of testing. This could help to highly
efficiently pre-select individuals for screening.

3.3. Monitoring of Spread
Beyond the idea of using smartphone-based surveys and AI
methods to monitor the spread of the virus (40), one could
use CA for audio analysis via telephone or other spoken
conversation. An AI could monitor the spoken conversations
and screen for speech under cold or other symptoms as shown
in Table 2. Together with GPS coordinates from smart phones
or knowledge of the origin of the call from the cell, one could
establish real-time spread maps.
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TABLE 2 | Qualitative behaviour of symptoms of COVID-19 vs. cold and influenza

(flu): Tentative histogram by symptom (“feature”/“variable”) in ternary quantification

[from no/low (“+”) to frequent/high (“+++”)].

Symptom COVID-19 Influenza Cold

Breathing: Dypnea (Shortness) +++ ++ +

Breathing: Difficulty +++ ++ +

Rhinorrhea (Running nose) + ++ +++

Nasal congestion + + +++

Coughing dry ++ dry ++ +

Sneezing + + +++

Sore throat + ++ +++

Pain: Body + +++ ++

Pain: Head (Headache) ++ +++ +

Fatigue, Tiredness mild ++ +++ +

Appetite loss + +++ +

Onset gradient + +++ +

Shown is also the symptom gradient onset behaviour. Further frequently related variables

include behaviour and personality changes, diarrhoea, fever, sore tongue, or watery eyes,

which could partially be assessed also by audio—the latter two rather by physiological and

visual sensors, respectively. Assembled from diverse references, the table is indicative in

nature on purpose, and more fine-grained quantification could apply.

3.4. Monitoring of Social Distancing and
Effects
Social distancing—in already diagnosed cases of COVID-19 or
direct contact isolation of individuals—might lead to different
negative side effects. People who have less social connexion
might suffer from even a weaker immune system, responding
less well to pathogens (41). Especially, the high-risk target group
of elderly could even encounter suicidal thoughts and develop
depression or other clinical conditions in isolation (42). CA
might provide indications about social interaction, exemplary
speaking time during the day via phone or other devices, as
well as measure emotions of the patient throughout the day or
detecting symptoms of depression and suicidal risk (43).

In addition, the public obedience and discipline in social
distancing could be monitored with the aid of CA. AI allows
to count speakers, locate them and their potential symptoms
as reflecting in the audio signal (cf. Table 2), and “diarize”
the audio sources, i.e., attribute which symptoms came from
which (human) individual. Likewise, public spaces could be
empowered by AI that detects potentially risky settings, which
are overcrowded, under-spaced in terms of distance between
individuals, and spot potentially COVID-19 affected subjects
among a crowd, and whether these and others are wearing a
protective mask while speaking.

3.5. Monitoring of Treatment and Recovery
During hospitalisation or other forms of treatment and recovery,
CA can monitor the progress, e.g., by updating histograms
of symptoms. In addition, the well-being of patients could be
monitored similarly to the case of individual monitoring in social
distancing situations as described above. This could include
listening to their emotions, eating habits, fatigue, or pain, etc.

3.6. Generation of Speech and Sound
While we have focused entirely on the analysis of audio up to
this point, it remains to state that there may be also use-cases
for the generation of audio by AI in a COVID-19 scenario.
Speech conversion and synthesis could help those suffering from
COVID-19 symptoms to ease their conversation with others.
In such a setting, an AI algorithm can fill in the gaps arising
from coughing sounds, enhance a voice suffering from pain
or fatigue and further more by generative adversarial networks
(44). In addition, alarm signals could be rendered which are
mnemonic and re-recognisable, but adapt to the ambient sound
to be particularly audible.

4. CHALLENGES

4.1. Time
The fight against COVID-19 has been marked by a race to
prevent too rapid spread that could lead to peak infection rates
that overburden the national health systems and availability
of beds in the intensive care units leading to high mortality
rates. Further, at presence, it cannot be clearly stated whether
or not COVID-19 will persistently stay as disease. However,
recent research and findings (45) as well as model calculations
indicate that COVID-19 will continue to heavily spread over
the next months in different areas of the world. Enhanced
social distancing might delay the spreading. Additionally, at the
moment there is no solid research available to prove persistent
immunity against the virus after an infection with COVID-
19. Therefore, the need to apply measures of enhanced risk
assessment, diagnosis, monitoring, and treatment is urgently
necessary to support the current medical system as well as to get
COVID-19 under control.

4.2. Collecting COVID-19 Patient Data
Machine learning essentially needs data to learn. Accordingly,
for any kind of CA application targeting speech or sounds
from patients suffering from COVID-19 infection, we will need
collected and annotated data. At present, such data are hardly
publicly available for research purposes, but urgently needed.
Hence, a crucial step in the first place will be to collect audio
data including highly validated such from diagnosed patients and
ideally control subjects under equal conditions and demographic
characteristics including control data with a rich representation
of further respiratory and other diseases.

4.3. Model Sharing
In order to accelerate the adaptation of machine learning models
of CA for COVID-19, exchange of data will be crucial. As
such data are usually highly private and sensitive in nature, the
recent advances in federated machine learning (46) can benefit
the exchange of personal model parameters rather than audio
to everyone’s benefit. Likewise, users of according services can
“donate their data” in a safe and private manner.

4.4. Real-World Audio Processing
Most of the tasks and use-cases listed above require processing
of audio under more or less constrained “in-the-wild” conditions
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such as audio recording over telephone, VoIP, or audio takes at
home, in public spaces, or in hospitals. These are usually marked
by noise, reverberation, varying distance to microphone(s),
transmissions with potential loss, and further disturbances.
In addition, given the pandemic character of the SARS-CoV-
2 corona crisis, one will ideally need to be robust against
multilingual, multicultural, or local speech and sound variability.

4.5. Green Processing
Green processing summarises here the idea of efficiency in
computing. This will be a crucial factor for mobile applications,
but also for big(ger) data speech analysis (47) such as
in the case of telephone audio data analysis. It includes
conservative consumption of energy such as on mobile devices,
efficient transmission of data such as in the above named
federated machine learning in order not to burden network
transmission, memory efficiency, model update efficiency, and
many further factors.

4.6. Trustability of Results
Machine learning and pattern recognition methods as used in
CA are usually statistical learning paradigms and hence prone to
error. The probability of error needs to be (a) estimated, known as
confidence measure estimation, and (b) communicated to users
of CA services in the COVID-19 context to assure trustability of
these methods. One step further is that results should ideally be
explainable. However, eXplainable AI (XAI) itself is at this time
a young discipline, but provides an increasing method inventory
allowing for interpretation of results (48).

4.7. Ethics
Many of the above suggested use-cases come at massive ethical
responsibility and burden, which can often only be justified in
times of global crisis as the current one. This includes mostly
many of the above sketched applications of CA for monitoring.
Assuring privacy at all times will be crucial to benefit only the
goal of fighting COVID-19 spread without opening doors for
massivemiss-use. At the same time, balancing between individual
interests and the beneficence of groups and societies will need to
be carefully considered.

In addition, apart from responsible research, it needs to be
assured that the data are representative of all users in all use-
cases avoiding potential algorithmic bias. Indeed, the suggested
CA algorithms could function better for some parts of the
population, because algorithms were trained with data from only
one subculture due to different access to resources/technologies.
As an example, this could create an asymmetry in the detection
of symptoms of subparts of a population (inter- and intra-
countries). Deploying the same solution at scale would favour
certain social groups and disfavour others (49).

Next, one must assure that common points of reference for
comparison across studies are given, the aim of an audio task is
well-decided upon, results are interpretable, and communicated
to all, including in particular communication of potential
limitations (50). Further concerns in this context will discuss
legal and societal implications. All of these cannot be discussed

here—rather, we can provide pointers for the interested reader as
starting points (50–55).

While the technology seems ripe for application, one may
ask if we should use it? Or, are the ethical questions that rise
from these technologies enough to pause the development of
the suggested CA techniques at scale and think on the ethical
solutions first? And, do we have enough ethical knowledge today
to put enough constraints on the suggested CA applications to
make them secure/ethical? These questions touch upon many
actions that have been taken during the ongoing pandemic, but of
course, this will not justify risking massive personal data leakage
or restrictions of personal rights due to missclassifications by
AI or more specifically CA. Decisions will need to be made
individually per use-case and potential CA solution carefully
weighing benefit against risk.

5. LIMITATIONS

Following the described advantages and the potential uses of
these technologies in the case of COVID-19, we now provide
a critical thinking about their limitations and discussion about
their usability in the described use-cases.

First, as to the tasks described in Table 1, in a non-negligible
number of cases the data used for the experiments are still
simulated. Hence, the extrapolation from this to real-world
scenarios is far from being trivial. Also, in all use-cases, we
assumed that there is access to ideal sound recordings so one
can track a person at home and in public spaces. Today, cities
and homes are not equipped with microphone networks, so
smartphones are the preferred choice. On the one hand, these
recordings are potentially extremely noisy, reverberated, and
marked by package loss, which limits the applicability of the
previous research; on the other hand, most use-cases assume
that the smartphone is constantly listening, and that AIs are
able to detect, for example, if a person is eating (even before
wondering if they are eating with appetite or not). Furthermore,
it may appear difficult to see how we can envision the application
for locating and detecting sound sources from recordings made
by smartphones.

Few or none of the technologies mentioned are fully
operational today, so we can use them effectively for the
proposed objectives (as opposed to computer vision which is
already commonly used). And if time is indeed a challenge
in this period, it seems that the time necessary to exploit CA
efficiently for the COVID-19 task could be the biggest challenge,
as software development, deployment, maintenance, testing
including medical such, and alike are usually very demanding
in time.

Further, it has been noticed that only some specific elements
are directly related to COVID-19 (such as pre-diagnosis of
COVID-19 from breathing, coughing, or speech). In particular,
for the various paralinguistis recognition tasks, these would
otherwise further include lung sounds as compared to others
diseases such as common cold/influenza. An indication on
the degree of immediate relation to COVID-19 is provided in
Table 1. On the other hand, many of the introduced aspects
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TABLE 3 | Nine key aspects: Promising complimentarity of CA with other methods, tentative advantages (“+”) vs. disadvantages (“-”) or equality (“0”) of using audio as

the modality as compared to other more established methods used at scale in the medical and related setting.

Task Method C
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m
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e
n
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ry

R
e
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e
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e
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e
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re
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e
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e
n
t

In
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a
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n

ri
c
h
n
e
s
s

Risk assessment 5G/BT contact tracing
√

− − + 0 + + − + +

Temperature measurement
√

+ + 0 0 + 0 − − +

Diagnosis Blood sample, chest x-ray, heart-rate sensing, upper respiratory sample
√

− − + + + + − 0 +

Monitoring: spread, Wastewater tracking 0 + + 0 + − − +

social distancing, Video-based
√

− + 0 + + + 0 − 0

Chip-based − − 0 0 + + − + +

distancing effects, Analysis by physiology
√

+ + 0 + + + − + +

Analysis by text 0 − 0 − − 0 − 0 +

Analysis by video
√

0 0 0 + + + 0 − 0

Treatment/recovery Medical testing − − + + + + − 0 0

Human assessment 0 − 0 + 0 + + 0 −

Obviously, in general, audio-based assessment requires presence of audio in the first place, which can be positive in terms of privacy, but negative for continuous assessment or such

without cooperation requirement. BT, bluetooth.

bear interest even from monitoring of cold/influenza and other
respiratory or even related viral diseases perspective.

Also, in many of the cases described, another simpler means
can certainly be used instead to arrive at the same information.
For example, bio-signals allow a more direct and more efficient
measurement of a person’s state of health and its evolution;
smartphones and GPS tracking are very effective in locating
individuals. Hence, a multi-modal combination of audio and
other modalities appears very promising depending on the
individual requirements and settings.

In Table 3, we hence investigate whether the suggested CA
applications would work better than those that are already
implemented at scale or in high technology-readiness state. On
a similar line, we indicate where the mentioned CA techniques
could complement the current monitoring methods particularly
well. We provide the most common alternative methods for the
three major use-cases risk-assessment, diagnosis, andmonitoring
as introduced in section 3. Other alternatives are recently
developed and need to be related in a similar fashion to CA
(56), once being ready for usage at scale. Also note that the
table merely presents a coarse indication. It will depend on
the detailed usage which approach is to be preferred. For
example, the indicated equality in effort for contact tracing
by bluetooth or alike vs. CA is a coarse estimate as, on the
one hand, a high cost for development, advertisement, and
distribution of such solutions is required. On the other hand,
a centralised service based on CA will also come at a high
effort: CA population tracking could be extremely expensive
in terms of resources and development. Indeed, application
development, server infrastructure, data analysis centers, data
encryption, storage, and anonymisation as well as all the costs
of maintaining these services could easily add up transforming
CA solutions in over-priced servers difficult to maintain and

without the certainty that they will detect large numbers of
COVID-19 cases.

As to the alternatives to CA by use-case, for risk assessment,
this is currently mainly achieved by the named contact tracing
apps run on one’s smart phone by bluetooth or 5G methods
(57). When active on the phones of two individuals in sufficiently
close proximity such as less than 2 m for a minimum set time of
more than 15 min, the contacts are stored (usually only locally
in anonymous ways). Users that report COVID-19 positive
diagnosis are informed back to the service in anonymous forms.
Such an approach has been used already for other infectious
diseases (e.g., for HIV or tuberculosis). Another increasingly used
method is thermal camera based body temperature measurement
(58) often in the context of access, which has also been vastly
used before, e.g., at airports. A single thermal camera can be used
together with subject tracking to assess many individuals by a
single device.

For diagnosis, the common present alternatives used at
scale are upper respiratory samples such as regarding reverse
transcription-polymerase chain reaction (RT-PCR), and blood
samples (58), or, chest X-ray. A mobile health alternative is
found by intelligent heart rate analysis such as from wrist-worn
devices (59).

Monitoring of spread can alternatively, for example, be
fulfilled by analysing wastewater (60).

Monitoring of social distancing is realisable also by video-
based tracking (61) of individuals or chip-based such as via 5G,
bluetooth, or NFC and related technologies, as used, e. g., in
factories (57) usually requiring each participant to be equipped,
accordingly. Monitoring of social distancing effects is largely
related to affective, behavioural, and social computing in more
general, for which there exist a range of other modalities—
mainly physiology, text, or video (51). For monitoring of
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social distancing treatment and recovery, mainly the usage
of medical testing and mere human assessment form major
alternative options.

How CA or CA combinations would compare (e.g., in terms
of false positives/false negative rates or detection time) to the
already implemented medical and alternatives systems in society
will need to be broken down in detail. For instance, questions
such as do we have any clues to think that CA will be more robust
in terms of diagnostic than the current medical monitoring
system will need careful further investigation.

Besides such more technical questions, practical questions
on acceptance will also largely dominate the usefulness of CA
methods for COVID-19. The tracing application experience has
in some countries shown that the population was not fully ready
to give away their data. Similar of even bigger societal challenges
and limitations of the deployment of CA applications in the
context of COVID-19 at scale need to be expected.

6. DISCUSSION

In this short overview, we provided pointers toward what
CA could potentially contribute to the ongoing fight against
the world-wide spread of the SARS-CoV-2 virus known as
“corona crisis” and the COVID-19 infection triggered by it. We
have summarised a number of potentially useful audio analysis
tasks by means of AI that have already been demonstrated
feasible. We further elaborated use-cases how these could
benefit in this battle, and shown challenges arising from real-
life usage. The envisioned use-cases included automated audio-
based individual risk assessment, audio-only-based diagnosis
directly from speech or (forced) cough-sounds and by symptom
frequency and symptom development histograms over time in
combination with machine learning, and several contributions
to monitoring of COVID-19 and its effects including spread,
social distancing, and treatment and recovery besides use-
cases for audio generation. At the time of writing, it seems
that what matters most is a rapid exploitation of this largely

untapped potential. Obviously, in this short overview, not all
possibilities could be included, and many further potential use-
cases may exist. We also showed key limitations, but others
will exist. Further, the authorship is formed by experts on CA,
digital health, and clinicians having worked with COVID-19
infected patients over the last months—further insights from
other disciplines will be highly valuable to add. The corona
crisis demands for common efforts on all ends—we truly hope
computer audition can add a significant share to an accelerated
success of the crisis’ defeat.
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