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Characterization of the risk factors associated with variability in the clinical outcomes

of COVID-19 is important. Our previous study using genomic data identified a potential

role of calcium and lipid homeostasis in severe COVID-19. This study aimed to identify

similar combinations of features (disease signatures) associated with severe disease in

a separate patient population with purely clinical and phenotypic data. The PrecisionLife

combinatorial analytics platform was used to analyze features derived from de-identified

health records in the UnitedHealth Group COVID-19 Data Suite. The platform identified

and analyzed 836 disease signatures in two cohorts associated with an increased risk of

COVID-19 hospitalization. Cohort 1 was formed of cases hospitalized with COVID-19

and a set of controls who developed mild symptoms. Cohort 2 included Cohort 1

individuals for whom additional laboratory test data was available. We found several

disease signatures where lower levels of lipids were found co-occurring with lower levels

of serum calcium and leukocytes. Many of the low lipid signatures were independent of

statin use and 50% of cases with hypocalcemia signatures were reported with vitamin

D deficiency. These signatures may be attributed to similar mechanisms linking calcium

and lipid signaling where changes in cellular lipid levels during inflammation and infection

affect calcium signaling in host cells. This study and our previous genomics analysis

demonstrate that combinatorial analysis can identify disease signatures associated with

the risk of developing severe COVID-19 separately from genomic or clinical data in

different populations. Both studies suggest associations between calcium and lipid

signaling in severe COVID-19.

Keywords: COVID-19, SARS-CoV-2, severe COVID-19, disease risk, patient stratification, combinatorial analysis,

real world data analysis

INTRODUCTION

The Coronavirus disease 2019 (COVID-19) outbreak caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a pandemic that
has resulted in significant mortality, major social and economic disruption worldwide
(1). The uncertainty surrounding the progression, management, and outcomes of
COVID-19 has made it particularly challenging for healthcare systems. Studies have
suggested that ∼80% of COVID-19 positive patients present with mild symptoms
or are asymptomatic and that around 20% of the patients develop a more severe
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response that may lead to hospitalization and, in some cases
(2.3%), death (2–5).

The risk of developing severe COVID-19 is known to be
higher in people who are older, male and have underlying
health conditions such as hypertension, cardiovascular disease,
diabetes, obesity, chronic respiratory diseases, and cancer (4,
5). Approximately 22% of the global population have at
least one co-morbidity that puts them at increased risk of
severe COVID-19 if exposed to the virus (6). Ethnicity and
socio-economic deprivation have also been associated with
severe illness (7).

SARS-CoV-2 binds to the host cell receptor through
angiotensin-converting enzyme-2 (ACE2) (8) and starts
replicating rapidly inside the host cells, which can trigger a
hyperimmune response in some patients (9). This may be
due to the generation of pro-inflammatory cytokines and
chemokines called a cytokine storm that can cause acute
respiratory distress syndrome (ARDS) in the lung and multi-
organ failure (10, 11). Other studies have suggested that binding
of SARS-CoV-2 increases the levels of ACE2 in lung cells
that results in elevated levels of bradykinin (12) (bradykinin
storm) leading to vascular leakage, hypotension, and pulmonary
edema (13). These are manifested in COVID-19 patients
with pneumonia and respiratory failure. Bradykinin’s role
in the regulation of clotting may be one mechanism for the
extra-pulmonary manifestations such as thromboembolic
complications, cardiac events, acute renal and hepatic injury
(14, 15). Other symptoms such as neurological complications
and gastrointestinal and endocrine symptoms have also
been reported (14, 16). Recent evidence suggests that
some patients with COVID-19 can also develop long-
term complications or experience prolonged symptoms
(17, 18).

Early identification and characterization of the risk factors
associated with varying clinical outcomes of severely ill COVID-
19 patients are crucial for accurate clinical stratification and the
development of effective management and targeted therapeutic
strategies. A previous case-control study using genomic data
(19) identified 68 severe COVID-19 risk-associated genes
in a population of hospitalized COVID-19 patients in the
UK Biobank (20, 21). Nine of these were previously linked
to differential response to SARS-CoV-2 infection. Several of
these genes are related to key biological pathways associated
with the development of severe COVID-19 and associated
symptoms, including cytokine production cascades, endothelial
cell dysfunction, lipid droplets, calcium signaling, and viral
susceptibility factors (19).

In this study, we identified and assessed the phenotypic
and clinical risk factors associated with hospitalized COVID-
19 patients in the UnitedHealth Group (UHG) COVID-19
Data Suite using a similar combinatorial analysis approach.
Using laboratory test data available for the UHG cohort, we
investigated potential correlations with the genomic analysis
findings and hypotheses from our previous UK Biobank COVID-
19 study (19), including the potential association of calcium
signaling and lipid dysregulation with severe clinical outcomes
in COVID-19 patients.

METHOD

Cohort Generation
We used de-identified records of Medicare Advantage and
commercially insured members with COVID-19 test results in
the UHG COVID-19 Data Suite accessed through the UHG
Clinical Discovery Portal for this study. The UHG COVID-
19 Data Suite contains longitudinal health information on
individuals representing diverse ethnicities, age groups, and
geographical regions across the United States. The information
includes data on COVID-19 test results, in-patient admission
data for hospitalized individuals, medical and pharmacy
claims, general diagnostic information, demographic data, and
information on healthcare insurance plans.

We performed case-control studies on two cohorts to identify
combinatorial disease signatures associated with the risk of
hospitalization for COVID-19 positive patients. Cohort 1,
consisting of 9,493 individuals (3,183 cases, 6,310 controls),
was generated from the UHG COVID-19 Data Suite (dated
August 2020). This contained 3,183 cases who had been
hospitalized as a result of developing severe COVID-19 (based
on primary diagnosis records) and 6,310 mild controls who
had tested positive for COVID-19 but not been hospitalized
(Supplementary Table 1). Patients who were enrolled in the
Medicare Special Needs Plan were excluded to reduce any
confounding factors associated with these patients, who are often
above 65 years old and diagnosed with severe/disabling chronic
conditions that increase their risk of hospitalization. Patients
without linked clinical data since 2019 were also excluded.

To investigate the potential role of calcium and lipid
homeostasis in COVID-19 patients with severe clinical outcomes,
we selected five laboratory analytes that were relevant for
this hypothesis and had good coverage in Cohort 1. These
included serum calcium, low-density cholesterol (LDL), high-
density cholesterol (HDL), triglycerides, and leukocyte count. A
subcohort, Cohort 2, consisting of 1,581 patients (581 cases and
1,000 controls) was generated for the individuals with laboratory
test results for these five analytes.

Feature Generation
The clinical, claims and pharmacy data were converted to
categorical features for the study (Supplementary Section

Feature Generation). The clinical and phenotypic data available
for all individuals in Cohort 1 generated 1,339 binary features per
patient (Supplementary Table 2). An additional, five laboratory
analyte features were added for Cohort 2.

Combinatorial Analysis
The PrecisionLife platform uses a proprietary data analytics
framework that enables efficient combinatorial analysis of large,
n-dimensional, multi-modal patient datasets. Navigating this
data space allows for the identification of combinations of
features that are significantly associated with groups of cases in
a case-control dataset.

Traditional analysis methods typically identify single features
in a dataset that are important for a relatively large number
of cases associated with a disease diagnosis. They may seek to
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combine these single feature effects using a variety of methods.
However, most large disease populations are heterogenous with
multiple features coming together to exert non-linear influences
on disease biology that lead to patient sub-populations having
different symptoms, progression, and/or outcomes. These non-
linear effects can only be observed in combination, i.e., they
are a product of the interaction and so have to be observed
and modeled at that level. The combinatorial approach used
in this analysis enables us to capture the non-linear effects of
these interactions on a disease (e.g., the effects of feedback loops
in metabolic or genetic networks), which can only be seen in
combinations found to be significant in such patient subgroups.
This approach has been validated in multiple disease populations
(19, 22, 23).

PrecisionLife’s combinatorial analysis algorithm
comprises two main phases: mining and processing
(Supplementary Figure 1). In the mining phase, the algorithm
identifies and validates combinations of feature states (for
example SNP and associated genotype state) that are over-
represented in cases. Multiple feature states are combined
iteratively (using a Z-score statistic) until no additional single
feature state is added. Combinations of feature states that
have high odds ratios and high penetrance are prioritized. The
mining process is repeated for 2,500 cycles of fully randomized
permutation of all individuals in the dataset, keeping the same
parameters and case:control ratio.

All combinations associated with each feature state are
identified to form ’simple networks’ for the original dataset and
for each iteration of random permutation of the dataset. The
simple networks are then validated using network properties such
as minimum penetrance (number of cases in the simple network)
as the null hypothesis when compared with the networks of
the random permutations. Simple networks that appear in
the random permutations above a preset FDR threshold are
considered to be random and eliminated. All disease signatures
from the validated simple networks are reported as validated
disease signatures.

In the last phase, the validated disease signatures
are processed. The features that connect all disease
signatures in validated simple networks (known as
critical features) are identified. These critical features
are scored using a Random Forest (RF) algorithm
based inside a 5-fold cross-validation framework to
evaluate the accuracy with which the feature predicts the
observed case:control split (minimizing Gini impurity)
in a dataset. We use the resulting score to rank
disease signatures.

Finally, a merged network architecture is generated by
clustering all validated disease signatures based on their co-
occurrence in patients in the dataset.

The PrecisionLife platform generated statistically significant
disease signatures containing up to five features for each cohort.
Each analysis took less than an hour to complete, running on a
32 CPU, 4 GPU cloud compute server. These were mapped to
the cases in which they were found, and in-patient clinical data
were used to generate a patient profile for each combinatorial
disease signature.

RESULTS

Cohort Characteristics
Cohort 1 patients (3,183 cases) had a 19.1% (607 cases) mortality
rate, while 51.3% (1,548 cases) were released from care and 29.6%
(915 cases) were transferred to other healthcare facilities. Within
Cohort 1, 51.3% were female, and 66.7% were Caucasian with a
median age of 75 (Table 1, Supplementary Figure 2).

Around 54% of the hospitalized patients had at least one of
the comorbidities previously linked with higher risk for COVID-
19 severe response. Hypertension (52.1%) was the most common
co-morbidity, followed by cardiovascular disease (38%), diabetes
(31.5%), chronic lung disease (25.9%) and dementia (13.9%)
(Table 1). The most common COVID-19 related diagnoses
reported in hospital admissions data for cases were pneumonia
(43%), followed by respiratory failure (18.3%) and septicemia
(7.3%) (Supplementary Figure 3).

Combinatorial Disease Signatures Capture
Phenotypic and Clinical Risk Factors for
Severe COVID-19
The combinatorial analysis identified 1,147 combinations of
clinical and phenotypic features (disease signatures) that were
highly associated with hospitalized patients in Cohort 1 and
32,242 combinations in Cohort 2 (Supplementary Table 3,
Supplementary Figure 4). A higher number of disease signatures
was reported for Cohort 2. This is likely due to the relatively
higher prevalence of the same clinical features among Cohort 2
individuals as compared to Cohort 1.

The disease signatures were filtered to exclude those that
had any features indicating an absence of a disease diagnosis,
symptom, or medication use, as these are likely to be generated as
a result of incompleteness of the claims and pharmacy data rather
than as a true disease association. Additionally, disease signatures
that were found in fewer than 20 cases were also excluded. After
filtering, 255 disease signatures in Cohort 1 and 531 disease
signatures in Cohort 2 were used for further analysis.

All features in the disease signatures identified for each study
were scored using a Random Forest (RF) algorithm based inside
a 5-fold cross-validation framework to evaluate the accuracy
with which a feature (e.g., a laboratory analyte value) predicts
the observed case:control split (minimizing Gini impurity).
One hundred sixty-six features in Cohort 1 and 41 features
in Cohort 2 were identified as critical features as shown in
Supplementary Figure 5. Many of these included diagnoses and
symptoms associated with severe COVID-19 such as respiratory
failure, pneumonia, acute renal failure, and septicemia because of
their low incidence in controls.

We found that the combinatorial disease signatures capture
clinical features associated with response to severe COVID-
19 illness (Figures 1, 2) These features include pneumonia
and respiratory failure, which are frequently reported among
hospitalized patients, and risk factors that increase the probability
of developing severe response such as diabetes, hypertension
and cardiovascular disease. Phenotypes related to the risk-
associated comorbidities such as elevated glucose levels or blood
pressure and common medications prescribed for them (e.g.,
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TABLE 1 | Cohort characteristics for the hospitalization risk studies.

Cohort 1 (n = 9,493) Cohort 2 (n = 1,581)

Hospitalized

patients

Non-hospitalized

patients

Two-sided

p-value

Hospitalized

patients

Non-hospitalized

patients

Two-sided

p-value

COVID-19 positive 3,183 6,310 N/A 581 1,000 N/A

Males (%) 1,549 (48.7%) 2,758 (43.7%) 5.0e-06 295 (50.1%) 348 (34.8%) 6.5e-10

Median Age (Range) 75 (29–89) 72 (15-89) <2.2e-16 74 (31–89) 71.5 (33–89) 2.2e-14

Caucasian* (%) 1,632 (66.7%) 3,693 (66.8%) 0.938 298 (57.5%) 528 (59.5%) 0.465

Mortality (%) 607 (19.10%) N/A N/A 100 (17.2%) N/A N/A

Hypertension (%) 1,657 (52.1%) 3,864 (61.2%) <2.2e-16 431 (58.7%) 672 (67.2%) 3.7e-03

Diabetes (%) 1,109 (34.8%) 2,114 (33.5%) 0.198 277 (47.7%) 427 (42.7%) 5.8e-02

Cardiovascular (%) 1,210 (38.0%) 1,468 (23.3%) <2.2e-16 204 (35.1%) 267 (26.7%) 2.2e-03

Dementia (%) 443 (13.9%) 236 (3.7%) <2.2e-16 27 (4.6%) 10 (1.0%) 7.2e-06

Chronic lung disease (%) 832 (25.9%) 1,198 (20.0%) 2.4e-15 135 (23.2%) 188 (18.9%) 3.8e-02

*The percentage of Caucasians was calculated as a fraction of those individuals for whom ethnicity information was available (∼85% of all records).

p-values were calculated to assess the association of each feature in the two COVID-19 hospitalized risk cohorts using two-sided Fisher’s exact tests for categorical data and

Mann-Whitney U tests for continuous data.

insulin, statins, and dihydropyridines) were also commonly
found. Many low-frequency features (<10% among hospitalized
patients) such as ARDS (10), pneumothorax (24), hematuria (25),
encephalopathy (16), pericarditis (26), and thrombosis (14) were
frequently found in disease signatures in combination with other
features. Some disease signatures also captured clinical features
related to increased frailty such as senility or high risk of hospital
readmission, whilst other features reflect conditions that are
associated with prolonged hospital stay, such as pressure ulcers
and secondary bacterial infections.

Networks generated by clustering disease signatures in the
two cohorts highlighted the heterogeneity of clinical features
observed in severe COVID-19. Such clustering enables the
identification of disease signatures that co-occur in patient sub-
groups who are likely to have similar symptoms, underlying
conditions, or clinical outcomes. For example, hospitalized
patients who developed ARDS were likely to be influenced by
the features nearest to ARDS in the network such as older age,
development of pneumonia, pulmonary hemorrhage, sepsis, and
high mortality (Figure 3, Supplementary Figure 6).

Disease Signatures Associated With Lower
Levels of Serum Calcium and Lipids
In Cohort 2, features from five blood analytes (calcium, LDL,
HDL, triglycerides, and leukocyte count) were available for
patients. Hospitalized patients with severe COVID-19 were
observed to be more likely to have lower serum calcium
levels (<9.26 mg/dl), lower LDL levels (<78.23 mg/dl), lower
HDL levels (<44.35 mg/dl), and higher levels of triglycerides
(>206.20 mg/dl) when compared against the patients with
mild disease (Supplementary Table 4). Both low and high levels
of blood leukocyte count were observed in patients with
severe COVID-19.

In Cohort 2 the PrecisionLife platform identified 18 disease
signatures in 80 hospitalized patients with serum calcium values
lower than 9.26 mg/dl (Supplementary Figure 7). Out of these,

only four signatures were co-associated with the use of the
dihydropyridines (calcium channel blockers) and proton-pump
inhibitors which may have an effect on calcium homeostasis
(27, 28). The hypocalcemia disease signatures were associated
with COVID-19 symptoms such as pneumonia and respiratory
failure, and comorbidities including diabetes, hypertension, and
anemia. Two calcium disease signatures were found in 34
patients (42.5%), co-occurring with high mortality and hospital
re-admission risk scores, which suggests that these patients
had multiple underlying conditions. Another calcium disease
signature in 33 (41.3%) patients was associated with low serum
levels of HDL and pneumonia.

We also identified 45 disease signatures in 188 (32.4%)
severe COVID-19 patients that were associated with
comparatively low serum lipid (LDL, HDL, or triglyceride)
levels (Supplementary Figures 8–10). Comorbidities such as
hypertension, obesity, and cerebrovascular disease were found
in these hypolipidemia signatures, which are not commonly
co-associated in patients. We investigated whether the reduced
lipid levels observed in these patients were caused by the use of
statins. None of the disease signatures were associated with the
feature indicating statin use by all associated cases. We found
12 hypolipidemia signatures where <10% of the patients were
associated with any prescription records for statins within 90
days of the laboratory test result date, suggesting that these
signatures were independent of statin use. Thus, dyslipidemia
observed in many severe COVID-19 patients in Cohort 2 is
not likely to represent an artifact of other comorbidities or
medication use, but a consequential host response to SARS-
CoV-2 infection which has been reported in many recent
studies (29–31).

Mortality in the patients with either calcium or lipid
disease signatures was not found to be significantly different.
We were able to identify 15 disease signatures with lower
levels of calcium and one signature with lower levels of
cholesterol in this subcohort that were associated with at least
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FIGURE 1 | Phenotypic and clinical features that were most frequently reported (top 40) in 255 filtered disease signatures in Cohort 1 were associated with an

increased risk of hospitalization with severe COVID-19.

10 patients. The identification of calcium and lipid disease
signatures in this subcohort strongly suggests that they reflect
biochemical characteristics of patients with severe host response
to COVID-19.

DISCUSSION

Pulmonary manifestations of COVID-19 such as respiratory
failure and pneumonia were the most common symptoms in
the two cohorts that were also prevalent in the combinatorial
disease signatures identified by the PrecisionLife platform
(Supplementary Figures 3, 5). Comorbidities such as
hypertension, cardiovascular disease, chronic respiratory
disease, and diabetes are known to be associated with
COVID-19 risk from other studies (2–4), including our

previous genetic study (18) in UK Biobank, were observed
in hospitalized patients. These comorbidities co-occur with
different COVID-19 symptoms, complications, medication
use, and laboratory analyte values. This analysis enables us to
gain useful insights into the likely associations between these
clinical and phenotypic features that can improve the clinical
management of patients.

A wide variety of severe COVID-19 manifestations, such as
ARDS, sepsis, pericarditis, and thrombosis, were observed in the
disease signatures representing patient sub-groups (2, 14, 24–26).
This correlates with our previous genomic analysis on the UK
Biobank COVID-19 cohort, which identified genes associated
with some of these complications, including host pathogenic
responses, inflammatory cytokine production, modulation of
cardiac function, and endothelial cell function (19).
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FIGURE 2 | Phenotypic and clinical features that were most frequently reported (top 40) in 581 filtered disease signatures in Cohort 2 (subcohort of Cohort 1 with

additional laboratory test results) associated with increased risk of hospitalization with severe COVID-19. Features associated with hypocalcemia (Calcium:0) and

hypolipidemia (LDL:0, HDL:0) were reported in multiple disease signatures.

The use of medications such as proton pump inhibitors,
dihydropyridines, and beta-adrenergic blockers was observed in
seven disease signatures in Cohort 1 and 80 signatures in Cohort
2. Dihydropyridines (32, 33)and beta-adrenergic blockers (34, 35)
have been associated with improved outcomes for COVID-19
patients and suggested as potential treatments, while proton
pump inhibitors have been associated with adverse outcomes in
several studies (36, 37). The incidence of the medications in the
disease signatures could be either due to adverse effects caused by
the medication resulting in a more severe COVID-19 response or
it could reflect the comorbidities in patients for which they are
generally prescribed. Using the available data, it was not possible
for us to ascertain the specific association of these medications in
our study with certainty.

In Cohort 2, all hypocalcemia (n = 18) disease signatures
and hypolipidemia (n = 45) signatures were found to be
associated with severe pulmonary manifestations of COVID-
19 (Supplementary Figures 7–10). There is increasing evidence
that calcium and lipid homeostasis plays an important role
in the viral replication cycle and they have been suggested as
biomarkers for increased COVID-19 severity (29–31, 38). It
has been demonstrated that the calcium signaling pathway or
calcium-dependent processes in host cells are often perturbed
by viral proteins that can bind calcium and/or calcium-
binding protein domains, allowing them to modulate the
host cellular machinery for viral replication, assembly, and
release (39, 40). The mechanism of calcium regulation is
not fully understood, as some viruses are known to increase
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FIGURE 3 | The network architecture of filtered (n = 255) disease signatures associated with hospitalized COVID-19 patients in Cohort 1 generated by the

PrecisionLife platform where each circle represents a feature and edges represent co-association in patients. The colored nodes and edges represent the disease

signatures of patients who developed ARDS (shown in a darker shade) in Cohort 1. The co-associated features are shown in a lighter shade.

intracellular calcium levels while others are known to have
a dynamic control based on the phase of infection (41).
However, the SARS-CoV E protein has been shown to form
protein-lipid channels that transport calcium ions, activating the
NLRP3 inflammasome and increasing systemic inflammation
via IL-1β (42).

Lower lipid levels have been reported in severe COVID-19
patients in many studies with a correlation observed between
reduced lipid levels and disease severity (43–45). Many viruses,

including SARS-CoV and MERS-CoV, can modulate lipid
synthesis and signaling in host cells to divert cellular lipids
to viral replication and exocytosis, facilitating the invasion of
other host cells (46, 47). It has been suggested that the decrease
in cellular cholesterol levels following SARS-CoV-2 infection
leads to disruption of the signaling hub for inflammation
and cholesterol metabolism, resulting in the dysregulation of
cholesterol biosynthesis, inflammatory cytokine release, and
vascular homeostasis (48, 49).
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Regulation of cholesterol biosynthesis has been shown to
be associated with six genes identified by a genome-scale
CRISPR knockout screen that reduced SARS-Cov-2 infection in
human alveolar basal epithelial carcinoma cells (50). The study
also demonstrated that the use of dihydropyridines results in
increased resistance to SARS-Cov-2 infection (50). Another study
hypothesized that elevated unsaturated fatty acids in SARS-CoV-
2 infected host cells bind calcium, resulting in hypocalcemia and
triggering the production of pro-inflammatory mediators and
cytokine storm induction (51, 52).

We found seven disease signatures in this study where lower
levels of LDL were found co-occurring with lower levels of
serum calcium, leukocyte count, or HDL. These signatures
may be attributed to similar mechanisms linking calcium and
lipid signaling where changes in cellular lipid levels during
inflammation and infection (53) affects calcium signaling in host
cells (54–56).

Retrospective analysis of the clinical histories of the
hospitalized patients with lower calcium and lipid signatures was
performed to identify whether the laboratory analyte values may
be affected by other medical conditions. We found that 50%
of cases represented by disease signatures featuring lower levels
of calcium were reported to have vitamin D deficiency which
is important for calcium homeostasis in both physiological and
disease states (57). More than 25% of people above the age of
65 were vitamin D deficient. This suggests that the changes in
calcium levels in some patients may be linked to vitamin D
deficiency in severe COVID-19 (57, 58), which has also been
associated with severe illness and which was found in eight
disease signatures in Cohort 2. A recent study reported that
lower serum calcium levels have been found to be associated with
COVID-19 patients with pneumonia independent of vitamin D
deficiency (59). This finding is consistent with our findings that
a sub-group (50%) of patients with low serum calcium values
were not reported with vitamin D deficiency. It is likely that in
these patients, the changes in lipid levels following COVID-19
infection (53) affects the serum calcium levels (54–56), similar to
the patients who had disease signatures that were combinations
of lower serum calcium, leukocyte, and HDL levels.

Our previous analysis on the UK Biobank COVID-19 cohort
(19) identified 16 calcium-binding/signaling genes and six genes
relating to lipid droplet biology and correlated with serum lipid
levels and coronary artery disease. In conjunction with the
findings of this study, this adds further support to the role of
calcium and lipid signaling in relation to viral pathogenesis and
severe host response to COVID-19. To fully understand the
role of calcium and lipid homeostasis in COVID-19, analysis
of patient datasets that combine genetic, clinical, and hospital
laboratory test data will be necessary.

Limitations of the Study
This study was limited by the completeness of data for features
relevant to analyzing differential host response to COVID-19.
Information on the onset of disease or symptoms, the clinical
phase of disease, viral load, oxygen saturation, breathing rate,
body mass index, and physiological measurements or biomarker

levels during hospitalization was not consistently available. We
used hospitalization status associated with a primary diagnosis
of COVID-19 as a surrogate for severe COVID-19 patients.
Mortality and diagnoses linked to clinical progression of COVID-
19 were used to estimate the relative severity of disease among
hospitalized patients.

The comorbidities, diagnoses, medications, and laboratory
test results were derived from medical claims, pharmacy
claims, and in-patient admission records. Since claims data
are generated for reimbursement and administrative purposes
rather than scientific research, the records may be missing
information and there is potential for variability in their
collection. Data sparsity of the available patient records was
reflected in the low penetrance of many disease signatures.
As more patient data becomes available, the disease signatures
will become more predictive, enabling higher resolution
patient stratification.

CONCLUSION

The PrecisionLife platform identified and analyzed 836
combinatorial disease signatures in two COVID-19 cohorts
(Cohort 1 = 255, Cohort 2 = 531) associated with increased
risk of hospitalization from COVID-19. These disease signatures
were found to capture different symptomatic presentations of
COVID-19, complications arising from the clinical progression
of the disease, and underlying disease conditions that could be
either associated with severe host response to COVID-19 or were
indicative of conditions associated with older age or frailty.

In Cohort 2, we found 45 disease signatures that were
associated with lower levels of serum calcium, LDL, HDL, and
triglycerides in 188 (32.35%) hospitalized patients. This suggests
that lower levels of calcium and cholesterol are biochemical
characteristics associated with severe COVID-19 patients, which
may also add further support to the role of calcium signaling and
lipid dysregulation in SARS-CoV-2 pathogenesis.

These findings are consistent with the insights generated by
multiple studies in different COVID-19 patient populations. This
also validates our findings from our previous genomics study
(19) on severe COVID-19 patients in UK Biobank (20) where
we identified 16 risk-associated genes that had calcium-binding
domains or were involved in calcium signaling and six genes
linked to lipid droplet biology associated with serum lipid levels.

This study along with our previous genomic study (19)
demonstrates that a combinatorial analysis approach is able to
identify related groups of clinical and phenotypic features from
both genomic and phenotypic data that are associated with the
risk of developing severe forms of COVID-19. This enables
us to gain unique insights into the non-linear combinatorial
feature associations to a clinical phenotype in patient sub-groups,
that is not detected by standard data analysis approaches. With
the availability of more data, the combinatorial output of the
analytical platform would be greatly enhanced and the insights
derived from them would allow for the identification of targeted
approaches to patient care.
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This analysis also validates the association of calcium and lipid
homeostasis with severe COVID-19 reported by our previous
study, using real-world data in an independent cohort. We will
extend these analyses in future to larger patient datasets that
have both genetic and phenotypic data to fully ascertain the
differences betweenmild and severe host responses to COVID-19
and the mechanism of calcium and lipid signaling in SARS-Cov-
2 pathogenesis.
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