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Rationale: Given the expanding number of COVID-19 cases and the potential for new

waves of infection, there is an urgent need for early prediction of the severity of the

disease in intensive care unit (ICU) patients to optimize treatment strategies.

Objectives: Early prediction of mortality using machine learning based on typical

laboratory results and clinical data registered on the day of ICU admission.

Methods: We retrospectively studied 797 patients diagnosed with COVID-19 in

Iran and the United Kingdom (U.K.). To find parameters with the highest predictive

values, Kolmogorov-Smirnov and Pearson chi-squared tests were used. Several machine

learning algorithms, including Random Forest (RF), logistic regression, gradient boosting

classifier, support vector machine classifier, and artificial neural network algorithms

were utilized to build classification models. The impact of each marker on the RF

model predictions was studied by implementing the local interpretable model-agnostic

explanation technique (LIME-SP).

Results: Among 66 documented parameters, 15 factors with the highest predictive

values were identified as follows: gender, age, blood urea nitrogen (BUN), creatinine,

international normalized ratio (INR), albumin, mean corpuscular volume (MCV),

white blood cell count, segmented neutrophil count, lymphocyte count, red cell

distribution width (RDW), and mean cell hemoglobin (MCH) along with a history of

neurological, cardiovascular, and respiratory disorders. Our RF model can predict

patient outcomes with a sensitivity of 70% and a specificity of 75%. The performance

of the models was confirmed by blindly testing the models in an external dataset.
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Conclusions: Using two independent patient datasets, we designed a

machine-learning-based model that could predict the risk of mortality from severe

COVID-19 with high accuracy. The most decisive variables in our model were increased

levels of BUN, lowered albumin levels, increased creatinine, INR, and RDW, along with

gender and age. Considering the importance of early triage decisions, this model can

be a useful tool in COVID-19 ICU decision-making.

Keywords: SARS-CoV-2, COVID-19, artificial intelligence, ICU—intensive care unit, machine learning (ML)

GRAPHICAL ABSTRACT | The presenting diagram, is showing the flow of our data gathering and method for the study. There are two data sources which ultimately

have been used in a 10-fold cross-validation method to train the machine learning models. Finally, the model with the highest AUC was selected as final model.

INTRODUCTION

As of September 6, 2021, COVID-19 has caused more than 219
million infections worldwide and resulted in more than 4.55
million deaths. Complications are more common among elderly
patients and people with preexisting conditions, and the rate of
intensive care unit (ICU) admission is substantially higher in
these groups (1, 2).

ICU admissions rely on the critical care capacity of the health
care system. Iran, which is the primary testbed for this study, was
one of the first countries hit by COVID-19. The ICU admission
rate involves about 32% of all hospitalizations, and the ICU
mortality rate is about 39% (3). With the potential of new waves
of COVID-19 infections driven by more transmissible variants,
ICU hospitalization numbers are expected to rise, leading to
shortages of ICU beds and critical management equipment.

Frontiers in Digital Health | www.frontiersin.org 2 January 2022 | Volume 3 | Article 681608

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Jamshidi et al. Predicting COVID-19 Mortality in ICU

There is also the risk of a global shortage of effective medical
supplies, making the judicious use of these medications a top
priority for healthcare systems.

An individual-based prediction model is essential for tailoring
treatment strategies and would aid in expanding our insights into
the pathogenesis of COVID-19. A number of risk assessment
scores are available to predict the severity of different diseases in
ICU patients (4). Predictors of the need for intensive respiratory
or vasopressor support in patients with COVID-19 and of
mortality in COVID-19 patients with pneumonia have been
identified (5, 6). To date, no general mortality prediction scores
have been available for ICU admitted COVID-19 patients,
irrespective of the patients’ clinical presentation. Additionally,
existing risk scales rely on parameters measured by health care
providers such as blood pressure, respiratory rate, and oxygen
saturation, which are subject to human error and operator
bias especially under challenging and stressful conditions when
numbers of COVID-19 patients surge (7). Thus, it remains vital
to develop more unbiased risk-assessment tools that can predict
the most likely outcomes for individual patients with COVID-19.

Recent advances in artificial intelligence (AI) technology for
disease screening show promise as computer-aided diagnosis and
prediction tools (8–11). In the era of COVID-19, AI has played
an important role in early diagnosis of infection, contact tracing,
and drug and vaccine development (12). Thus, AI represents a
useful technology for the management of COVID-19 patients
with the potential to help control the mortality rate of this
disease. Nevertheless, an AI tool for making standardized and
accurate predictions of outcomes in COVID-19 patients with
severe disease is currently missing.

Beyond the general benefits of data-driven decision-making,
the pandemic has also exposed the need for computational
assistance to health care providers, who under the pressure
of severely ill patients may make mistakes in judgment (7,
13, 14). Stressful conditions and burnout in health care
providers can reduce their clinical performance, and a lack
of accurate judgment can lead to increased mortality rates
(15, 16). Artificial intelligence can help healthcare professionals
determine who needs a critical level of care more precisely.
Indeed, the effective use of AI could mitigate the severity of
this outbreak.

Here, we propose a personalized machine-learning (ML)
method for predicting mortality in COVID-19 patients based
on routinely available laboratory and clinical data on the day of
ICU admission.

Abbreviations: ACE2, Angiotensin-Converting Enzyme 2; AI, Artificial
Intelligence; BUN, Blood Urea Nitrogen; COVID-19, coronavirus disease
of 2019; CIC, clinical impact curve; Cr, creatinine; CRP, C reactive protein;
DC, decision curve; ICU, Intensive care unit; INR, International Normalized
Ratio; IFN, interferon; IL-6, Interleukin 6; IQR, interquartile range; KS,
Kolmogorov- Smirnov; LR, Logistics regression; LIME, local interpretable model-
agnostic explanation; LIME-SP, local interpretable model-agnostic explanation
submodular-pick; ML, Machine learning; MCH, mean corpuscular hemoglobin;
MCV, mean corpuscular volume; RF, Random forest; RDW, Red blood cell
distribution width; ROC, receiver operating characteristic curve; RT-PCR, reverse
transcription-polymerase chain reaction; WBC, white blood cells count.

METHODS

Data Resources
This is an international study involving patients from Iran
(dataset 1) and the United Kingdom (U.K., dataset 2). We
retrospectively studied 797 adult patients with severe COVID-
19 infection confirmed through reverse transcription-polymerase
chain reaction (RT-PCR). Two hundred sixty-three patients were
admitted to ICUs at different hospitals in Tehran, Iran between
February 19 and May 1, 2020, and 534 patients were admitted to
ICUs and Emergency Assessment Units based on the Oxfordshire
Research Database. The study was performed after approval
by the Iran University of Medical Sciences Ethics Committee
(approval ID: IR.IUMS.REC.1399.595).

Development of Mortality Prediction Model
Using
The Mortality prediction model was aimed to predict whether
patients were deceased or got released at the end of the admission
period. Due to the generalizability and accessibility of the
predictors recorded for patients in dataset 1 (Iran), and to reduce
the model’s feature space dimensionality, we merely used this
dataset (consisting of 263 patients) for feature selection and
model development. Only parameters with the highest predictive
values were used in the modeling, leading to more robustness
and generalizability of the model (17). Aside from that, further
ML comparisons and validation was done with both the dataset
1 and 2.

Statistical Analysis and Feature Selection
On the day of the ICU admission, 66 parameters were assessed for
each patient including 11 demographic characteristics (e.g., age
and gender), past medical history and comorbidities (including
nine different preexisting conditions), and 55 laboratory
biomarkers. These parameters are listed in Table 1. Sixty-nine
percent of measurements were reported on the day of admission,
27% were reported 1 day after, and 4% were reported within
2 days of ICU admission because of sampling limitations and
laboratory practice. We excluded patients whose laboratory data
were obtained more than 2 days after the date of admission to
the ICU.

The aim was to predict a patient’s survival. For the selection
of parameters with the highest predictive value, under the null
hypothesis of distributions being the same between the two
groups, the two-sample Kolmogorov-Smirnov test (KS), shown
in Supplementary Figure 1, was used for numerical parameters
(age and laboratory biomarkers), and the Pearson chi-squared
test (χ2), shown in Supplementary Figure 2, was used for
categorical parameters (e.g., gender and comorbidities).

All selected predictors were available in the second dataset
(Oxfordshire, U.K.). Henceforth, the datasets have been merged,
solely possessing previously selected predictors in common.

To investigate multicollinearity, Variance Inflation Factor
(VIF) was calculated for each predictor and reported in
Supplementary Table 1. A cut-off of 10 has been used to omit
predictors that are showing collinearity, which includes none of
the included predictors.
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TABLE 1 | Machine learning methods with their parameters.

Method Parameter Value

Random forest Number of trees 50

Min. number of samples at a leaf node 0.1% of all samples

Criterion Gini

Logistic regression C 1.0

Gradient boosting Number of boosting stages to perform 10

Fraction of samples used for fitting individual base learners 0.8

Min. number of samples at a leaf node 10% of all samples

Number of iterations with no change required for early stopping 3

Max. number of features considered when looking for a split 3

Support vector machine C 1.0

Kernel type RBF

Kernel coefficient 1/number of features

Artificial neural network Number of hidden layers 3

Output space dimensionality for each hidden layer 32, 16, 8

Activation function for each layer Tanh, tanh, tanh, sigmoid

FIGURE 1 | Investigation of model performance. Mean area under the receiver operating characteristic curve (ROC-AUC) of random forest, logistic regression,

gradient boosting classifier, support vector machine classifier, and artificial neural network models for training and test sets of cross-validation iterations. The random

forest model shows superior performance on validation sets. The random forest model predicts patient outcomes with a 70% sensitivity and 75% specificity.

Data Preprocessing
Due to the difference in the measurement units and the necessity
of units to be uniform, measurements of numerical parameters
were unified between the two data sets by applying appropriate
conversion factors, resulting in admissible input parameters for
the model.

Data processing was carried out in four steps: First, because
of incomplete laboratory data and in order to reduce difficulties
associated with missing values, 771 patients out of the 797
total patients were selected as they had the data of at least
70 percent of all the biomarkers. Patients that did not have

enough data present for biomarkers were removed. Second,
samples were randomly separated into 10 independent sets with
stratification over outcomes for 10-fold cross-validation to ensure
the generalizability of the models (18). Of the 10 subsets, a single
subset was retained as a validation set for model testing and the
remaining nine subsets were used as training data. The cross-
validation process was then iterated 10 times with each of the
10 subsets being used as the validation data exactly once. Third,
numerical parameters were standardized by scaling the features
to mean zero and unit variance. Last, missing biomarker values
were imputed using the k-nearest neighbor (k-NN) algorithm,
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FIGURE 2 | Feature importance in random forest model. The importance of the random forest features using local interpretable model-agnostic explanation

submodular-pick with six submodules. Each submodule is related to a patient subpopulation (six subpopulation in this case) and represents decision criteria for them

in the model. Negative values (blue) indicate favorable parameters suggesting a better prognosis, and positive values (red) indicate unfavorable parameters suggesting

a worse prognosis.

and a binary indicator of missingness for each biomarker was
added to the dataset (17, 19). Standardization and imputation
were performed separately on each cross-validation iteration by
using training set samples.

Machine Learning Model
Random forest (RF), logistic regression (LR), gradient boosting
(GB), support vector machine (SVM), and artificial neural

network (NN) methods were used to build classification models
using the Python scikit-learn package. Methods along with their
parameters are listed inTable 1. The performance of eachmethod
on training and validation sets in each cross-validation iteration
was compared using a receiver operating characteristic curve
(ROC), which is shown in Supplementary Figure 3. Area Under
the Curve of ROC for each method is represented in Figure 1.
Additional evaluation metrics for each model are also reported

Frontiers in Digital Health | www.frontiersin.org 5 January 2022 | Volume 3 | Article 681608

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Ja
m
sh

id
ie
t
a
l.

P
re
d
ic
tin

g
C
O
V
ID
-1
9
M
o
rta

lity
in

IC
U

TABLE 2 | Characteristics of intensive care unit patients with COVID-19 in our data.

Survived (N = 105) Died (N = 158) Sig. key: <0.1 (*), <0.01 (**), <0.001 (***)

Number (%) Available data (%) Number (%) Available data (%) Total (number) X2 statistics X2 p-value Sig.

Gender 105 (100) 158 (100) 1.70 0.19

Male 63 (36.4) .. 110 (64.6) .. 173 .. ..

Female 42 (46.7) .. 48 (53.3) .. 90 .. ..

Comorbidity .. 105 (100) .. 158 (100) .. .. ..

Autoimmune disorder 2 (33.3) .. 4 (66.7) .. 6 0.10 0.74

Cancer 6 (42.9) .. 8 (57.1) .. 14 0.05 0.82

Cardiovascular disorder 25 (29.1) .. 61 (70.9) .. 86 4.22 0.04 *

Diabetes mellitus 35 (38.0) .. 57 (62.0) .. 92 0.13 0.71

Thrombosis 2 (40.0) .. 3 (60.0) .. 5 0.0003 0.99

Hypertension 32 (34.0) .. 62 (66.0) .. 94 1.35 0.24

Hepatic failure 2 (40.0) .. 3 (60.0) .. 5 0.0007 0.99

Neurological disorder 8 (16.0) .. 42 (84.0) .. 50 11.93 <0.001 ***

Respiratory disorder 7 (24.1) .. 22 (75.9) .. 29 3.01 0.08 *

Median (IQR) Available data (%) Median (IQR) Available data (%) Normal range KS Statistics KS p-value

Age (years) 58.0 (47.0–73.0) 105 (100) 72.5 (64.0–80.75) 158 (100) .. 0.35 <0.001 ***

pH 7.42 (7.375–7.457) 87 (82) 7.4 (7.33–7.441) 129 (81) 7.31–7.41 0.18 0.05 *

pCO2 (mm Hg) 38.4 (34.8–45.1) 87 (82) 40.2 (33.9–47.1) 125 (79) 35–40 0.09 0.66

pO2 (mm Hg) 37.05 (25.1–57.425) 86 (81) 39.9 (26.975–56.65) 124 (78) 42–51 0.08 0.81

HCO3 (meq·L) 25.5 (22.825–28.575) 86 (81) 24.2 (21.2–27.55) 123 (77) 22–26 0.15 0.14

O2 saturation (%) 72.7 (48.3–89.2) 85 (80) 73.5 (50.2–88.95) 123 (77) −2.0 to 2.0 0.08 0.87

Base excess (mEq/L) 2.2 (−0.55 to 4.65) 87 (82) 0.6 (−3.1 to 3.275) 126 (79) .. 0.18 0.06 *

Total buffer base (mEq/L) 49.1 (46.65–51.75) 87 (82) 47.5 (43.75–50.375) 126 (79) .. 0.20 0.01 *

Base excess in the extracellular

fluid (mEq/L)

2.2 (−0.4 to 4.9) 87 (82) 0.35 (−3.175 to 3.75) 126 (79) .. 0.21 0.01 *

White blood cells count

(x1000·mm3 )

7.4 (5.0–11.225) 104 (99) 9.7 (7.1–13.45) 155 (98) 4.0–10.0 0.23 0.002 **

Band (%) 3.0 (2.0–5.5) 23 (21) 3.0 (2.0–6.0) 38 (24) .. 0.05 1

Segment (%) 78.0 (70.65–83.0) 87 (82) 82.8 (77.05–86.95) 119 (75) .. 0·25 0.002 **

Lymphocyte (%) 14.0 (10.0–20.225) 86 (81) 10.7 (6.85–15.4) 119 (75) .. 0.25 0.002 **

Monocyte (%) 6.0 (4.0–8.5) 45 (42) 5.0 (3.35–7.0) 59 (37) .. 0.17 0.34

Basophil (%) 0.3 (0.2–0.8) 13 (12) 0.1 (0.0–0.1) 13 (8) .. 0.61 0.01

Red blood cells count (mill·mm3 ) 4.335 (3.83–4.908) 102 (97) 4.185 (3.64–4.748) 154 (97) 4.2–5.4 0.12 0.28

Hemoglobin (g·dl) 12.6 (10.95–13.8) 103 (98) 12.2 (10.2–13.75) 155 (98) 12.0–16.0 0.07 0.81

Hematocrite (%) 37.0 (32.85–41.2) 103 (98) 36.6 (31.45–40.75) 155 (98) 36–46 0.06 0.93

(Continued)
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TABLE 2 | Continued

Survived (N = 105) Died (N = 158) Sig. key: <0.1 (*), <0.01 (**), <0.001 (***)

Number (%) Available data (%) Number (%) Available data (%) Total (number) X2 statistics X2 p-value Sig.

Mean corpuscular volume (fL) 85.0 (81.4–88.65) 103 (98) 88.0 (84.65–91.9) 155 (98) 77–97 0.24 <0.001 ***

Mean corpuscular hemoglobin

(Pgm)

28.7 (26.6–29.85) 103 (98) 29.6 (27.8–30.55) 155 (98) 26–32 0.21 0.006 **

Mean corpuscular hemoglobin

concentration (%)

33.1 (32.45–34.4) 103 (98) 33.3 (31.95–34.15) 155 (98) 32–36 0.09 0.59

Platelet count (x1000·mm3 ) 196.0 (151.5–260.0) 103 (98) 179.0 (125.0–255.0) 155 (98) 140–440 0.17 0.04 *

Red cell distribution width (%) 13.95 (13.2–14.825) 88 (83) 14.6 (13.75–16.0) 131 (82) 11.0–16.0 0.23 0.006 **

Platelet distribution width (FL) 12.8 (11.5–14.0) 85 (80) 13.2 (11.4–14.7) 120 (75) 10.0–17.0 0.13 0.32

Mean platelet volume (FL) 9.7 (9.175–10.5) 84 (80) 10.0 (9.3–10.7) 120 (75) 8.5–12.5 0.13 0.30

Platelet larger cell ratio (%) 24.4 (19.85–29.3) 83 (79) 26.7 (21.05–30.825) 120 (75) 17–45 0.17 0.07 *

C-reactive protein (mg·l) 48.0 (24.0–48.0) 56 (53) 48.0 (48.0–48.0) 67 (42) <6 0.23 0.05 *

Erythrocyte sedimentation rate

(mm · hr)

42.0 (27.5–68.5) 55 (52) 59.0 (33.75–75.25) 56 (35) <20 0.24 0.06 *

Albumin level (g·dl) 3.3 (3.0–3.7) 48 (45) 2.9 (2.6–3.2) 71 (44) 3.5–5.5 0.37 <0.001 ***

Serum calcium level (mg·dl) 8.8 (8.3–9.2) 72 (68) 8.6 (7.9–9.2) 97 (61) 8.6–10.6 0.13 0.37

Inorganic P level (mg·dl) 3.3 (2.45–4.4) 59 (56) 4.0 (2.95–5.4) 87 (55) 2.5–5.0 0.20 0.08

Serum Na level (mg·dl) 137.5 (135.0–140.0) 102 (97) 139.0 (135.0–142.0) 155 (98) 136–145 0.17 0.03 *

Serum K level (mg·dl) 4.3 (3.925–4.6) 102 (97) 4.4 (4.0–4.85) 155 (98) 3.7–5.5 0.11 0.37

Serum Mg level (mg·dl) 2.25 (2.0–2.5) 66 (62) 2.4 (2.0–2.7) 96 (60) 1.8–2.6 0.14 0.32

Uric acid level (mg·dl) 6.7 (4.05–9.0) 15 (14) 8.2 (5.95–9.95) 31 (19) 3.4–7.0 0.37 0.10

Fasting plasma glucose (mg·dl) 124.0 (105.0–177.0) 65 (61) 154.0 (120.5–246.5) 99 (62) .. 0.21 0.04 *

Blood urea nitrogen (mg·dl) 16.0 (11.25–22.5) 102 (97) 30.0 (21.0–52.5) 156 (98) 5.0–23.0 0.47 <0.001 ***

Creatinine (mg·dl) 1.1 (0.9–1.4) 102 (97) 1.5 (1.2–2.2) 156 (98) 0.5–1.5 0.31 <0.001 ***

Aspartate aminotransferase

(IU·L)

40.0 (29.0–55.0) 83 (79) 45.0 (31.5–82.5) 112 (70) 5.0–40.0 0.17 0.10

Alanine aminotransferase (IU·L) 26.0 (16.0–38.5) 83 (79) 25.0 (18.0–45.0) 113 (71) 5.0–40.0 0.11 0.54

Lactate dehydrogenase (U·L) 710.0 (561.0–1019.0) 57 (54) 859.0 (623.5–1256.0) 95 (60) 225–500 0.17 0.20

Creatine phosphokinase (IU·L) 233.0 (89.0–546.5) 59 (56) 204.0 (83.0–434.0) 91 (57) 24–195 0.08 0.90

Creatine phosphokinase-MB

(U·L)

30.0 (22.5–41.0) 35 (33) 30.0 (24.0–49.0) 41 (25) 5–25 0.10 0.96

(Continued)
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in Supplementary Table 2. To prevent overfitting in the training
process, the LR model was trained with an L2 regularization
factor equal to one, and the RF was forced to hold more than
10% of samples in each of its terminal leaves (20, 21). The
statistically significant difference between models’ AUC curves
has been affirmed by DeLong’s test and corresponding DeLong’s
p-values assure the RF model’s superiority and are shown in
Supplementary Figure 4. To find themost influential parameters
in the LR model prediction, we used regression coefficients,
which are shown in the Supplementary Figure 5. Using the
local interpretable model-agnostic explanation submodular-pick
(LIME-SP) method, we identified different patterns among the
whole feature space in the RF model (22). The LIME-SP method
can interpret the model’s predictions in different parts of the
feature space by modeling a subset of model predictions in
the feature space around the sample with the help of linear
models that are more interpretable. In our study, LIME-SP was
performed on 100 random samples to find six submodules with
themost disparity in their selectedmarkers, as shown in Figure 2.
To identify meaningful clinical differences between patients,
seven parameters with the highest predictive values were derived
from each submodule.

Evaluation Criteria of the Model
To specify the evaluation dataset required for the validation of
the model’s performance, 30% of the records available in dataset
2 (the U.K, 161 patients; equal to 20% of the records) were
randomly selected and assigned to the validation set to be used
to blindly test the methods, and externally confirm the exactitude
of the model. We have additionally included a data processing
pipeline to summarize our methodology.

RESULTS

In dataset 1 (Iran), all the available patient records were used
to train the models. The median age of patients was 69 years
with an interquartile range (IQR) of 54–78. The minimum and
maximum ages were 20 and 98 years, respectively. One hundred
fifty-three patients (65.1%) were men, and 82 (34.9%) were
women. One hundred five (39.9%) were discharged from the
ICU after recovery and 158 (60.1%) patients died. The most
frequent comorbidities among the patients were hypertension,
diabetes, and cardiovascular disorders in 94, 92, and 86 patients,
respectively. Among the 158 deceased patients, neurological
disorders were the most prevalent comorbidity (42 patients,
84%). The statistical analysis and the availability of each
parameter in our dataset are summarized in Table 2.

In the RF model, the optimum point between overfitting
and efficiency was found by selecting 10 laboratory biomarkers
out of 55 with the lowest KS p-values and three out
of nine comorbidities with the lowest χ

2 p-values, besides
demographic characteristics.

The selected numerical parameters for modeling were as
follows: age, blood urea nitrogen (BUN), serum creatinine level
(Cr), international normalized ratio (INR), serum albumin, mean
corpuscular volume (MCV), red cell distribution width (RDW),
mean corpuscular hemoglobin (MCH), white blood cell count
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FIGURE 3 | The relation between prediction horizon and performance. Where x-axis denotes days from ICU admission to outcome. Distribution of days between

intensive care unit admission and outcome (bars on the left vertical axis) and corresponding random forest model’s area under the receiver operating characteristic

curve scores for each bin (red line on the right vertical axis). Our model has the best performance to predict outcomes in a 15-day period.

(WBC), segmented neutrophil count, and lymphocyte count.
In addition, selected categorical parameters were gender and a
history of neurological, respiratory, and cardiovascular diseases.
The distributions of selected numerical (age and biomarkers)
and categorical (gender and preexisting conditions) variables are
shown in Supplementary Figures 6, 7, respectively.

Based on the ROC curves of the models
(Supplementary Figure 3), the RF model outperformed
other models and had superior efficiency. The higher efficiency
of the RF model is also statistically significant in comparison
to the other methods (Supplementary Figure 4). The better
performance of RF could be explained by the complexity of the
effects of COVID-19 and the varied etiologies underlying the
deterioration of COVID-19 patients, for which the non-linear
characteristics of the RF model was a more suitable option for
predictions than the linear LR model. The RF model could
predict a patient’s outcome with a sensitivity of 70% and a
specificity of 75%, whereas the sensitivity for the LR model was
65% and the specificity was 70%. Evaluation metrics for the
models were also confirmed by the metrics reported as the results
of the validating models.

By using the LIME technique, variables that provide
the most information on the probability of each patient’s
death were identified. Among the six submodules identified
with the highest disparity among 100 patients, albumin,
BUN, and RDW were present in five of them. Age, MCH,
and creatinine were present in four of the abovementioned
submodules. This points out the importance of these
measurements in the recorded parameters. Additionally,
BUN (in three of these submodules), RDW (in two
submodules), and age (in one submodule) were the most
decisive ones.

This model could predict a patient’s outcome reliably (AUC
between 80 and 85) over a 15-day period, as shown in Figure 3.
The mortality rate was highest between zero and 4 days. Given
that the model was designed for first-day ICU admissions,
moving away from this day reduced the accuracy of the

predictions and the efficacy of the LIME method for clinical
interventions, as expected.

To evaluate the clinical capability of the model, the decision
curve (DC) and the clinical impact curve (CIC) were investigated
(23). The DC framework measures the clinical “net benefit” for
the predictionmodel relative to the current treatment strategy for
all or no patients. The net benefit is measured over a spectrum of
threshold probabilities, defined as the minimum disease risk at
which further intervention is required. Based on the DC, CIC,
and on the assumption of the same interventions for high-risk
patients, our model indicated a superior or equal net benefit
within a wide range of risk thresholds and patient outcomes, as
shown in Figure 4.

Validation of the Model
In order to validate the performance of themodel, similar records
for 161 patients admitted to ICUs and Emergency Assessment
Units were studied to externally confirm the prediction model
(from dataset 2, U.K. cohort; see graphical abstract). The
same Data preprocessing routine was applied to the additional
validation data and ML methods with the same parameters
as mentioned in Table 1 were implemented. Models were
blindly tested with the external validation data. Evaluation
metrics for models are reported in Supplementary Table 3.
Reported evaluation metrics indicate a 70% sensitivity for the
RF model which accredits the certitude of the model. Validation
results ensure the generalizability of the model and guarantee
it’s applicability for external data containing similar, globally
accessible features.

DISCUSSION

The aim of this study was to develop an interpretable ML model
to predict the mortality rate of COVID-19 patients at the time of
admission to the ICU. To the best of our knowledge, this is the
first study to develop a predictive model of mortality in patients
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FIGURE 4 | Investigation of clinical impacts and benefits of the model. Decision curve (Top) and clinical impact curve (Bottom) of the random forest model. The

decision curve compares the net benefits of an intervention in three scenarios: intervention for all patients (blue dotted line), intervention for no patients (gray dotted

line), and intervention for high-risk patients based on the model prediction (red line). The clinical impact curve compares the number of patients classified as high risk by

model and the number of patients with a really poor bad outcome who were classified as high risk, for all possible high-risk thresholds in model prediction from 0 to 1.

with severe COVID-19 infection at such an early stage using
routine laboratory results and demographic characteristics.

Statistical analysis and feature selection tasks were performed
merely by considering patients in dataset 1 (Iran dataset),
which includes routine laboratory results, past medical histories
and demographic characteristics, leading to selection among
accessible and measurable predictors.

Themost decisive parameters based on the two-sample KS test
were, in decreasing order of importance, increased BUN, Cr, INR,
MCV, WBC, segmented neutrophils count, RDW, MCH, and
decreased albumin and lymphocyte levels. Moreover, based on a
χ
2-test, age, gender, and a history of neurological, cardiovascular,

and respiratory disorders were identified as parameters with high
predictive values. Multicollinearity might affect the performance
of the models and result in redundancy. Hence, variance inflation
factor was calculated to find and remove highly correlated
predictors. Selected predictors along with their references in the
literature are listed in Table 3.

A number of studies have investigated the risk factors
affecting COVID-19 infections (34, 35). Elevated inflammatory
cytokines such as interleukin-6 (IL-6), granulocyte colony-
stimulating factor (G-CSF), interferon gamma-induced protein

10 (IP-10), and interferon (IFN)-γ have been proposed as
poor prognostic factors for COVID-19 patients (36–39). These
markers, however, are not usually used as predictors of the
severity of disease in clinical practice. Although using these
cytokines in modeling may enable a more accurate prediction
of the severity of COVID-19 infection, doing so impedes the
model’s clinical application, as most of the cytokines are not
routinely checked at presentation to the ICU. In contrast, all
10 laboratory biomarkers identified in our model are commonly
measured and are available to most clinical laboratories.
Thus, the DC and CIC analyses indicated the notable clinical
benefit of our model especially in a situation characterized by
resource scarcity.

Only patients who had at least seven of the 10 selected
biomarkers have been included in the training phase of the
modeling and missing parameters were imputed using k-NN
based on the data. As can be seen in the models’ ROC curve,
the RF algorithm outperformed other methods in predicting the
outcome. Significance of this difference has been investigated
using DeLong’s test. Superior proficiency of the RF model is
mainly due to the non-linear correlation between variables,
manifesting the complexity of the problem.
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TABLE 3 | Predictors with the highest predictive value, selected in this study, along with studies referring to them.

Predictor Description Literature references

Gender Sex-dependent differences in clinical manifestation (24, 25)

Age Higher age affects COVID-19 poor outcomes (25, 26)

Blood Urea Nitrogen Assumed highest weights for prognosis (27, 28)

Creatinine A lower creatinine clearance levels increases the mortality (29)

INR INR >1.3 significantly increases mortality (30)

Albumin Assumed highest weights for prognosis (27)

WBC Abnormal white blood cell count increases mortality (31)

Neutrophil count affects COVID-19 poor outcomes (32)

Lymphocyte count Lymphocytes <10% increases mortality (30)

RDW RDW >14.5% increases mortality (30)

MCH Abnormal MCH increases mortality (33)

Neurological disorders Affects the COVID-19 outcome (34)

Cardiovascular disorders Affects the COVID-19 outcome (34)

Respiratory disorders Affects the COVID-19 outcome (34)

Since a part of the data itself has been used for feature selection
and a 10-fold cross-validation algorithm has been implemented
to the data, an additional external validation was conducted to
confirm the model’s performance. Models were blindly tested
with validation data, including records of measurements of the
selected predictors for 161 patients, taken out of dataset 2 (U.K.).

Results of the validation assure that the model we developed
could be applied globally and predict mortality of the
patients with severe COVID-19 infection solely with universally
accessible parameters (Table 2). As a result, physicians and
healthcare systems are able to utilize this model, confident about
high sensitivity and specificity in the outcome.

The application of the LIME-SM method allowed us to
determine a patient-specific marker set that each patient’s
prognosis is based on. This technique explains the predictions
by perturbing the input of data samples and evaluating the
effects. The output of LIME is a list of features, reflecting each
feature’s contribution to a given prediction. Understanding the
“reasoning” of the ML model is crucial for increasing physicians’
confidence in selecting treatments based on the prognosis scores.
Using the LIME method, the significance of variables with high
predictive value was determined for each prediction made for
an individual. The evaluation of the variables in the individual’s
personalized prediction can lead to supportive measures and help
determine treatment strategies according to the interpretation of
the individual prognosis.

As severe COVID-19 may result from various underlying
etiologies, our model can help categorize patients into groups
with distinct clinical prognosis, thus allowing personalized
treatments. In addition to targeted therapies, the differentiation
between patients may reveal disease mechanisms that coincide
or that occur under specific preexisting conditions. Future
cohort studies could explore these assumptions with increased
sample sizes.

In this study, hypoalbuminemia and renal function were
identified as the main factors with high predictive values
for the model. These findings are in agreement with recent

results showing that hypoalbuminemia is an indicator of poor
prognosis for COVID-19 patients (40). It is well-documented
that endogenous albumin is the primary extracellular molecule
responsible for regulating the plasma redox state among plasma
antioxidants (40). Moreover, it has been shown that albumin
downregulates the expression of the angiotensin-converting
enzyme 2 (ACE2) which may explain the association of
hypoalbuminemia with severe COVID-19 (41). Intravenous
albumin therapy has been shown to improve multiple organ
functions (42). Therefore, early treatment with human albumin
in severe cases of COVID-19 patients before the drop in
albumin levels might have positive outcomes and needs to be
further investigated.

Furthermore, increased levels of BUN and Cr are observed in
our study, which is an indication of kidney damage. An abrupt
loss of kidney function in COVID-19 is strongly associated
with increased mortality and morbidity (43). There are multiple
mechanisms supporting this association (44, 45).

One of the findings of this study is the identification of RDW
(a measure of the variability of the sizes of RBCs) as an influential
parameter. This result is in line with recently published
reports (46). Elevated RDW, known as anisocytosis, reflects a
higher heterogeneity in erythrocyte sizes caused by erythrocyte
maturation and degradation abnormalities. Several studies have
found that elevated RDW is associated with inflammatory
markers in the blood such as IL-6, tumor necrosis factor-α, and
CRP, which is common in severely ill Covid-19 patients (44).
These inflammatory markers could disrupt the erythropoiesis by
directly suppressing erythroid precursors, promoting apoptosis
of precursor cells, and reducing the bioavailability of iron for
hemoglobin synthesis.

Yan et al. recently identified LDH, lymphocyte, and high-
sensitivity C-reactive protein (hs-CRP) as predictors of mortality
in COVID-19 patients during their hospitalization. The blood
results of hospitalized patients on different days after the initial
ICU admission were used for their model (45). Since our goal
was the prediction of mortality risk as early as possible for ICU
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patients, this limited us to using only the laboratory results on day
0, in contrast. For patients with severe COVID-19 infection, early
decision-making is critical for successful clinical management.
Additionally, laboratory results from other days may not always
become available. We also identified lymphocyte count as a
predictor of mortality, as in the previous study; however, CRP
levels and LDH did not reach statistical significance.

Although IL-6 has been found to be a good predictor of disease
severity by other studies, it did not reach statistical significance in
our model (47). IL-6 had a considerable KS statistical value, but
because of the high number of missing values, its p-value was not
significant compared to other markers. The fact that IL-6 is not
always measured upon ICU admission is precisely why it is not
suitable for our purposes.

In similar studies the impact of laboratory values was assessed.
Booth et al. recruited two ML techniques, LR and SVM to design
a prediction model for COVID-19 severity among 26 parameters.
They indicated CRP, BUN, serum calcium, serum albumin, and
lactic acid as the top five highest-weighted laboratory values.
Their analysis showed that the SVM model displayed 91%
sensitivity and specificity (AUC 0.93) for predicting mortality
(27). In another study, Guan et al. used an ML algorithm to
predict COVID-19 mortality retrospectively. They showed that
CRP, LDH, ferritin, and IL-10 were the most important death
predictors with a sensitivity of 85% (48). Zoabi et al. developed
a ML-based predicting model that evaluate eight binary features:
sex, age, known contact with an infected person, and five initial
clinical symptoms including headache, sore throat, cough, fever,
and shortness of breath. They showed that their model can
predict the COVID-19 infection with 87.30% sensitivity and
71.98% specificity (49).

The missingness indicator of some markers in both LR and
RF models has an impact on the predictions based on the
regression coefficient and LIME, which can be the result of
the model compensating for the imputation error. However,
the missingness indicator may also indicate the existence of
bias in biomarker reporting (50). Such biases (e.g., sampling
bias) are an inevitable part of retrospective studies. They
can be addressed using domain-adaptation techniques such
as correlation alignment (CORAL) in future studies using
additional data (51, 52). Another limitation of this study may be
the lack of an objective criterion for ICU admission. Moreover,
different treatment strategies can change the survival outcome
for patients who may have had similar profiles when admitted
to the ICU. In future studies, the accuracy of this model may be
further improved by adding chest imaging data and by using a
larger dataset. Possible targets for our ML framework include the
prediction of other crucial information such as the patients’ need
for mechanical ventilation, the occurrence of cytokine release
syndrome, the severity of acute respiratory disease syndrome, the
cause of death, and the right treatment strategy.

In conclusion, we evaluated 66 parameters in COVID-19
patients at the time of ICU admission. Of those parameters,
15 metrics with the highest prediction values were identified:
gender, age, BUN, Cr, INR, albumin, MCV, RDW, MCH, WBC,

segmented neutrophil count, lymphocyte count, and pastmedical
history of neurological, respiratory, and cardiovascular disorders.
In addition, by using the LIME-SP method, we identified
different submodules clarifying distinct clinical manifestations
of severe COVID-19. The ML model trained in this study
could help clinicians determine rapidly which patients are likely
to have worse outcomes, and given the limited resources and
reliance on supportive care allow physicians to make more
informed decisions.
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