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Introduction: By means of adding more sensor technology, modern hearing aids (HAs)

strive to become better, more personalized, and self-adaptive devices that can handle

environmental changes and cope with the day-to-day fitness of the users. The latest HA

technology available in the market already combines sound analysis with motion activity

classification based on accelerometers to adjust settings. While there is a lot of research

in activity tracking using accelerometers in sports applications and consumer electronics,

there is not yet much in hearing research.

Objective: This study investigates the feasibility of activity tracking with ear-level

accelerometers and how it compares to waist-mounted accelerometers, which is a more

common measurement location.

Method: The activity classification methods in this study are based on supervised

learning. The experimental set up consisted of 21 subjects, equipped with two XSens

MTw Awinda at ear-level and one at waist-level, performing nine different activities.

Results: The highest accuracy on our experimental data as obtained with the

combination of Bagging and Classification tree techniques. The total accuracy over

all activities and users was 84% (ear-level), 90% (waist-level), and 91% (ear-level +

waist-level). Most prominently, the classes, namely, standing, jogging, laying (on one

side), laying (face-down), and walking all have an accuracy of above 90%. Furthermore,

estimated ear-level step-detection accuracy was 95% in walking and 90% in jogging.

Conclusion: It is demonstrated that several activities can be classified, using ear-level

accelerometers, with an accuracy that is on par with waist-level. It is indicated that

step-detection accuracy is comparable to a high-performance wrist device. These

findings are encouraging for the development of activity applications in hearing

healthcare.

Keywords: activity tracking, accelerometer, classification, machine learning, supervised learning, hearing aids,

hearing healthcare

1. INTRODUCTION

A strong trend in modern hearing aid (HA) development and research is the inclusion of more
sensing technologies. The driver behind this is the wish for better, more personalized, and
self-adaptive (1–3) devices that can handle environmental changes (4–7) and cope with day-to-day
fitness of the users. Current HAs usually try to analyze the soundscape and adjust the settings
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according to a formula. However, recent HAs have advanced
further by combining sound analysis with motion activity
classification based on accelerometers to adjust settings with
the aim of a better user experience. A few other possible uses
of accelerometers in HAs are as follows: fall detection (8) to
alert caretakers; tap detection for user interfacing (9); and health
monitoring based on physical activity (10). The backbone of
the above-mentioned applications is accurate and robust activity
tracking that can determine and distinguish between several
relevant activities, e.g., standing, sitting, walking, running, and
more.While a lot of research in activity tracking and classification
using accelerometers has been in sports applications (11–14)
and general consumer electronics (15–17), such as smart-watches
and cell phones, the hearing research body is small. The results
in this contribution is based on the work in Balzi (18). The
background to this study is that accelerometers are, or are
to appear, in hearing devices and that it is of fundamental
interest to investigate their usefulness in the activity tracking.
The key objective of this study is to investigate the feasibility
of activity tracking with ear-level accelerometers and how it
compares to waist-mounted accelerometers, which is the more
common measurement location in sports and healthcare. The
activity classification method is based on supervised learning
on experimental data from 21 subjects. The scope of the
investigation is limited to 21, normal hearing, healthy subjects,
and 9 activities.

2. METHOD

This section outlines the relevant details of the activity tracking
methodology based on accelerometer data and machine learning.

2.1. Accelerometer Measurements
It is assumed that the sensors are mounted rigidly onto the users
and that any kind of mounting play is negligible. It is further
assumed that sensor axes are orthogonal, that the sensitivities are
known and linear in the working span, and that sensor biases are
negligible. The assumed inertial (fixed) coordinate frame, with
axes (XYZ), is a local, right-handed, Euclidean frame with the Z-
axis parallel to the local gravity vector. The data from a tri-axial
accelerometer are then

a = R(ai − g)+ e, (1)

where a = [ax, ay, az]
T is the body referenced measurement

for the sensor axes (xyz), R is a rotation matrix relating the
orientation of the inertial frame and the body frame, ai =

[aX , aY , aZ]
T is the acceleration in an inertial frame, the local

gravity vector g ≈ [0, 0, 9.81]Tm/s2 is assumed constant, and
the noise, e, is assumed Gaussian distributed with the same
standard deviation (SD), σe, in each axis, e ∼ N (0, σeI). The
measured forces can be divided in to static forces, such as,
constant acceleration and gravity, and the dynamic forces that
are due to motion of changing rate, e.g., nodding and shaking.
Note that even in the ideal case without noise, it is not possible
to solve (Equation 1) for ai and other data, e.g., a magnetometer
or a high-grade gyroscope is needed to resolve the rotation

R, see Titterton et al. (19) for details. In most situations, the
human body accelerations are small compared to gravity, and it
is, therefore, possible to estimate the inclination, i.e., each sensor
axis angle with respect to the gravity vector, which is related to
the orientation in roll and pitch.

2.2. Accelerometer Features
In machine learning, feature extraction is pre-processing of data
with the intention of increasing the overall performance of
classifiers. The underlying idea is that certain transformations
can yieldmore information, higher independence, and give larger
margins for class separability. Feature selection is very much
application dependent and usually require domain knowledge,
though computationally expensive automated methods exist,
[see, e.g., (20)] for an overview. The selected features described
below are inspired by the work of Masse et al. (21), Gjoreski
et al. (22), and Hua et al. (23) and have been adapted with this
application in mind. The features are defined from 13 metrics of
which 10 are applied to each axis, resulting in a total of 33 features
as described below.

2.2.1. Tilt Angles
The tilt angles, sometimes referred to as inclination, are defined
as

φk = arccos(
ak

r
), k = {x, y, z}, (2)

where

r =
√

a2x + a2y + a2z (3)

and is indicative of each axis angle with respect to the local gravity
vector. Errors in the tilt angles arise from the presence of motion
and noise.

2.2.2. Acceleration Vector Change
The acceleration vector change (AVC) is a motion-sensitive
metric defined by themean of the absolute value of the differences
in the acceleration vector length (Equation 3), and the mean is
calculated in a window with sizeM as

AVC =
1

M

M
∑

i=1

|ri+1 − ri|

Ts
(4)

where i denotes samples the ith sample at a given, fixed, sampling
frequency fs with the sampling interval Ts = 1/fs.

2.2.3. Signal Magnitude Area
The signal magnitude area (SMA) is defined over a window with
sizeM as

SMA =
1

M

M
∑

i=1

|axi | + |ayi | + |azi | (5)

and it is a measure of the magnitude.
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2.2.4. Mean and SD
The mean (Equation 6) and SD (Equation 7) are computed for
each axis over a window with sizeM as

µk =
1

M

M
∑

i=1

aki , k = {x, y, z}, (6)

σk =

√

√

√

√

1

M

M
∑

i=1

(aki − µk)2, k = {x, y, z}. (7)

2.2.5. Root Mean Square
Similar to the SD (Equation 7), the root mean square (RMS) is
computed for each axis over a window of sizeM as

RMSk =

√

√

√

√

1

M

M
∑

i=1

a2
ki
, k = {x, y, z}. (8)

2.2.6. Minimum and Maximum
Minimum (MIN) and maximum (MAX) values per axis over a
window with sizeM are defined by

MINk = min {aki}
M
i=1, k = {x, y, z} (9)

and

MAXk = max {aki}
M
i=1, k = {x, y, z} (10)

respectively.

2.2.7. Median
The median is the center value of a size-ordered sample, and it is
not skewed by large or small values as the mean is. The median,
can e.g., be used to detect burst noise outliers in data and is
computed for each axis over a window of sizeM as

MEDIANk = median({aki}
M
i=1) k = {x, y, z}. (11)

2.2.8. Median Absolute Deviation
The median absolute deviation (MAD) is a measure of sample
variability around the median. The MAD is computed for each
axis over a window of sizeM as

MADk = median({aki −MEDIANk}
M
i=1), k = {x, y, z} (12)

where theMEDIAN from Equation (11) is used.

2.2.9. Skewness
The skewness (SKW) is the third standardized moment of a
sample and is a measure of the asymmetry of a distribution about
the mean. Using the previously defined µk (Equation 6) and σk
(Equation 7), the sample SKW is computed for each axis over a
window of sizeM as

SKWk =

1
M

∑M
i=1(aki − µk)

3

σ 3
k

, k = {x, y, z}. (13)

Note that other approximations for sample skewness are possible
(24).

2.2.10. Counts per Second
Counts per second (counts/s) is a widely used measure in the
activity tracking. The computation of counts/s is proprietary
of ActiGraph LLC and is usually carried out with ActiGraph
accelerometer devices. However, Crouter et al. (25) details on
how to derive this measure on a standard accelerometer and for
the work here ourMatlab implementation is based on Brønd et al.
(26).

2.3. Machine Learning
The activity classification is based on a supervised learning to
train the classifier. Three classification methods are considered
in this study, K-nearest-neighbor (KNN), linear-discriminant-
analysis (LDA), and decision tree (DT). Further improvement
of the classification can be obtained using ensemble learning
methods such as Boosting and Bootstrap aggregation (Bagging),
and variations thereof.

2.3.1. Classifiers
In supervised learning, a set of training instances with
corresponding class labels is given, and a classifier is trained and
used to predict the class of an unseen instance, [see, e.g., (27)]
for details. The N samples of training data x and class labels y
were ordered in pairs {(x1, y1), . . . , (xN , yN)} such that the i-th
feature vector xi ∈ R

p corresponds to the binary class label vector
yi ∈ Z

c
2. For the case with a single tri-axial accelerometer and the

features described in section 2.2, the feature vector dimension, p,
is 33 per sample while the class label vector dimension c is 9.

The three well-known, but rather different, supervised
classifiers are considered, and the choice to use these was based
on the availability of good implementations. The classifiers are as
follows:

• The KNN classifier (28, 29) is here based on the Euclidean
distance between the test- and training samples. However,
other distance measures can be used.

• The LDA, or Fisher’s discriminant (30), is a statistical method
to find linear combinations in the feature space to separate the
classes, and it is carried out by solving a generalized eigenvalue
problem.

• DT has a flow chart-like structure where the root corresponds
to feature inputs, the branches of the descending test-nodes
represents the outcome of the test, and each leaf-node
represents a class label, [see, e.g., (31)].

2.3.2. Ensemble Training
Ensemble training is used to increase the predictive classification
(or regression) performance by learning a combination of several
classifiers. The two main categories used here are Bagging (31)
and Boosting (32) with a few selected variations. In Bagging,
the classifiers are trained in parallel on randomly sampled
training data while in Boosting the training is carried out
sequentially as the classifiers and data are weighted according
to their importance. The first, and most well-known, Boosting
algorithm is called AdaBoost (short for Adaptive Boosting) and
was originally formulated in Freund and Schapire (33).
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3. EXPERIMENT

Experimental data were collected from 21 voluntary subjects
performing a series of tasks representative of the stipulated
activities. A total of three tri-axial accelerometers were used.
Experimental data were collected jointly in the projects (18, 34).

3.1. Subjects
Prior to the experiments, the subjects were informed about
the experiment procedure and the use of data before deciding
on their participation with oral consent. Data were stored and
labeled anonymously. The 21 subjects had an age range between
24 and 60 years old, N (32.6, 9.6), both women and men with
a height bracket of 1.55 − 195 m, N (1.78, 0.091). None of the
subjects had any reported health issues. The subjects did not
receive any compensation.

3.2. Data
For all subjects, two of the accelerometers were placed on each
side of the head at ear-level, see Figure 1, to mimic HA sensors
and the third accelerometer was placed at waist-level using an
elastic strap, see Figure 2, as it is a more common region for
activity measurements and it is also representative of an in-
pocket smartphone.

The accelerometers are XSens MTw Awinda produced by
XSens Technologies B.V. and are battery powered, wireless

FIGURE 1 | Ear-level accelerometer placement used in the experiment.

FIGURE 2 | Waist-level accelerometer placement used in the experiment.

devices, inertial sensors containing tri-axial accelerometers and
gyroscopes and also tri-axial magnetometers enabling accurate
orientation estimation when the device is stationary. The data are
collected wirelessly using the MT Manager software by XSens on
a PC laptop running Microsoft Windows 10 at a sampling rate,
fs, of 100 Hz that was decided to be fast enough for the intended
activities. Data are manually labeled based on visual inspection
during the experiment to match the activities in section 3.4.

3.3. Task
The experiment was carried out in a room with a soft carpet
at Oticon main offices, Smørum, Denmark. For tasks involving
lying down and falling, a mattress was used. Each of the 21
subjects from whom the data have been gathered was asked to
perform 6 different tasks while wearing all three accelerometers,
and between each task all the data from the accelerometers were
saved and anonymously cataloged. Except for the accelerometer
data, from each subject, only gender, age, and height were
collected. To every subject, the same specific information about
which actions to be carried out was given by reading out loud
from a manuscript, and no restrictions were communicated
regarding how to carry out the various exercises with the
intention of increasing the possibility of movement variability
in the activities. With more in-class variation used for training,
the classifier is less prone to over-fitting at the expense of higher
probability of between-class overlap. The mean test duration was
about 22 min, including pauses, and generated about 13–14 min
of data per subject.

3.4. Physical Activities
The choice of activities to track is a trade-off between how clearly
activities can be discerned from each other, the likelihood of
activities being present in the daily routines of the subjects, and
the intended use of activity tracking. A typical scenario, not
addressed here, is that HA users often remove the HAs when
lying down to rest. Hence, for a HA applications, in-ear detection,
e.g., using accelerometers could be useful. The fidelity of activity
categories is chosen as either resting or moving, and no intensity
or within-class variation is considered.

The resting activities are as follows:

Act1 :Standing in a still position.
Act2 :Sitting
Act3 :Lying face-up (LFU)

Act4 :Lying face-down (LFD)

Act5 :Lying side (LS) on either left or right side

and the moving activities are as follows:

Act6 :Walking, on the floor

Act7 :Jogging, moderate pace in circles/square

Act8 :Falling on whichever side, some subjects could not
simulate a perfect falling motion and, therefore, have been
asked to perform a fast transition from standing to Lying
down, at top of their capability.

Act9 :Transitioning (TRN) all instances not being any of the
other activities, e.g., going from one activity to another.
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Note that there is no specific class for head motion as it was
predicted being difficult to correctly label and that there is
already significant head motion within all the moving activities
sections 3.4 to 3.4.With e.g., a waist-level accelerometer, it may
be possible to separate head motions from general body motions,
but it is beyond this study.

4. RESULTS

As an initial step, 200 min of the dataset in Anguita et al. (35)
was used on all combinations of classfiers and ensemble training
methods described in Section 2.3. The data are open, pre-labeled,
in-pocket cell phone, and it has six activity classes: walking;
walking stairs up; walking stairs down; sitting; standing; and
laying. For the use here, all the walking classes were considered
the same. The best predictive classification accuracy was obtained
using the DT and Bagging, and it was furthermore also the case
for our experimental data. Consequently, all following results are
obtained using DT and Bagging.

4.1. Pre-processing
The data from the 21 subjects were randomly partitioned in to
two groups with all activities present in both groups andwith 70%
used for training and 30% used for testing (validation). Training
with cross-validation is carried out for as many times as there are
trees, i.e., 100–500 depending on the setup. The tree depth is 480
with 13,121 nodes. Features are computed for each sample at 100
Hz with the window size to one sample, M = 1 for the features
AVC and SMA, while M = fs = 100, centered at the current
sample, for the other applicable features. All results are obtained
using the Machine Learning Toolbox in Matlab 2021b and with
dependencies to the Optimization Toolbox for certain classifiers.

4.2. Classification
The main performance target here is the accuracy of predicted
class labels in data not used for training as it is a common
measure in supervised learning, [see, e.g., (11, 12, 14, 36, 37)].

The accuracy is defined as the number of correctly classified
labels divided by the total number of labels and simply states
how much of the data not used for training that is correctly
classified. In Table 1, the classification result using both ear-
level accelerometers is illustrated based on 500 Decision trees
and Bagging trained with a learning rate of 0.1 and showing
an overall predicted accuracy of 84.4%. Most prominently, the
classes, namely, standing 3.4, jogging 3.4, laying side 3.4, lying
face-down 3.4, and, walking 3.4, all have an accuracy of above
90%. The lowest scoring activities are as follows: falling 3.4, sitting
3.4, and transitioning 3.4. The falling activity is often confused
with transitioning, which, in turn, generally is confounded with
all other activities. The overall accuracy is more than 90%without
the sitting activity.

4.3. Feature Evaluation
From a computational perspective, it is good to minimize the
number of features needed and, therefore, the relative importance
of features for each activity is analyzed using 100 Decision
trees and Bagging, with a learning rate of 0.1. In Table 2, the
total accuracy per feature (or pairs in some cases) for each
activity is considered where accelerations only on the top row
are considered that base model and the contribution of each
additional feature and activity are below. Notably, the tilt angles
have only a marginal positive effect on the sitting activity and
mostly negative effect on all other activities. Other features with
little importance are RMS and counts/s. In Table 3, the increase
(or regression) per feature and activity, compared to the base level
accelertions only, is shown. The overall most important features
are: mean, SD, MIN, MAX, median, and MAD. Furthermore, in
Table 4 a summary of the best and worst activity per feature is
shown and, as expected, the best ranking features are important
for several activities.

4.4. Sensor Combinations
One of the main motivations of this study is to compare the
feasibility of ear-level activity tracking compared to waist-level

TABLE 1 | Confusion matrix of the predicted accuracy with Bagging and Decision Tree using both ear-level accelerometers.

LFD LFU Falling Jogging LS Sitting Standing TRN Walking C NC

LFD 6,294 1,221 93 82.73 17.27

LFU 1,108 22,754 55 195 94.37 5.63

Falling 87 364 3 16 323 27 44.39 55.61

Jogging 266 43,928 231 932 1,807 93,14 6.86

LS 7,311 26 99.65 0.35

Sitting 2,347 33,213 242 13 6.55 93.45

Standing 8 2,108 1,42,889 1,804 1,496 96.35 3.65

TRN 357 1,082 642 107 116 10 8,135 27,138 4,399 64.64 35.36

Walking 43 28 2 3,505 11,865 1,58,433 91.12 8.88

C 81.04 95.11 27.68 99.69 83.98 52.54 76.01 63.68 95.34

NC 18.96 4.89 72.32 0.31 16.02 47.46 23.99 36.32 4.66

The row-normalized row summary on the right displays the percentages of correctly and incorrectly classified observations for each true class, while the column-normalized column

summary below the matrix displays the percentages of correctly (C) and incorrectly (NC) classified observations for each predicted class.
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TABLE 2 | Total accuracy per feature (or pairs of features) per activity compared to just using accelerations (ACC) only.

OA LFD LFU Falling Jogging LS Sitting Standing TRN Walking

ACC only 72.17 93.70 85.40 13.70 58.70 71.70 5.80 91.90 39.40 78.10

Tilt Angles 71.67 81.80 79.50 14.00 58.80 69.10 6.30 91.80 39.50 78.10

AVC 75.50 95.00 94.30 16.10 70.30 76.00 5.70 93.10 40.20 81.60

SMA 75.47 95.20 94.20 17.20 70.20 74.90 5.90 93.00 40.20 81.60

Mean + SD 82.71 98.80 94.40 36.00 90.00 99.70 10.70 94.10 60.30 88.40

RMS 72.53 93.70 83.40 14.40 58.70 97.20 5.80 92.00 39.50 78.10

MAX + MIN 82.50 90.30 94.40 33.00 89.50 99.20 10.50 94.10 57.90 89.00

Median + MAD 81.76 99.10 94.60 28.90 89.90 98.80 10.90 94.40 54.00 87.10

Skewness 76.17 95.00 88.70 13.30 52.10 87.30 4.60 95.80 47.40 84.90

Counts/Sec 71.73 78.60 80.80 14.40 58.70 74.30 5.80 91.90 39.50 78.00

The overall accuracy (OA) in the left-most column is the effect when adding each feature.

TABLE 3 | Accuracy improvement per feature and activity.

OA LFD LFU Falling Jogging LS Sitting Standing TRN Walking

ACC only 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tilt Angles −0.50 −11.90 −5.90 0.30 0.10 −2.60 0.50 −0.10 0.10 0.00

AVC 3.33 1.30 8.90 2.40 11.60 4.30 −0.10 1.20 0.80 3.50

SMA 3.30 1.50 8.80 3.50 11.50 3,20 0.10 1.10 0.80 3.50

Mean + SD 10.54 5.10 9.00 22.30 31.30 28.00 4.90 2.20 20.90 10.30

RMS 0.36 0.00 −2.00 0.70 0.00 25.50 0.00 0.10 0.10 0.00

MAX + MIN 10.33 −3.40 9.00 19.30 30.80 27.50 4.70 2.20 18.50 10.90

Median + MAD 9.59 5.40 9.20 15.20 31.20 27.10 5.10 2.50 14.60 9.00

Skewness 4.00 1.30 3.30 −0.40 −6.60 15.60 −1.20 3.90 8.00 6.80

Counts/s −0.44 −15.10 −4.60 0.70 0.00 2.60 0.00 0.00 0.10 −0.10

Same setup as in Table 2 but corrected for baseline accuracy obtained by accelerations only.

TABLE 4 | Best- and worst-case per feature accuracy using the features listed in

the left column based on Table 3.

Feature Best activity Worst activity

ACC only X X

Tilt Angles X Lying face-down

AVC Jogging, Lying face-up X

SMA Jogging, Lying face-up X

Mean + SD Jogging, Lying face-up, Falling,

Transitioning

X

RMS Lying side Lying face-up

MAX + MIN Jogging, Transitioning, Falling, Lying

side

Lying face-down

Median + MAD Jogging, Lying side, Transitioning,

Falling

X

Skewness Lying side Jogging

Counts/s Lying side Lying face-down

Cells marked with Xmeans that there is no improvement or regression in using that feature.

sensoring. For all sensor combinations and data types the same
features and training were computed to get the comparable
classification results. In Table 5, a confusion matrix shows the

results of using only the waist-level accelerometer, giving an
overall accuracy of 89.6% In Table 6, a confusion matrix showing
the result from two ear-level accelerometers and the waist-
level accelerometer is used together with 500 Decision trees,
giving an overall accuracy of 91.6%. One of the reasons for the
improvement is that the addition of the waist-level accelerometer
makes the sitting activity easier to distinguish with 94.4% correct
compared to 52.5% when using only ear-level accelerometers
and this performance increase also shows on the standing
activity as the previously discussed confusion is decreased. In
Table 7, the overall accuracy using the various combinations
of sensors is shown; for instance, 25 Hz accelerometer data
from a wrist-worn Garmin Vivosmart 4 are used with only a
56.3% accuracy. In Table 7, 100 Decision trees compared to the
previous 500 were chosen to save computations and the accuracy
decrease is negligible. The gyroscope and orientation data are
obtained from the XSens devices. Note that the orientation
data are adapted for stationary orientations and, therefore, of
low-pass characteristics and potentially not well suited for all
aspects of this application. It can be noted that the waist-level
accelerometer alone is rather efficient and, as noted before,
the combination with the ear-level accelerometers gives even
better performance.
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TABLE 5 | Confusion matrix using Bagging and Decision Tree using only the waist accelerometer.

LFD LFU Falling Jogging LS Sitting Standing TRN Walking C NC

LFD 6,993 615 91.92 8.08

LFU 1,181 21,752 1,206 90.11 9.89

Falling 18 66 413 22 26 252 23 50.37 49.63

Jogging 23 44,008 360 306 2,467 93.31 6.69

LS 1,471 5664 202 77.20 22.80

Sitting 24,032 9,027 2,744 12 67.10 32.90

Standing 6 5 6,756 1,38,157 1,833 1,548 93.16 6.84

TRN 543 1,065 579 98 64 937 6,211 28,777 3,802 68.39 31.61

Walking 17 168 10 3,696 2,690 1,67,295 96.22 3.78

C 68.52 95.06 39.79 99.39 98.50 75.73 87.73 74.50 95.52

NC 31.48 4.94 60.21 0.61 1.50 24.27 12.27 25.50 4.48

The row-normalized row summary on the right displays the percentages of correctly and incorrectly classified observations for each true class, while the column-normalized column

summary below the matrix displays the percentages of correctly (C) and incorrectly (NC) classified observations for each predicted class.

TABLE 6 | Confusion matrix using Bagging and Decision Tree using both ear-level accelerometers, and the waist accelerometer.

LFD LFU Falling Jogging LS Sitting Standing TRN Walking C NC

LFD 6,274 1,221 113 82.47 17.53

LFU 1,156 22,769 10 177 94.43 5.57

Falling 86 374 8 20 328 4 45.61 54.39

Jogging 91 44,120 245 632 2,076 93.55 6.45

LS 7,324 13 99.82 0.18

Sitting 24,202 10,175 1,436 2 67.58 32.42

Standing 6 844 1,44,503 1,369 1,556 97.45 2.55

TRN 254 1,010 533 78 112 591 5,947 30,698 2,493 73.59 26.41

Walking 33 47 3,339 4,563 1,65,894 95.41 4.59

C 81.65 95.41 36.28 99.70 84.43 94.40 87.99 78.05 96.44

NC 18.35 4.59 63.72 0.30 15.57 5.60 12.01 21.95 3.56

The row-normalized row summary on the right displays the percentages of correctly and incorrectly classified observations for each true class, while the column-normalized column

summary below the matrix displays the percentages of correctly (C) and incorrectly (NC) classified observations for each predicted class.

TABLE 7 | Accuracy with different sensor combinations using Bagging and 100 Decision trees.

L & L, R L R L, R L, R, & L, R, &

L R & W W ACC only GYR & GYR ORI ORI Garmin Garmin

83,96 84,34 91,57 89,62 74,48 70,93 84,99 47,18 84,76 81,56 56,25

Left (L), Right (R), and Waist (W) are short for the respective accelerometer placements. GYR is short for Gyroscope, and ORI is short for Orientation.

4.5. Step Detection
Another concrete measure that can be useful for activity tracking
is step detection, which was also analyzed in Acker (10). For
the walking and jogging activities, ear-level step detection was
computed based on Bai et al. (38) and Abadleh etal. (39) using the
AVC feature resulting in 95% and a 90% accuracy, respectively,
using both ear-level accelerometers. This can be compared with
the highly optimized Garmin Forerunner 35 giving a 99%
(walking) and 95% (jogging) accuracy, respectively.

5. DISCUSSION

Themain objective of this study is to compare ear- andwaist-level
activity tracking performance. Therefore, it is not fundamental
to have features and classifiers that could outperform the
works of others and such a comparison is beyond this study.
While not directly comparing to other methods, the overall
ear-level activity classification results are encouraging in the
proposed setup.
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As noted, it is difficult to separate falling and transitioning
with ear-level data only. Possible explanations are that the
selected features are not sensitive enough to distinguish between
falling and transitioning and that transitioning is too general
[or complex as Dernbach et al. (11)] and can, for instance,
be confounded with general head movements. More controlled
falling experiments, such as, Burwinkel and Xu (8) could provide
useful insights. The sitting activity was confounded with the
standing activity as they are typically rather similar, and the
only potential differences at ear-level between the two may be
in postural sway that should be clearer for standing subjects.
This difficulty was also found in Parkka et al. (40), and an
accelerometer below the waist is particularly useful here. At
waist-level it is easier to distinguish sitting and standing and
it is possibly explained by the change in the tilt angles for
seated subjects.

Designing features sensitive to particular classes is an
engineering task requiring expertise. As noted in section 4.3,
some features are not that well-suited for any of the activities and
would benefit from further tuning, such as, other pre-processing
and different window sizes, or should otherwise be omitted.
A feature that is sensitive to postural sway (low-frequency
component) could potentially support separating standing and
sitting at ear-level.

Sensor combinations can improve the results, [see, e.g., (14,
40)], and here the combination of ear- and waist-level data is
the overall best. On another positive note, the accuracy difference
between one and two ear-level devices is small and this is a good
news for HA applications, as single-sided hearing compensation
is common. The wrist data, here from the Garmin device, may
be difficult in general as arms may do many types of motions not
specifically relating to the activities.

The use of gyroscope data is common, [see, e.g., (41–43)],
and was expected to improve the results in general. However, all
sensor types were processed in the same fashion as accelerometer
data with the same features and are a possible explanation of the
poor performance of many of the additional data types inTable 7.

Wrist data were poor for activity tracking in the setup
here, but the output of the proprietary algorithms on these
types of devices suggests that a lot more can be achieved
on ear-level devices too. The step detection is almost on par
with the commercial Garmin device, for the short durations
considered here, and these typically utilize additional sensors,
e.g., magnetometer and gyroscope, and their algorithms can be
considered state-of-the-art.

6. CONCLUSIONS

We investigated the feasibility of ear-level accelerometers for
activity tracking in comparison to waist-level accelerometers.
Many activities can be classified with an accuracy that is on
par with a waist-level accelerometer, and this is particularly
encouraging for the development of activity applications in

hearing healthcare. Furthermore, we indicate that step-detection
accuracy is comparable to a high-performance wrist device. It is
also shown that higher predictive performance can be obtained
when combining ear- and waist-level accelerometer data, and this
could potentially assist in isolating head motion from full body
activities, opening for a higher granularity of activity classes.

Noteworthy limitations in this study were as follows: the
modest number of test subjects (21); the number of activities (9)
per test subject; that the manual data labeling may have errors;
and efforts spent on feature design and learning methods. Also,
data with a more control and a clearer reference, e.g., a motion
capture system, could provide valuable insight at the expense of
more costly and complex experiments.

Future directions should consider further feature design
with, e.g., multi-tapers and various transforms. The design
should start with time-frequency analysis of activities for
guidance. Experiments on a larger, more diverse population, with
additional knowledge on head motion/orientation throughout,
can open up for higher performance and other activity
classes. The classification methods could be further improved
considering the state-of-the-art in Deep Learning as initially
explored by Ronao and Cho (37) and Hammerla et al. (44).
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