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Mobile measures of human circadian rhythms (CR) are needed in the age of
chronotherapy. Two wearable measures of CR have recently been validated: one that
uses heart rate to extract circadian rhythms that originate in the sinoatrial node of
the heart, and another that uses activity to predict the laboratory gold standard and
central circadian pacemaker marker, dim light melatonin onset (DLMO). We first find
that the heart rate markers of normal real-world individuals align with laboratory DLMO
measurements when we account for heart rate phase error. Next, we expand upon
previous work that has examined sleep patterns or chronotypes during the COVID-19
lockdown by studying the effects of social distancing on circadian rhythms. In particular,
using data collected from the Social Rhythms app, a mobile application where individuals
upload their wearable data and receive reports on their circadian rhythms, we compared
the two circadian phase estimates before and after social distancing. Interestingly, we
found that the lockdown had different effects on the two ambulatory measurements.
Before the lockdown, the two measures aligned, as predicted by laboratory data.
After the lockdown, when circadian timekeeping signals were blunted, these measures
diverged in 70% of subjects (with circadian rhythms in heart rate, or CRHR, becoming
delayed). Thus, while either approach can measure circadian rhythms, both are needed
to understand internal desynchrony. We also argue that interventions may be needed in
future lockdowns to better align separate circadian rhythms in the body.
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INTRODUCTION

Until recently, assessment of circadian rhythms was restricted
to laboratory studies. In these studies, individuals needed to
isolate themselves from external Zeitgebers such as light, and
researchers had to monitor physiological signals such as the
onset of melatonin secretion (DLMO) over intervals ranging
from hours to almost 2 days (1-4). Two recent techniques have
been developed which now allow researchers to supplement
these typical intensive experiments through mobile assessment
of circadian rhythms using wearables (5, 6). Wearables typically
collect data on wrist movement (actigraphy) and heart rate, each
of which can separately be used to estimate various outputs of the
circadian clock in the body (5-11). Using mathematical models
and activity measurements collected by the Apple Watch, Huang
et al. recently showed that DLMO can be predicted to within
~1h in non-shift workers (5), which is much more accurate
(in terms of mean absolute error between a laboratory DLMO
measurement and predicted phase) than cosinor analysis of
ambulatory circadian rest activity [the average difference between
in laboratory DLMO and the acrophase from cosinor analysis
of rest-activity cycle is 4.47 and 4.6h from Huang et al. (5)
and Woelders et al. (12), respectively]. Similar results have been
found with other data sets across a variety of studies (12-14).
Alternatively, Bowman et al. studied the circadian rhythm in
heart rate (CRHR), which originates not in the brain but the sino-
atrial (SA) node of the heart (6, 15). With a Bayesian framework,
they isolated the intrinsic circadian phase of heart rate and
determined the phase uncertainty of this marker. Interestingly,
Bowman et al. were also able to determine differences in
intrinsic circadian timekeeping between individuals (6). These
two methodologies provide powerful tools for the assessment of
circadian rhythms in the field.

The 2020 COVID-19 lockdowns were one of the largest global
changes in human behavior. These lockdowns had measurable
effects on the timing of sleep, meals, and other activities, which
mainly shifted to later times of the day (16-22). Social pressures
on the timing of daily activities greatly changed, with many
businesses and schools operating remotely or closing. Many
individuals restricted their light exposure to indoor light, which
is less efficient at entraining circadian rhythms (23-27). They also
increased their exposure to computers, smartphones, and tablets
before bedtime (28, 29), which are known to disrupt circadian
rhythms (30), and adjusted the timing of meals, which can shift
the timing of clocks in peripheral tissues but not the central clock
in the brain (31). Thus, we wondered how measures of human
circadian rhythms changed in the presence of the altered timing
of key entraining signals (Zeitgebers).

To collect wearable data to study the effects of the lockdowns
on measures of circadian rhythms, in June 2020 we launched the
Social Rhythms app [http://umich.edu/~socialrhythms/], which
remains available on the iTunes App and Google Play stores (6).
Individuals upload heart rate and activity data collected by a
wearable device from a user-specified period. Users then receive a
report showing how their circadian rhythms changed after social
distancing. All data and reports that are sent to or from the
app’s servers are transmitted anonymously. Analysis of this rich

wearable data set using the methods of Huang et al. and Bowman
et al. could help determine how social distancing and the 2020
COVID-19 lockdowns affected circadian rhythms (5, 6).

Here, we first compare the estimated circadian phase of heart
rate with actual laboratory measurements of DLMO collected
as part of a previous study (32). Prior to DLMO collection,
individuals lived outside of the lab and were not given any
specific instructions about how or how often to use the Apple
Watch. Even so, we found that 8 out of 10 DLMO measurements
were within the 80% confidence intervals of the heart rate
circadian phase, indicating a degree of alignment between the
circadian rhythms in the heart and the brain under normal
circumstances. We then carefully looked at the profiles of activity
and heart rate collected by the Social Rhythms app. A variety
of schedules were present in the data set, including 4 college
students, 18 parents, and 1 shift worker. Nevertheless, 78% of
the DLMO predictions are within the predicted 80% confidence
intervals of the estimated heart rate rhythm. Surprisingly, this
alignment dropped in 70% of individuals (including 61% of
the parents and 100% of the college students selected in the
analysis) after the onset of social distancing. From this, we suggest
that social distancing and the COVID lockdowns increased the
internal desynchrony between markers of peripheral circadian
rhythms. Importantly, our results set the stage for using the
emerging paradigm of coupling rigorous mathematical modeling
and wearable data to assess circadian phase in individuals in the
field setting.

MATERIALS AND METHODS

DLMO Data Set

Dim light melatonin onset (DLMO) is the gold-standard phase
marker in the field of human circadian rhythms. We recruited
subjects living in Michigan for laboratory DLMO measurements,
each of whom was given an Apple Watch to wear in the preceding
weeks (32). In total, 20 subjects exhibited melatonin onset during
the study (ie., had a valid DLMO measurement). Although
individuals were recommended to wear the watch for most of
each day, the use of the watch varies and we did not require
subjects to wear it for a specific length of each day. Due to the
inherent charging requirements of the Apple Watch, gaps of six
or more hours are commonly present in the wearable portions of
this data set and often coincide with periods of sleep. Considering
the accuracy and ability to simulate the mathematical model, 10
subjects who missed wearing the watch for more than 1 day were
excluded in our following analysis, and it left us 10 subjects who
had at least 7 days of consecutive heart rate and activity data. It
is worth noting that the Apple Watch reported data in uneven
intervals. Thus, heart rate and activity data were averaged into
5-min bins to avoid the effect of disproportionate sampling.

Social Rhythms Data Set

Researchers at the University of Michigan developed the Social
Rhythms Application, a mobile app that utilizes data from
phones and wearable devices in order to provide feedback to
the users about the state and features of their personal circadian
clock. Of 201 subjects submitted from worldwide (165 from
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America, 15 from Europe, 13 from Asia, 5 from Australia, and
3 from Pacific time zone), 135 subjects who had steps and/or
heart rate data with a self-reported social distancing date were
extracted for data analysis (122 from America, 7 from Europe,
4 from Asia, 1 from Australia, and 1 from Pacific time zone).
In particular, model simulations and data averages used a subset
containing 72 subjects (63 from America, 3 from Europe, 4
from Asia, and 2 from Pacific time zone), who submitted both
daily motion and heart rate data (i.e., wearable devices were
worn everyday) during the entire period of 70 days (35 days
before and after social distancing). Of these subjects included
in the analysis, 18 were parents, 4 were college students, and 1
was a shift worker. The data set considered here consisted of
steps and heart rate measurements collected from two widely
available devices, Apple Watch and Fitbit. In particular, heart
rate and activity data were resampled into 5-min intervals
to account for the effect of disproportionate measurements.
Besides physiological data, users voluntarily submitted self-
reported demographic information, such as age, gender, living
condition, and the time when they started social distancing. The
Social Rhythms app collects all data anonymously and sends
back reports anonymously. The University of Michigan IRB
determined that the use of this data was not regulated. Users
can choose how much data to send and can remove data from
the Social Rhythms servers. Users submitted data between June
10th and August 19th, 2020, and had the option to submit
retrospective data from before these dates. Average steps and
heart rate data profiles in this data set were calculated by taking
the mean activity and heart rate in 5-min bins (as in the Bayesian
algorithm), and then averaging over all the days.

Bayesian Algorithm

To analyze the circadian phase in heart rate, we adopt the
Bayesian approach from Bowman et al. (6). It assumes that heart
rate consists of a 24 h periodic oscillation, plus a separate term to
account for the effect of exercise on heart rate. This yields a model
for heart rate:

HR =a— b -cos(ir—2 (Time — ¢))+d - Activity + €. (1)

Here, a denotes the basal heart rate, b is the amplitude of the
circadian rhythm of heart rate, c is the time (in hours) at which
the circadian minimum of heart rate occurs, d is the change in
heart rate per unit of activity, and € is the error of the model.
This error term follows the autoregression AR (1) error model,
and it can be further broken down as €41 = k-¢€¢ +
N(0,02). That is, a fraction k of the noise at time t is carried
over at time t + 1, and o represents independent measurement
error or new external effects. The values for HR, Time, and
Activity come from the wearable data set. For each individual,
the six parameters of the model are fitted directly from the
data by using Goodman and Weare’s affine-invariant Markov
chain Monte Carlo algorithm, a likelihood-based approach that
provides error estimates (33). The previous day’s fit is used as a
prior distribution to predict the successive days, and this enables
the computation of both mean estimates and uncertainties for the
parameters on a daily basis. Specifically, parameters were fitted

by testing 100,000 probabilistically chosen samples for each day
of data and the burn-in ratio was set as 0.5. More details of
the method can be found in Bowman et al. (6) (and the codes
to run this algorithm are openly available at https://github.com/
pepperhuang/heartrate).

Limit-Cycle Model

We apply a limit-cycle oscillator model of the human circadian
clock to predict the circadian phase marker of DLMO. This
model describes the effect of light on the human circadian
pacemaker (34):

= Dl (et 20 - 200) 18 )
X = —\|X —X =X — —X
71 A ) 105
w 24 2
(o= — {qBx; — | [ —— kB 3
D) [q e [(0.997291) + }x] 3)
n=060[c(l—n)— Pn], (4)
where
w =0.13, B= (1 — 0.4x) (1 — 0.4x.) B,
R I\
B=Goc(1—n),oe=oto<—> s
Io
G = 19.875, g = 0.16, Iy = 9500, (5)
p = 06, t, = 242,k = 0.55, and B = 0.013. The first two

equations describe a limit-cycle oscillator for x and x,, where the
variable x reflects the core body temperature rhythm and xis a
mathematically required complementary variable to achieve the
limit cycle.

This model has been validated against multiple carefully
controlled laboratory studies (35, 36), and light level (in lux) is
the only input in the original design of the model. However,
recent advances in the field have shown that incorporating
activity is necessary to predict the circadian phase in the field
setting (5, 12, 37). In particular, activity is correlated with light,
and it has been shown that replacing light by activity levels
measured from wearable devices coupled with the mathematical
model can predict circadian phase with an error within 1h for
people living in regular conditions (5, 12), Initial conditions
were generated from a limit-cycle [as in Huang et al. (5)]:
the start point was determined to be 35 days prior to the
social distancing date, and the model was simulated until 35
days after social distancing. See Huang et al. (5) for further
details of the model and the implementation. The codes for
model implementations are available at https://github.com/
pepperhuang/predictCircadianRhythms.

RESULTS

We first compare the phase estimates of the CRHR to clinical
measures of the phase of the central circadian pacemaker (i.e.,
DLMO). It is important to note this study uses data from the
Apple Watch, which we showed has larger phase uncertainty (and
thus may be less accurate in predicting circadian phase) than
other devices (6). Additionally, individuals in this cohort were
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not required to wear the watch continuously. For these reasons,
error estimates from this dataset are larger than our previous
study. Figure 1 shows two sample subjects from the DLMO data
set cohort. The magnitude of heart rate measurements is shown
in black with separate days plotted vertically. Data are double
plotted to show patterns, as is typical for actograms. The daily
predicted phase of the CRHR is shown by the red line, plotted
with the 80% confidence interval in these measurements. On the
final day, the DLMO measurement is shown by the green dot
(Figures 1A,B).

When comparing the heart rate and melatonin rhythms from
the DLMO data set, we found that 8 out of 10 subjects had a
DLMO measurement within the 80% confidence intervals of the
phase of CRHR, when CRHR is shifted by a fixed constant of
—4.4h (Figure 1D) to account for the average phase difference
between these markers across the population. This shows that
circadian rhythms in the central pacemaker and heart tend to be
synchronized during normal conditions.

We also note one additional trend. The uncertainty estimates
of the phase of the CRHR tend to increase as the user wears
the watch for shorter periods of the day (Figure 1C). For the
ten subjects from the DLMO data set, we found a statistically
significant negative relationship between the length of time
wearing the device and the uncertainty estimate (p = 0.018). In
fact, a similar result was also discovered in the Social Rhythms
data set, where the correlation between the number of data points
and the phase uncertainty in the Social Rhythms data set is
—0.40 (p = 9.73e-271). This further corroborates a significant
negative correlation between the number of data points and the
uncertainty estimate.

We next investigated how social disruptions affect the
alignment between the CRHR and the melatonin rhythm.
The COVID-19 social distancing and lockdowns presented a
unique opportunity to test whether these rhythms become
desynchronized in the wake of societal and/or behavioral
changes. To study this, we used data from the Social Rhythms
app, through which individuals reported when they began social
distancing and uploaded their wearable data. In total, 72 subjects
uploaded both motion and heart rate data within 35 days before
and after a self-reported social distancing start date. Three
sample actograms are shown in Figure 2, representing a college
student (Figure 2A), a parent (Figure 2B), and a shift worker
(Figure 2C). The day when social distancing began is shown in
blue (Figure 2).

We examined how wearable activity and heart rate data
changed after social distancing in Figure3. The amount
of activity decreased by about 18%, on average across the
population, after social distancing (Figure3A). Moreover,
average daily activity decreased as a function of the time of day.
In particular, there was a steeper decrease in activity earlier in the
day rather than later, until the very end of the day, when trailed
off earlier after social distancing than before (Figure 3B). This is
in line with previous studies which have reported increased sleep
during the pandemic. No clear patterns were seen separating the
data into age groups.

In contrast to activity, there was no clear pattern in the average
raw heart rate data from before and after social distancing in the

whole population (Figure 3C). However, when we separated out
into age groups, a pattern could be observed (Figures 3D-F). In
particular, individuals younger than 30 and aged between 30 and
45 tended to have a later increase in heart rate in the morning
after social distancing (Figures 3D,F) perhaps due to changed
AM responsibilities. Moreover, an earlier decrease in heart rate
in the evening after social distancing was observed in the group
of individuals below 30 (Figure 3F). However, such trends are not
necessarily indicative of changes in the circadian phase and could
be due to other factors such as activity.

We next examined the alignment between the predicted
DLMO phase and the estimated CRHR. We found that 78% of the
predicted DLMO timings from the validated methods of Huang
et al. (5) were within the 80% confidence interval of the CRHR
phase. This matches the results shown in Figure 1 and provides
additional evidence that separate circadian rhythms in the body
are aligned under normal circumstances. On the other hand, the
majority of individuals (51 out of 72) showed less alignment
between these separate phase markers after social distancing,
when entraining signals are likely shifted or reduced (one
example presented in Figure 4A). In particular, all four college
students included in the data analysis showed less alignment
after social distancing, and 11 out of 18 parents exhibited more
misalignment as well. Moreover, the mean percentage of days
of alignment before social distancing was 78% as opposed to
69% of days after social distancing (p = 0.002) (Figure 4B).
In addition, the mean difference between estimated CRHR and
DLMO increased from 4.61 to 5.58h after social distancing,
which further reflects less alignment between these two markers
when lockdown was imposed.

We did not see significant phase shifts across social distancing
onset in the predicted DLMO between age groups. However,
we did detect these differences in CRHR phase estimates. In
particular, younger individuals (<30 years of age) tended to
keep an earlier CRHR post-distancing, whereas individuals aged
between 30 and 45 averaged a later CRHR (Figures 4C,D). In
fact, the average phase difference from before to after social
distancing is 1.25h in the 30 to 45 age group but —0.93h in the
group <30 years of age (p = 0.016, Figure 4D).

DISCUSSION

Our study provides the first real-world measurements of
circadian rhythms during the pandemic. However, as wearables
provide multiple potential markers of human circadian rhythms,
an important outstanding question is when these markers align.
Our results suggest that in normally entrained scenarios, the
two markers of CRHR and DLMO exhibit alignment. Previous
work, in the absence of available heart rate data, shows that
the predicted DLMO from a limit-cycle oscillator model may
be a viable marker (5, 12). However, actigraphy is the only
input for the limit-cycle oscillator model, and this model will
not account for certain variations in the intrinsic circadian
timekeeping system between individuals. These effects, for
example interindividual differences in the intrinsic circadian
period and sensitivity to light, are known to impact human
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circadian rhythms (1, 38). Such differences are not included in
the limit-cycle model, however it does seem unlikely that these
differences could create the systematic differences we observe.
In scenarios in which these variations may be particularly
relevant, the CRHR phase estimate may be the best choice, since
parameters are fitted to each individual. However, when traveling
across time zones, working on shifts, or in cases where Zeitgebers

may be weak or ambivalent, the combination of both markers
may be best suited to determine potential internal circadian
desynchrony. Several studies have highlighted this desynchrony
as a major health consequence (39).

Our basic hypothesis is that the lockdowns dramatically
changed zeitgebers, and these changes in circadian signaling
affect different markers differently. We found that two measures
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of circadian rhythms predicted by mathematical models became
desynchronized after social distancing. Significant phase shifts
were observed in CRHR estimates before and after social
distancing between different age groups. However, no significant
phase shifts across social distancing onset was found in the
predicted DLMO. This can be explained by two possibilities. One
possibility is that the model framework is different for the two
measures, DLMO and CRHR. As discussed above, the CRHR
algorithm might pick up some signals that the limit-cycle model
does not. In addition, seasonal differences may also have affected
the measures of the circadian rhythms (40). Therefore, it is
necessary to develop personalized models of the human circadian
clock to account for the effect of interindividual differences
in the future. The other explanation is that CRHR measures
more closely follow the peripheral clocks, but DLMO measures
are more closely aligned to the central circadian pacemaker.
Thus, CRHR estimates shifted significantly during the lockdown,
since external cues, such as meals and social interaction, have
a larger effect on peripheral clocks (31, 41-43). Previous work

has also shown that alterations to sleep patterns occur during
the pandemic (16-22). However, our CRHR algorithms do not
consider data during sleep, and are not simply a reflection of
changed sleep-wake patterns [See (6)]. Future work is needed to
address whether the changes in circadian markers were due to
decreased exposure to external light, changes in activity or meals,
or actual social distancing (i.e., being physically separated from
other human beings).

The source of the various signals driving circadian
timekeeping systems remains to be explored. It is highly
likely that external light exposure, the primary stimulus to the
human circadian pacemaker, exhibited differently during the
lockdown. Future work should explore to what extent electric
light and daylight affect circadian rhythms during COVID-19.
Another possibility is that mealtime shifted during the pandemic:
this matches the results to some degree, since meals are known
to shift the CRHR but not the DLMO clock. Additionally, over
50% of individuals under 30 years old lived with parents during
the pandemic, the largest percentage on record (44). Such living
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**means p-value < 0.01. (D) Mean phase difference (phase estimate after social distancing—phase estimate before social distancing) for the respective population (All
subjects: 0.25 +/- 0.34 h, < 30 years of age: —0.93 +/- 0.85h, 30-45 years of age: 1.26 +/- 0.45h, and > 45 years of age: 0.05 +/- 0.53 h). The phase differences
of the under 30 and the between 30 and 45 years of age groups are significantly different (p = 0.016). *denotes level 0.05 of statistical significance.

arrangements could explain why younger individuals had an
earlier CRHR phase. However, individuals older than 45 did
not show the opposite trend. Finally, individuals between 30
and 45 years old shifted later. This could be due to changes in
work habits or not having to bring children to school early in the
morning. However, we did not have enough individuals in our
data set to significantly parse out these trends.

The data examined here are particularly challenging for the
CRHR algorithm since users were not instructed on exactly
how long to wear the device or what kind of schedule to
lead. Thus, these data should represent normal casual use by
individuals not necessarily in a study. Indeed, we found a
significant negative correlation between the quantity of data
and the phase uncertainty in both the DLMO data set and the
Social Rhythms data set. This suggests that future studies should
consider instructing individuals to wear the Apple Watch for as
long as possible during the waking day. As the current study
does not impose these constraints and thus presents perhaps

the most difficult possible scenario for the CRHR algorithm,
the results gave us confidence that we could use the algorithm
with wearable data that had been collected by the watch in the
field (and not as part of any controlled study). Additionally,
as shown in Bowman et al. estimates of CRHR from the
user available Apple Watches tend to have larger errors than
those from other devices (e.g., Fitbits), since far fewer HR
measurements are available (6). However, we note that the device
could take more measurements if it were changed from its normal
settings. These findings could therefore help in the design of
future studies.

Limitations of the predicted DLMO methods and the CRHR
phase estimates are discussed in Huang et al. (5) and Bowman et
al. (6), respectively. We do note that some scenarios can bias these
estimates. For example, individuals with very different circadian
timekeeping systems from normal (or shift workers) may be
difficult for the DLMO prediction methods to accurately assess.
Although the limit-cycle model has been validated in papers
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for over 20 years against DLMO, including a recent paper with
several wearable data sets (5), actual DLMO measurements would
yield stronger results. Likewise, certain activities, for example,
particular kinds of exercise or pharmacological agents, could
alter heart rate in ways that the methods of Bowman et al. (6)
cannot remove. Finally, although encouraging, our results are
based on a relatively small sample of subjects. The relationship
between CRHR and DLMO should be further explored in a
larger data set, with more variations in demographic information
such as age. In particular, more middle-aged subjects (30-45
years old) participated in the Social Rhythms app, which might
contribute to the statistical significance found in this age group.
Therefore, larger data sets need to be analyzed to discover further
demographic differences in the effects of social distancing.
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