
ORIGINAL RESEARCH
published: 22 September 2021

doi: 10.3389/fdgth.2021.731076

Frontiers in Digital Health | www.frontiersin.org 1 September 2021 | Volume 3 | Article 731076

Edited by:

Wei Chen,

Fudan University, China

Reviewed by:

Ivan Miguel Pires,

Universidade da Beira

Interior, Portugal

Raffaele Gravina,

University of Calabria, Italy

*Correspondence:

Fadi Alsaleem

falsaleem2@unl.edu

Specialty section:

This article was submitted to

Connected Health,

a section of the journal

Frontiers in Digital Health

Received: 26 June 2021

Accepted: 27 August 2021

Published: 22 September 2021

Citation:

Emad-Ud-Din M, Hasan MH, Jafari R,

Pourkamali S and Alsaleem F (2021)

Simulation for a Mems-Based CTRNN

Ultra-Low Power Implementation of

Human Activity Recognition.

Front. Digit. Health 3:731076.

doi: 10.3389/fdgth.2021.731076

Simulation for a Mems-Based
CTRNN Ultra-Low Power
Implementation of Human Activity
Recognition

Muhammad Emad-Ud-Din 1, Mohammad H. Hasan 2, Roozbeh Jafari 1,3,4,

Siavash Pourkamali 5 and Fadi Alsaleem 6*

1Department of Computer Science and Engineering, Texas A&M University, College Station, TX, United States, 2Department

of Earth and Space Sciences, Columbus State University, Columbus, OH, United States, 3Department of Electrical and

Computer Engineering, University of Texas at Dallas, Dallas, TX, United States, 4Department of Biomedical Engineering,

Texas A&M University, College Station, TX, United States, 5Department of Electrical and Computer Engineering, Texas A&M

University, College Station, TX, United States, 6Durham School of Architectural Engineering and Construction, University of

Nebraska—Lincoln, Omaha, NE, United States

This paper presents an energy-efficient classification framework that performs human

activity recognition (HAR). Typically, HAR classification tasks require a computational

platform that includes a processor and memory along with sensors and their

interfaces, all of which consume significant power. The presented framework employs

microelectromechanical systems (MEMS) based Continuous Time Recurrent Neural

Network (CTRNN) to perform HAR tasks very efficiently. In a real physical implementation,

we show that the MEMS-CTRNN nodes can perform computing while consuming

power on a nano-watts scale compared to the micro-watts state-of-the-art hardware.

We also confirm that this huge power reduction doesn’t come at the expense of

reduced performance by evaluating its accuracy to classify the highly cited human activity

recognition dataset (HAPT). Our simulation results show that the HAR framework that

consists of a training module, and a network of MEMS-based CTRNN nodes, provides

HAR classification accuracy for the HAPT that is comparable to traditional CTRNN

and other Recurrent Neural Network (RNN) implantations. For example, we show that

the MEMS-based CTRNN model average accuracy for the worst-case scenario of not

using pre-processing techniques, such as quantization, to classify 5 different activities is

77.94% compared to 78.48% using the traditional CTRNN.

Keywords: MEMS, human activity recognition, LSTM – long short-term memory, continuous time recurrent neural

network, recurrent neural networks

INTRODUCTION

Human activity recognition (HAR) presents significant opportunities for various domains, from
healthcare applications such as patient monitoring to fitness tracking and productivity assessment,
where a system can efficiently detect a specific subject movement, such as standing up or sitting
down, while ignoring other activities. For example, in an office space environment, a limited set of
activities are important for a productivity assessment application (e.g., typing on a keyboard while
seated on a chair may count as work while the remaining activities may not be considered as work).

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://doi.org/10.3389/fdgth.2021.731076
http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2021.731076&domain=pdf&date_stamp=2021-09-22
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:falsaleem2@unl.edu
https://doi.org/10.3389/fdgth.2021.731076
https://www.frontiersin.org/articles/10.3389/fdgth.2021.731076/full

Emad-Ud-Din et al. MEMS-Based CTRNN

When a person performs an activity, clear, yet complex and
distinct, motion signatures are acquired from their body parts
for each activity type. Multiple machine learning methods have
been proposed to automatically perform HAR by learning those
signatures from highly sampled acceleration measurements.
Recurrent neural networks (RNNs), in comparison to the
typical feedforward neural networks (FFNNs), have been shown
to achieve the highest accuracy, as they can process and
encode the sequential temporal information contained in the
motion data to distinguish a specific day-to-day activity like
walking from jumping. Wrist-wearable devices embedded with
many highly sensitive and fast-response Microelectromechanical
Systems (MEMS) Inertial Measurement Units (IMUs), such as
accelerometers and gyroscopes, are among the best candidates for
performing this kind of detection. They can also ensure a high
degree of adoption because they are perceived as non-intrusive
pieces of jewelry. The stringent power requirement and short
battery life of wearable devices, however, prevent them from
having enough processing power to continuously perform RNN
or other kinds of machine learning locally. Moreover, the high
energy cost of wirelessly transmitting data, limits the amount
of raw sensor data that can be sent and processed externally
(1, 2). These limitations reduce the accuracy and applicability of
machine learning models, especially when data are sampled at
very high rates, which leads to latencies (3).

Very tiny biological systems, such as some insects, have similar
constraints and solve such problems bymoving some intelligence
to the sensor level to efficiently extract complex information (4).
Inspired by computing in insects, it is desirable to develop sensor
platforms capable of sensing simple inputs and processing them
at the sensor level for extracting complex information such as
feature extraction or classification, without using microprocessor
power. Toward this end, our research group was one of the first
to recently develop such a novel solution using a network of
mechanically coupled microelectromechanical systems (MEMS)
accelerometers that can perform a simple binary classification
problem such as distinguishing a square acceleration signal
from a triangular one (5). In that work, we have shown that
nonlinear detection instability, facilitated by pull-in or nonlinear
arch geometries, and hysteresis, enables small MEMS networks
to qualitatively capture critical properties of CTRNNs. Hence,
allowing MEMS networks to perform time-series computation.
However, a significant limitation of our previous work is the
lack of a suitable training algorithm for the sensor coupling
weights that can train them to perform complex classification
applications such as HAR. Instead, a trial-and-error approach
was followed to find suitable coupling weights to perform the
simple binary classification problem. In this paper, we expand our
novel MEMS computing platform by adapting the well-known
training algorithms of backpropagation to train the mechanical
coupling weight of a network of MEMS accelerometers to
perform HAR. We show that this novel architecture enables the
MEMS computing network to perform complex classification
tasks with comparable accuracy numbers while consuming
orders of magnitudes power compared to traditional approaches.
The organization of this article is as follows: In Section
literature review, contemporary energy-efficient HAR methods

are explored and compared. In section Method, we introduce the
MEMS-CTRNN node and its integration into the HAR pipeline.
We also outline the optimization steps along with the dataset
formatting and MEMS-CTRNN architecture details. In section
performance evaluation we outline the experimentation and
performance analysis approach and results. Finally, in section
conclusion we conclude and summarize our findings.

LITERATURE REVIEW

There have been several attempts in the literature to reduce
the algorithm complexity and hence the energy consumption to
perform RNN computing. These include a host of optimizations
including feature section, quantization, compression, and non-
linear approximation (6). For example, various optimization
techniques that increase the computational efficiency for the
feature selection process have been proposed in the literature (6–
9). Techniques like varying the acceleration sampling frequency
and window size are also common. Such techniques offer
computational power reduction of as much as 44.23% (10, 11)
without impacting the classification accuracy. Another technique
presented in (12) uses a clustering-center-based pre-classification
strategy to reduce the call frequency of the model, thus
reducing the overall power consumption by 49%. Techniques
like Quantization and Piece-wise Linear Representation (PRL)
have been shown to reduce the computing complexity of RNNs.
However, such techniques are computationally infeasible when it
comes to their implementation on low-power embedded systems
(13). Fixed and large sliding window sizes are usually beneficial
for power consumption, but the sliding window size is a highly
subjective parameter and greatly depends upon the problem and
activity characteristics (14).

Optimizing the computer hardware is another direction to
reduce the energy consumption to perform RNN computing.
In this regard, Table 1 shows different RNN algorithms
implementation using state-of-the-art computing platforms.
These RNN algorithms include Long Short-Term Memory
(LSTM), bidirectional LSTM, fully connected networks like
Deep Neural Networks (DNN), and sparsity-aware approximate
LSTM. The table compares the algorithms implementation
power consumption to perform complex tasks such as speech
recognition or image captioning. In all cases, the energy efficiency
of each hardware is given in terms of the number of operations
(OPS) per watt. Assuming the minimum required of 1.3
TOPS/s to perform RNN calculation (15), the algorithm’s energy
consumption per second is also estimated in the table. The data
in the table shows a minimum reported power consumption
of 2.95m watts using FPGA (16). Assuming an extra 50%
power reduction by implementing some of the aforementioned
optimization techniques, this might be impractical for ultra-low
energy consumption devices such as wearables (1, 2).

To overcome such challenges, in this paper we present a
framework that enables our recent MEMS-based neuromorphic
computing approach (5), a bio-inspired computing scheme
aiming to implement computing in an analog fashion, to
tackle challenging applications while adhering to the stringent

Frontiers in Digital Health | www.frontiersin.org 2 September 2021 | Volume 3 | Article 731076

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

Emad-Ud-Din et al. MEMS-Based CTRNN

TABLE 1 | Energy consumption estimation for typical RNN.

Model (Reference) Platform Efficiency(Giga OPS/watt) Estimated Energy (watt) Application Area(s)

LSTM (17) ASIC, CMOS 65nm 27000 5 mW Speech Recognition,

Image Captioning

Bi-LSTM (16) FPGA, Zynq−7000 XC7Z045 @ 142 MHz 44 2.95 mW Image Captioning

GRU (18) ASIC, CMOS 65nm @ 400 MHz 2380 54 mW Image Captioning

DNN (19) FPGA, Intel Cyclone V @ 250 MHz 5156 25 mW Image Captioning

Sparsity-aware,

approximate-LSTM (20)

CMOS 65nm 160 33 mW Speech Recognition

energy requirements of wearable devices. It is expected that
the physical implementation of the MEMS computing solution
presented in this paper consumes orders of magnitudes less
power compared to the state of art computing platforms in
Table 1. The solution is made of an array of coupled electrostatic
MEMS devices, each acting as a neuron in a neural. To estimate
the MESM network power consumption, we assume during
operation, the switching of eachMEMS neuron involves charging
a capacitor 0.5 pico-Farad, which is a good approximation for
capacitance associated with a typical electrostatic MEMS device.
Assuming an operating voltage of 5V and a worst-case scenario
switching frequency of 100Hz, then the required energy to
charge up the MEMS capacitance per second is 0.625 n watt.
For a MEMS CTRNN with 100 neurons, the total estimated
power consumption is only 6.25 n watts. Moreover, compared to
baseline, additional energy savings can be harnessed at the system
level using this framework with the option of performing some
computing at the sensor level, thus reducing the need for sensor-
processor communication, memory usage, and conditioning
circuit. Finally, it is important to mention that while the power
consumption advantages of MEMS CTRNN are clear based on
the above simple calculation, the major focus of this paper is
to confirm that this MEMS CTRNN has comparable accuracy
performance to other RNN implementations.

METHOD

RNNs utilize internal memory through self-feedback to preserve
the sequences of input data during training (21). Thus, the RNNs
have shown great success in sensory applications such as image,
video, and audio processing, as well as HAR (22). A special,
yet rather a complex form of RNN, known as a Continuous-
Time Recurrent Neural Network (CTRNN) (23), uses differential
equations to describe the activation level of the neurons (see
Equation (1) below).

ẏi = fi
(

y1, . . . , yN
)

=
1

τi

−yi +

N
∑

j = 1

wijσ
(

yj
)

+ hi + Ii

 ,

i = 1, 2, . . . ,N . . . (1)

where σ is an activation function, which is often sigmoidal, τi
and yi are the time constant and activation level of neuron I,
respectively,wij is the connection strength between the i

th neuron

and the jth neuron, h is a bias term, Ii is the input to the i
th neuron,

and the dot operator represents the time derivative.
CTRNNs have emerged as an attractive RNN machine

learning option as they offer significant dynamical richness while
requiring fewer neurons than other RNNs for high-level learning
(24). Nevertheless, CTRNNs are seldom implemented because
they are computationally expensive for real-time implementation
as they require simultaneous solutions of multiple highly coupled
differential equations. In previous work, we have shown that the
complex computational requirements of implementing CTRNNs
may be bypassed by emulating the operation of CTRNNs
using physical hardware. Specifically, the dynamics of a small
network of electrostatically coupled MEMS cantilevers were used
for performing CTRNN computing in an analog fashion that
reduces power consumption by multiple orders of magnitudes
(5). However, as there is no current literature that addresses
the automatic training of this novel technique, the previously
demonstrated small MEMS CTRNN was simply trained by
trial-and-error for a simple classification task. To address this
challenge, in this paper, we present a training framework that can
be used to train the novel MEMS-based CTRNN architectures
to tackle complex applications. This model will be referred to
as MEMS-CTRNN. As a case study, a MEMS-CTRNN will be
trained to perform HAR.

The objective of the chosen HAR application is to detect a
given activity from a continuous sequence of motion acceleration
sensor observations. The proposed learning architecture
performs this detection by predicting whether the incoming
sequence of observations belongs to an activity category
or not. Thus, the HAR problem is converted into a binary
classification problem, solved using the MEMS-CTRNN. In this
binary classification problem, one class represents the target
activity while the other class represents the null class or the
remaining activities. The overall flow of the activity detection
process using the proposed framework is illustrated in Figure 1.
The framework has 3 major modules: (1) Input quantization
module, (2) Genetic mutation-based training set augmentation,
and (3) Training and testing module. Each of the elements
in the flow chart is described in the subsequent subsections
in detail.

Input Quantization
Most wearable sensing systems seek to choose sensory data
features that simplify the discrimination between different

Frontiers in Digital Health | www.frontiersin.org 3 September 2021 | Volume 3 | Article 731076

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

Emad-Ud-Din et al. MEMS-Based CTRNN

FIGURE 1 | The HAR classification framework.

activities while being invariant across different executions
of the same activity. Statistical measures, such as the data
mean, median, and standard deviation are used as features

for discrimination. These statistical measures often computed
from data extracted from short frames of understanding of the

application domain and the selection process of such features,

have a significant impact on the classification performance

of activity recognition systems. In this paper, we rely on
a simpler, less computationally expensive approach of pre-

processing known as signal quantization. This optional pre-
processing step is used to improve the classification performance

by utilizing a quantization strategy that normalizes and quantizes

the sensor data to three levels (rise/fall/no change). We note that

the quantization used here is applied to both the training and
test data streams, as shown in Figure 1. Equation 2 outlines the
quantization function for the incoming raw accelerometer signal
a at time t. While quantization helps to simplify the problem for
the underlying MEMS-CTRNNmodel, this is an optional step in
the process flow as the physical implementation of the MEMS
hardware for the case of simultaneous sensing and computing
architecture may not allow quantization as will be explained in
the next section. Here we adopt an input quantization that is
based on the temporal rise and fall of the signal and is akin to
feature extraction. Like a typical quantization, this quantization
approach tends to preserve the signal trend without dealing with
the exact values in the signal. Such extracted feature is much
simpler for an RNN to learn when compared to an absolute input

with infinite levels.

if at > at+1 + ǫ 1 (rise)

if at < at+1 − ǫ − 1
(

fall
)

if abs(at+1 − at) ≤ ǫ 0
(

no change
)

(2)

Genetic Mutation-Based Training Set
Augmentation
The original training data is likely to be imbalanced. Thus,
the purpose of introducing the genetic mutation module is to
augment the original training dataset with more comprehensive
data that can occur in the test data stream. The augmentation is
only utilized during the training process to enrich and balance
the training data and does not apply during the model testing
or inference-making phase. We use a mutation genetic operator
to synthesize a new observation from the original observation.
A similar technique is used in (25) to generate automatic test
data for software testing. Our approach is unique as we have
control over two attributes of the resultant dataset: (1) the spread
of mutation in time and (2) the extent of mutation in the
motion intensity. The full process of genetic mutation training set
augmentation is listed inAlgorithm 1 and its parameter selection
are detailed below.

The value ofM depends upon the following factors:

- Large values of M may result in NULL class activity windows
being incorrectly labeled as activities of interest.

Frontiers in Digital Health | www.frontiersin.org 4 September 2021 | Volume 3 | Article 731076

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

Emad-Ud-Din et al. MEMS-Based CTRNN

Algorithm 1: Algorithm of the genetic mutation based augmentation.

1. Initialize the training dataset obsT where each element is created by

sliding a fixed-horizon window of length l over the 3-D training input

time-series accelerationsq.

2. Initialize the labels labelT where each element corresponds to each

window in obsT. Set an element to “activity of interest” if input

ground-truthT indicates that more than 75% of observations in a

window belong to the given input activity. Otherwise set the elemet

to “null class”.

3. For each window in obsT for which corresponding labelT equals

“activity of interest”, we select K random indices within the window

and mutate the quantized acceleration level to a randomly chosen

neighboring quantized level. The extent to which how far the

quantization level can be randomly chosen is determined by M. We

add the resultant K mutated window mut-window{1,…,K} to the

training set obsT.

4. We label the corresponding elements in labelT for the newly added

mut-window{1,…,K} as “activity of interest”.

- A very small value of M may cause us to miss some possible
variation of activity by labeling the part of the activity of
interest class. For example, because of a mutation, if the
mutated acceleration value differs slightly from the original
value, such little mutation is not enough to train the RNN
for the inherent variations present whenever an activity is
performed by the same subject but at different times. As an
example of such variation, Figure 2 shows different executions
of the same activity by the same subject.

The value of K depends upon the following factors:

- A large value of K will not preserve the motion features and
may result in NULL class activity windows being incorrectly
labeled as activities of interest.

- A small value of K may not bring the desired level of
variation to the activity thus failing to capture some possible
variations/nuances of the activity of interest. It may also lead to
overfitting because the mutated data will look nearly identical
to other non-mutated data points.

- It may also be noted that mutated windows mut-window

{1,. . . , K} are assumed to represent a different execution of the
same activity by the same subject or another subject.

MEMS-CTRNN Model Architecture
In a previous work (26), we have shown that computing is
possible using MEMS devices by approximating the qualitative
nonlinear dynamics of CTRNNs. Mainly, MEMS device
dynamics must include (1) Nonlinear instability to facilitate
a distinct response change due to MEMS activation, and (2)
memory, which is facilitated by hysteresis. Both behaviors are
observed in electrostatic MEMS devices of different kinds. For
example, an electrostatically actuated MEMS device exhibits a
nonlinear response change at pull-in, when the excitation voltage
results in an electrostatic force that exceeds the restorative
force of the MEMS structure, causing the MEMS structure
to contact the stationary excitation electrode. Hysteresis is
inherent in the pull-in/release regime due to the nonlinearity of
electrostatic forcing.

Alternative means of employing MEMS devices for CTRNN
include using MEMS structures with nonlinear geometries,
such as MEMS arches, and using internal feedback by using
electrical resonance in low parasitic capacitance MEMS devices.
For simplicity, this work focuses on using electrostatic MEMS
devices, operated in the pull-in/release regime (5) to construct
a MEMS CTRNN.

In the MEMS CTRNN pull-in/release implementation, we
approximate the response of each electrostatically actuated
MEMS device in the network as a single-degree of freedom
spring-mass-damper system governed by (3), assuming that the
influence of the MEMS inertia is very small compared to the
influence of the damping on the MEMS response.:

2ζ

ωn
żi (t) + zi (t)

=
εA

2k
(

di − zi (t)
)2

N
∑

j=1

wijVjU
(

zj (t) − dj
)

+ θi

2

−

O
∑

k=1

win,k
1

ω2
n

+ I (t) (3)

where zi (t) is the state (the relative displacement between the
MEMS moving proof mass and the fixed electrostatic electrode)
of the ith MEMS-CTRNNneuron at time t, ζ is the damping ratio,
ωn is the MEMS natural frequency, wij is the connection weight

from the jth neuron to ith neuron, θi is a biasing signal applied
to the ith neuron, A is the overlapping MEMS electrode surface
areas, k is the MEMS linear stiffness, ε is the emissivity of air, I(t)
is the input signal and for the case of simultaneous sensing and
computing architecture (5) will be the actual acceleration signal
(ÿ), otherwise, it will be an electrical signal (26), and win,k are
the input weights, applied only to the MEMS devices in the
input layer, and Vj is the total voltage signal on the jthneuron as
defined by (4), computed recursively in simulation and updated
automatically in neuromorphic applications:

Vj =
∑N

k=1
wjkVkU

(

zk (t) − dk
)

+ θj . . . (4)

U
(

zk (t) − dk
)

is a unit step function, which is equal to 1
when zk (t) ≥ dk and 0 otherwise. Here, dk is the total
electrostatic separation between the MEMS proof mass and the
fixed electrode. This value is set to 42 × 10−6 in this paper and
the rest of the MEMS parameters are listed in (5) and are chosen
to operate the MEMS devices near Pull-in/Pull-out hysteresis to
achieve the needed bistability for computing.

The proposed MEMS-CTRNN model consists of a fully
connected input layer of MEMS input neurons to match
the sensor inputs. If those neurons are optimized to sense
acceleration, then the network can perform simultaneous sensing
and computing (5). The second layer consists of several
computing MEMS-CTRNN neurons. The number of MEMS-
CTRNN neurons is kept low to orient the architecture toward,
resource-constrained platforms and simplify their future physical

Frontiers in Digital Health | www.frontiersin.org 5 September 2021 | Volume 3 | Article 731076

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

Emad-Ud-Din et al. MEMS-Based CTRNN

FIGURE 2 | The distributions for non-normalized raw input data from the Y-axis Accelerometer for multiple executions of the same activity by the same subject. In this

case, the variance is reasonably low.

implementation. This layer is followed by a fully connected
output layer. The last layer is an output layer that provides binary
classification decisions.

We used a discretized form of equation 1 in the training
of our MEMS-CTRNN model. The training of the MEMS-
CTRNN network is carried out by a custom MATLAB
backpropagation-based framework. The framework was adapted
from the framework proposed in (27). The base framework
did not have MEMS-CTRNN nodes implemented, thus we
resorted to implement and integrate these nodes into the
framework. Additionally, the base framework did not support
our novel genetic algorithm-based dataset augmentation and
input quantization capabilities. MEMS-CTRNN also requires the
integration of voltage Vi as listed in (4). This is the total voltage
signal on each of the MEMS-CTRNN neurons. The voltage is a
function of the output voltage of preceding neurons along with
other parameters. The concept of voltage is novel and demanded
extensive changes and testing for the framework code.

PERFORMANCE EVALUATION

Dataset
A publicly available and annotated Human Activity Recognition
Dataset (HAPT) (28) was used to evaluate the proposed
approach. The HAPT dataset contains time-domain signals that
were captured at a constant rate of 50Hz. The data was collected
from 30 participants wearing a smartphone (Samsung Galaxy S
II) on the waist during the experiment execution. The age range
of participants varies from 19 to 48 years. The datasets include six
basic types of activity i.e., WALKING, WALKING_UPSTAIRS,
WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING.
The dataset also contains six postural transitioning activities i.e.,
stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie and lie-
to-stand. Data related to one dynamic activity (walking) and four
postural transitions (sit-to-stand, stand-to-sit, sit-to-lie, lie-to-
sit) are considered for our experiment. Observations belonging
to other activities also exist in the dataset, however, in this

work, they are classified as null space observations. We randomly
chose 70% of the data for the training and 30% as the test for
our machine learning algorithm. Inputs to our algorithm are
observation windows. Inputs to our algorithm were quantized
according to equation (2). For each activity, best results were
attained by setting the value for ǫ empirically to values close to
the optimal value of ǫ ≈(µa + σa/2) available in the literature
(29), where µa and σa are the mean and variance for the input
distribution. The chosen training data was further augmented,
as discussed in the preceding section, to balance the data. For
training and testing, we consider each window to be a single
sample. The proportions of activity samples in the dataset are
shown in Figure 3. The walking activity observations make up
15.8% of the dataset while stand-to-sit, sit-to-stand, sit-to-lie,
and lie-to-sit constitute 0.6, 0.3, 1.0, and 0.8% of the overall
dataset, respectively.

Activity Detection Performance Using
Traditional CTRNN and LSTM Models
To demonstrate the effectiveness of the proposed MEMS-
CTRNN model, we first compare the performance of traditional
CTRNNs and Long Short-Term Memory (LSTM) networks
as a baseline. Next, we compare the performance of our
MEMS-CTRNN approximation to our baseline models. LSTM
is chosen as a commonly used architecture to perform human
activity classification. We use the well-cited deep forward LSTM
model proposed in (30), which contains multiple layers of
recurrent units that are connected “forward” in time. The model
architecture is simple yet powerful enough to produce reliable
HAR results over publicly available HAR Datasets. To create a
CTRNN model, we simply replace the LSTM nodes with the
CTRNN nodes.

Evaluation of Performance With Accelerometer and

Gyroscope Inputs
To establish a baseline, we first present the performance results
for traditional CTRNN, and LSTM based activity detection

Frontiers in Digital Health | www.frontiersin.org 6 September 2021 | Volume 3 | Article 731076

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

Emad-Ud-Din et al. MEMS-Based CTRNN

FIGURE 3 | HAPT dataset activity proportion chart.

TABLE 2 Baseline performance results for CTRNN and LSTM activity detection

models for 5 subjects and 5 activities.

Activity name Average accuracy for 6 neurons hidden

layer model for quantized accelerometer +

Gyro Inputs. (75% labeling threshold)

LSTM CTRNN

Walk 96.4% 89.2%

Sit-to-Stand 94.8% 88.8%

Stand-to-Sit 93.9% 90.2%

Sit-to-Lie 95.3% 89.1%

Lie-to-Sit 94.0% 88.9%

in Table 2. Both models contain a single hidden layer of 6
recurrent neurons. There are also 6 input neurons to match
the number of the input sensors (3D accelerometer and 3D
gyro) and 2 output statuses (Activity Detected, Not detected)
for each model. It is worth mentioning that we have obtained
very high classification accuracy using another common CTRNN
and LSTM topology that assigns an input neuron for each
observation in the activity period (window). However, we
chose not to use this topology as it will result in having
many neurons in the network input layer, which may create
a physical implementation challenge for the MEMS CTRNN.
During the training phase, each observation window is labeled
to belong to the activity of interest class, whenever 75% or more
observations in each sliding window belong to the associated
activity. Otherwise, the window is associated with the Null
class. Thus, the results in table 2 use the 75% threshold
while labeling the window. Also, the inputs to the models
were quantized into 3 levels as described in section Input
Quantization. We observe that even with a limited number of
neurons, the performance results for the LSTM and CTRNN
models have the lowest of 89 and as high as 96% activity
detection accuracy.

TABLE 3 Baseline performance results (without Gyro inputs) for CTRNN and

LSTM activity detection models for 5 subjects and 5 activities.

Activity name Average accuracy for 6 neurons hidden

layer model for quantized

accelerometer inputs (75%

labeling threshold)

LSTM CTRNN

Walk 93.8% 86.3%

Sit-to-Stand 91.6% 86.8%

Stand-to-Sit 90.7% 87.0%

Sit-to-Lie 92.4% 87.2%

Lie-to-Sit 91.9% 86.7%

Evaluation of Performance With Only Accelerometer

Inputs
Next, we investigate the impact of the removal of gyroscope
inputs on the accuracy of LSTM and CTRNN models. In this
scenario, we only consider the quantized 3D accelerometer inputs
to the model, thus we have only three input neurons. Aside
from the removal of the 3-axis gyroscope data and reducing the
number of the input neurons, the model configurations were
kept consistent with the model described in section Evaluation of
performance with accelerometer and gyroscope inputs. Table 3
lists the accuracy results for the reduced input models. The table
shows that removing the gyroscope inputs has a minimal impact
on the model’s accuracy. This finding may have a substantial
impact on reducing the complexity of implementing the MEMS
CTRNN hardware as there is no need to fabricate and integrate
gyroscopes in the computing hardware.

Activity Detection Performance for
MEMS-CTRNN Model While Accounting for
Its Physical Implementation Limitations
In this section, we evaluate the MEMS-CTRNN model
performance for the binary human activity classification task.

Frontiers in Digital Health | www.frontiersin.org 7 September 2021 | Volume 3 | Article 731076

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

Emad-Ud-Din et al. MEMS-Based CTRNN

TABLE 4 Average accuracy observations for MEMS-CTRNN models for varying

input dimension sizes and input quantization conditions.

Accelerometer

axis

Non-Quantized

accelerometer inputs

Quantized accelerometer

inputs

Model accuracy for

Stand-to-sit activity (5

subjects)

Model accuracy for

Stand-to-sit activity (5

subjects)

X. Y, Z 78.2% 83.5%

X, Y 51.9% 55.3%

X, Z 55.4% 58.5%

Y, Z 56.9% 59.7%

Again, our goal here is not to outperform any existing HAR
technique but rather to show that the proposed MEMS-CTRNN
method produces comparable performance to commonly cited
CTRNN and LSTM based activity classification models (3, 8)
with the advantage of consuming less power. Table 4 shows
the classification accuracies for the MEMS-CTRNN simulation
model with different scenarios. For example, the cell in the
first row and second column in the table shows that the
MEMS-CTRNN implementation (with quantized acceleration
inputs) has an accuracy that is comparable to the traditional
CTRNN implementation reported in Table 3 when using only
accelerometers inputs. For practical hardware implementation of
MEMS-CTRNNs, however, some limitationsmay exist, especially
for the simultaneous sensing and computing architecture,
to attain maximum power reduction. For example, input
quantization may not be possible for the sensing and computing
MEMS architecture as in such architecture the MEMS that
perform computing in the input layer will sense the acceleration
signal directly in an analog fashion (5).Table 5 shows an accuracy
drop only by around 5% when non-quantized inputs are used
to train and validate the MEMS-CTRNN model, similar to
previously reported showcases of traditional RNNs (22, 23).

Another aspect of the implementation limitation of the
MEMS-CTRNN simultaneous sensing and computing
architecture worth exploring is the dimensions of input
acceleration. While 3-D accelerometers are commercially
available, we expect optimizing its design parameters to
perform simultaneous sensing and computing purposes is
more challenging than our recent implementation attempts
for lower input dimension MEMS CTRNN (5). We tested the
accuracy of our proposed model for 2 axis accelerometer input
(all possible combinations). Rows 2–4 in Table 4 demonstrate
the impact of using the non-quantized compared to quantized
inputs for all possible combinations of accelerometer inputs.
Accuracy readings are tabulated for the proposed MEMS-
CTRNN model. The result in the table shows that reducing the
accelerometer dimensions will result in a significant reduction in
the classification accuracy.

To explore the effect of the number of acceleration dimensions
on the classification accuracy drop, we visualize the distribution
of each activity observation in the 2-D space in Figure 4. In
this figure, we chose the 2-D YZ as an example. The figure

shows that the observations are forming complex clusters in the
YZ plane with overlapping observations belonging to different
activities. The above observation explains the significant decrease
in accuracy when we reduce the input dimensions to our learning
model. The reduced dimensions accuracy analysis presented in
Table 4 helps establish the tradeoff between MEMS fabrication
challenges and classification accuracy using this architecture.
However, we reiterate here that, first while challenging, it
is still possible to fabricate an optimized 3-D accelerometer
for the simultaneous sensing and computing MEMS CTRNN
architecture, which is beyond the scope of this paper. Second,
for 3-D and higher dimension input applications, one can always
utilize the MEMS CTRNN only computing architecture (26),
which separates between the actual sensor layer and the MEMS
CTRNN input neuron layer like any other traditional machine
learning algorithm, with the additional complexity of sensor
interfacing and conditioning circuit.

MEMS-CTRNN Model Accuracy Sensitivity
Analysis to Threshold Value, Network Size,
and Time Constant
In this section, we present a thorough analysis of some of the
factors that can significantly impact MEMS-CTRNN accuracy.
For comparison purposes, when applicable, we also present
the impact of those parameters on the traditional LTSM and
traditional CTRNN.

Impact of Network Size on Model Accuracy
We trained the MEMS-CTRNN model with a varying number
of neurons in the hidden layer (3, 6, 9, 16) and compared
the observed accuracy with LSTM and CTRNN models. The
resulting comparison is shown in Figure 5. We chose the
numbers of neurons to not exceed 16 as such larger coupled
MEMS networks may be impractical to fabricate. The figure
shows that, for quantized inputs, the performance of all
algorithms is nearly saturated when >6 neurons are used. We
note that the performance of the LTSM network is better than
CTRNNs in Non-quantized data applications (bottom row of
Figure 5), compared to applications with quantized data (top row
of Figure 5). Furthermore, the performance does not saturate
when more than 6 neurons are used.

Impact of Changing Labeling Threshold During the

Training Process
During the genetic mutation-based training process (Section
Genetic Mutation-based Training Set Augmentation), the
observations window is labeled to belong to the activity of interest
class whenever 75% or more observations in each sliding window
belong to the associated activity. Ideally, this threshold should
be chosen to be higher, but this may increase the false positive
rate if the activity of interest is not spread evenly across the
observation windows. On the other hand, we observed that
dropping the threshold significantly reduces the model accuracy.
In Table 5, for example, we observe that overall activity detection
accuracy drops by an average of 14.6% even for a network of 16
neurons when a threshold value of 50% is used. The underlying
hypothesis behind this result can be that labeling windows with

Frontiers in Digital Health | www.frontiersin.org 8 September 2021 | Volume 3 | Article 731076

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

Emad-Ud-Din et al. MEMS-Based CTRNN

TABLE 5 Impact of changing labeling threshold.

Activity name Average accuracy for 16 neurons hidden layer model Average accuracy 16 neuron hidden layer model

(50% labeling threshold) (75% labeling threshold)

Non-Quantized accelerations Non-Quantized accelerations

LSTM CTRNN MEMS-CTRNN LSTM CTRNN MEMS-CTRNN

Walk 78.4% 68.3% 66.9% 87.0% 78.7% 76.5%

Sit-to-Stand 75.9% 62.1% 58.6% 85.3% 77.9% 77.6%

Stand-to-Sit 72.7% 59.4% 57.5% 84.4% 79.5% 78.9%

Sit-to-Lie 73.2% 62.2% 58.7% 87.1% 78.4% 78.7%

Lie-to-Sit 72.4% 60.6% 58.2% 86.5% 77.9% 78.0%

FIGURE 4 | Clusters of activity observations on the YZ plane.

many observations, that do not belong to the activity of interest
class, introduce challenges for the MEMS-CTRNN neurons to be
able to classify complex clusters formed by the new low threshold.

Impact of Varying CTRNN Time-Constant on Model

Accuracy
A CTRNN consists of continuous-time neurons. Each of these
neurons is modeled by a linear first-order differential equation
and its time scale is determined by the time constant τ . where τ

is a characteristic of the mechanical design of the MEMS node
(damping ratio and MEMS natural frequency) given by:

τ = 2ζ/ωn . . . (5)

A CTRNN neuron with a small τ experiences a strongly decaying
behavior. It also reacts rapidly and nearly instantaneously to
the current inputs. Contrarily, a large τ leads to slowly varying
states, as the neuron will maintain its previous internal state
and sluggishly react to current inputs. Each neuron in CTRNN
can have a unique value for τ . However, for simplicity in our

MEMS-CTRNN simulation, we consider the same constant value
of τ =0.0017 seconds for all MEMS nodes in the network. Next,
we investigate the effect of varying τ , by varying the value of ωn

by a multiplier constant P with the following set of values:

P = {
1

5
,
1

4
,
1

3
,
1

2
, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} . . . (6)

These values are chosen based on the constraints dictated by the
MEMS physical design characteristics. For all possible values of τ ,
given the multiplier values, we evaluated the activity recognition
performance. Figure 6 illustrates the impact of the τ values on
the accuracy of a MEMS-CTRNN model for stand-to-sit activity
with non-quantized accelerations and a 75% labeling threshold.
Literature (31) frequently uses values of τ to learn patterns
that exist over multiple time scales in a time series. This is
particularly helpful for motion sensor-based time-series data as
well. Therefore, we use the time constant τ as a hyperparameter
in our network to study its effects on the accuracy of MEMS
classification. We observe from Figure 6 that the accuracy peaks

Frontiers in Digital Health | www.frontiersin.org 9 September 2021 | Volume 3 | Article 731076

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

Emad-Ud-Din et al. MEMS-Based CTRNN

FIGURE 5 | The accuracy charts for LSTM, CTRNN, and MEMS-CTRNN across 5 activities and 5 subjects. The X-axis represents the number of neurons in the

hidden layer (3, 6, 9, 16).

for τ = 0.000566 seconds which corresponds to a timescale that
the MEM-CTRNN responds to most favorably. The accuracy
drops to 50% when the values of τ approach 0.0068 seconds.
The accuracy continues its downward trend as the values of τ

increase beyond 2e-2, which corresponds to the MEMS-CTRNN
losing its memory and reacting only to current inputs. It is worth
mentioning that in the above simulation, we still use a constant
value for this τ parameter for all the MEMS CTRNN nodes.
This only enables the MEMS CTRNN to detect patterns at a
single “average time-scale.” As future work, we plan to train a
different τ for each neuron in the network so the network can
learn the patterns that exist on multiple time scales. As reported
for traditional CTRNN (31), we expect that this approach will
enhance the accuracy of our framework by a significant margin,
in contrast to the currently presented approach, which detects
only the “dominant pattern” in the time-series signal.

CONCLUSION

In conclusion, we demonstrated the adaption of a traditional
machine learning architecture to train a network of MEMS
devices to simulate the response of MEMS-based CTRNNs in
HAR applications. The main advantage of this MEMS-based
CTRNN is to reduce the computational cost through the inherent
dynamics of the MEMS devices, with the added advantage of
optionally performing some computation at the sensor level.
The MEMS-CTRNN model discussed in this paper is not a
one-to-one emulation of CTRNNs in-silico. However, this work

FIGURE 6 | Impact of the MEMS time constant on the classification accuracy

in a MEMS-CTRNN.

shows that the use of MEMS devices to emulate CTRNNs yields
nearly identical results, due to the previously demonstrated
qualitative similarities of response betweenMEMS-CTRNNs and
CTRNNs. In this work, the performance of the MEMS-CTRNN
has been shown both using input pre-processing through input
quantization and without the pre-processing. When input pre-
processing is available, the MEMS-CTRNN can perform HAR
with high accuracy. Input pre-processing may still be foregone
with a 5% loss of accuracy.

Frontiers in Digital Health | www.frontiersin.org 10 September 2021 | Volume 3 | Article 731076

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

Emad-Ud-Din et al. MEMS-Based CTRNN

This work further investigated the influence of parameters
such as network size, input quantization level, and MEMS-
CTRNN time constant τ on the HAR task performance. We
show that the performance of MEMS-CTRNN plateaus when
implementing input quantization as the number of neurons
increases. This behavior is also observed in traditional CTRNNs
and LSTMs. This behavior differs when input quantization is not
used. We also show that the input-window labeling threshold is
a key parameter in the training process, which may significantly
reduce the classification accuracy if chosen poorly. A threshold of
75% was shown to be appropriate for binary classification HAR
application. Finally, the choice of MEMS-CTRNN time constant
was shown to also be of paramount importance. In general, for
our application, a small-time constant (below 8 × 10−3) was
shown to render the MEMS-CTRNN memoryless, resulting in a
rapidly deteriorating response.

Overall, the response of the MEMS-CTRNN was shown to

be acceptable compared to state-of-the-art architectures in HAR
applications. We reiterate here that the goal of this paper is

not to outperform LSTM. Rather, this work provides a low-

power neuromorphic alternative that may be better suited for
computationally constrained devices. The performance of the

MEMS-CTRNN may be improved by training the MEMS-
CTRNN time constant to react to input signals with various
timescales to enable the extraction of further information of
time-series signals.

CODE AVAILABILITY

The MEMS-CTRNN code can be accessed in the
author repository1.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: https://archive.ics.uci.edu/ml/datasets/
human+.

AUTHOR CONTRIBUTIONS

FA, MH, and RJ: conceptualization. FA, MH, and ME-U-D:
methodology. ME-U-D and FA: software and writing—original
draft preparation. SP, MH, and RJ: writing—review and editing.
FA, SP, and RJ: project administration. FA, RJ, SP, and FA: funding
acquisition. All authors have read and agreed to the published
version of the manuscript.

FUNDING

This research was funded by the National Science Foundation,
Grant Number (#1935598, #1935641).

1Available online at: https://github.com/em22ad/CTRNN_timeseries/tree/main/

MatDL

REFERENCES

1. Bhatia D, Estevez L, Rao S. Energy efficient contextual sensing for

elderly care. In: IEEE 29th Annual International Conference on Engineering

in Medicine and Biology Society (EMBS) (Lyon). (2007). p. 4052–

5. doi: 10.1109/IEMBS.2007.4353223

2. Fafoutis X, Marchegiani L, Elsts A, Pope J, Piechocki R, Craddock I. Extending

the battery lifetime of wearable sensors with embedded machine learning.

In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) (Singapore).

(2018) 269–74. doi: 10.1109/WF-IoT.2018.8355116

3. Liu C, Hsieh C, Hsu SJP, Chan T. Impact of sampling rate on wearable-based

fall detection systems based on machine learning models. IEEE Sens J. (2018)

18:9882–90. doi: 10.1109/JSEN.2018.2872835

4. Dalgaty T, Vianello E, De Salvo B, Casas J. Insect-inspired

neuromorphic computing. Curr opin insect sci. (2018) 30:59–

66. doi: 10.1016/j.cois.2018.09.006

5. Hasan M, Abbasalipour A, Nikfarjam H, Pourkamali S, Muhammad Emad-

Un-DinM, Jafari R, et al. Exploiting pull-in/pull-out hysteresis in electrostatic

MEMS sensor networks to realize a novel sensing continuous-time recurrent

neural network. Micromachines. (2021) 12:268. doi: 10.3390/mi12030268

6. Rezk N. Exploring efficient implementations of deep learning applications

on embedded platforms. In: IEEE Access (Halmstad). (2020) 8:57967–

96. doi: 10.1109/ACCESS.2020.2982416

7. Elsts A, Twomey N, McConville R, Craddock I. Energy-efficient activity

recognition framework using wearable accelerometers. J Netw Comput Appl.

(2020) 168:10425–6. doi: 10.1016/j.jnca.2020.102770

8. Shahid Khan MU, Abbas A, Ali M, Jaward M, Khan SU, Li K,

et al. On the correlation of sensor location and human activity

recognition in body area network (BANs). IEEE Syst J. (2018)

12:82–91. doi: 10.1109/JSYST.2016.2610188

9. Attal F, Mohammed S, Dedabrishvili M, Chamroukhi F,

Oukhellou L, Amirat Y. Physical human activity recognition using

wearable sensors. Sensors. (2015) 15:31314–38. doi: 10.3390/s1512

29858

10. Lee J, Kim J. Energy-efficient real-time human activity recognition on smart

mobile devices.Mob Inf Syst. (2016) 2016:1–2. doi: 10.1155/2016/2316757

11. Liang Y, Zhou X, Yu Z, Guo B, Yang Y. Energy efficient activity

recognition based on low resolution accelerometer in smart phones.

In: Li R, Cao J, Bourgeois J, editors. Advances in Grid and Pervasive

Computing. Berlin, Heidelberg: Springer Berlin Heidelberg (2012). p. 122–

36. doi: 10.1007/978-3-642-30767-6_11

12. Shi J, Zuo D, Zhang Z. An energy-efficient human activity recognition

system based on smartphones. In: 7th International Conference on Soft

Computing & Machine Intelligence (ISCMI) (Stockholm). (2020). p. 177–

81. doi: 10.1109/ISCMI51676.2020.9311585

13. Guerrero JL, Berlanga A, Garcia J, Molina JM. Piecewise linear representation

segmentation as a multi objective optimization problem. Adv Intell Comput.

(2010) 79:267–74. doi: 10.1007/978-3-642-14883-5_35

14. Usharani J, Sakthivel U. Human activity recognition using android

smartphone. In: Proceedings of the 1st International Conference on Innovations

in Computing & Networking (ICICN-16). Bengaluru (2016). p. 12–3.

15. Jouppi NP, Young C, Patil N, Patterson D, Agrawal G, Bajwa R, et al. In-

datacenter performance analysis of a tensor processing unit. In: Conference

ACM/IEEE 44th Annual International Symposium on Computer Architecture

(ISCA). Toronto, ON (2017).

16. Rybalkin V, Wehn N, Youse M, Stricker D. Hardware architecture

of bidirectional long short-term memory neural network for optical

character recognition. In: Proceedings of Design, Automation and Test

in Europe Conference and Exhibition (Lausanne). (2017). p. 1394–

9. doi: 10.23919/DATE.2017.7927210

17. Yin S, Sun X, Yu S, Seo J-S, Chakrabarti C. A parallel RRAM synaptic array

architecture for energy-efficient recurrent neural networks. In: Proceedings

of IEEE Int. Workshop Signal Process (Cape Town). (2018). p. 13–

8. doi: 10.1109/SiPS.2018.8598445

Frontiers in Digital Health | www.frontiersin.org 11 September 2021 | Volume 3 | Article 731076

https://archive.ics.uci.edu/ml/datasets/human+
https://archive.ics.uci.edu/ml/datasets/human+
https://github.com/em22ad/CTRNN_timeseries/tree/main/MatDL
https://github.com/em22ad/CTRNN_timeseries/tree/main/MatDL
https://doi.org/10.1109/IEMBS.2007.4353223
https://doi.org/10.1109/WF-IoT.2018.8355116
https://doi.org/10.1109/JSEN.2018.2872835
https://doi.org/10.1016/j.cois.2018.09.006
https://doi.org/10.3390/mi12030268
https://doi.org/10.1109/ACCESS.2020.2982416
https://doi.org/10.1016/j.jnca.2020.102770
https://doi.org/10.1109/JSYST.2016.2610188
https://doi.org/10.3390/s151229858
https://doi.org/10.1155/2016/2316757
https://doi.org/10.1007/978-3-642-30767-6_11
https://doi.org/10.1109/ISCMI51676.2020.9311585
https://doi.org/10.1007/978-3-642-14883-5_35
https://doi.org/10.23919/DATE.2017.7927210
https://doi.org/10.1109/SiPS.2018.8598445
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

Emad-Ud-Din et al. MEMS-Based CTRNN

18. Chen C, Ding H, Peng H, Zhu H, MaR, Zhang P, et al. OCEAN: an on-

chip incremental learning enhanced processor with gated recurrent neural

network accelerators. In: Proceedings of 43rd IEEE Eur Solid State Circuits

Conf. (ESSCIRC). (2017). p. 259–62. doi: 10.1109/ESSCIRC.2017.8094575

19. Liao S, Li Z, Lin X, Qiu Q, Wang Y, Yuan B. Energy-efficient,

high-performance, highly-compressed deep neural network design using

block-circulant matrices.In: 2017 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD) (Irvine, CA). (2017). p. 458–

65. doi: 10.1109/ICCAD.2017.8203813

20. Hardy E, Badets F. An ultra-low power RNN classifier for always-on

voice wake-up detection robust to real-world scenarios. arXiv [eess.AS]

(Burlingame, CA). (2021).

21. Phattanasri P, Chiel HJ, Beer RD. The dynamics of associative

learning in evolved model circuits. Adapt Behav. (2007) 15:377–

96. doi: 10.1177/1059712307084688

22. Lipton ZC. A critical review of recurrent neural networks for sequence

learning. arXiv [Preprint] arXiv:1506.00019. (2015).

23. Beer RD. The dynamics of active categorical perception in an evolved

model agent. Adapt Behav. (2003) 11:209–43. doi: 10.1177/1059712303

114001

24. Bailador G, Roggen D, Troster G, Trivino G. Real time gesture recognition

using Continuous Time Recurrent Neural Networks. In: Proceedings of the

ICST 2nd international conference on Body area networks (p. 15). ICST

(Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering) (Florence). (2007). doi: 10.4108/bodynets.2007.149

25. Moheb R. Automatic test data generation for data flow testing

using a genetic algorithm. J Univers Comput Sci. (2005) 11:898–915.

doi: 10.3217/jucs-011-06-0898

26. Rafaie M, Hasan M, Alsaleem F. Neuromorphic MEMS sensor network. Appl

Phys Lett. (2019) 114:163501. doi: 10.1063/1.5081804

27. Bennett TR, Massey HC, Wu J, Hasnain SA, Jafari R. MotionSynthesis

Toolset (MoST): an open source tool and data set for human

motion data synthesis and validation. IEEE Sens J. (2016)

16:5365–75. doi: 10.1109/JSEN.2016.2562599

28. Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz J. A public domain

dataset for human activity recognition using smartphones. In: 21st European

Symposium on Artificial Neural Networks, Computational Intelligence and

Machine Learning, ESANN 2013. Bruges, Belgium (2013). p. 24–6.

29. Alom MZ, Moody AT, Maruyama N, Van Essen BC, Taha TM. Effective

quantization approaches for recurrent neural networks. In: 2018 International

Joint Conference on Neural Networks (IJCNN) (Rio de Janeiro). (2018).

30. Hammerla N, Halloran S, Plötz T. Deep, convolutional, and recurrent models

for human activity recognition using wearables. In: Proceedings of the Twenty-

Fifth International Joint Conference on Artificial Intelligence (IJCAI’16).

New York, NY: AAAI Press (2016). p. 1533–40.

31. Heinrich S, Alpay T, Wermter S. Adaptive and variational continuous time

recurrent neural networks. In: (2018) Joint IEEE International Conference on

Development and Learning and Epigenetic Robotics (ICDL-EpiRob). Tokyo,

Japan (2018). p. 16–20. doi: 10.1109/DEVLRN.2018.8761019

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Emad-Ud-Din, Hasan, Jafari, Pourkamali and Alsaleem. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Digital Health | www.frontiersin.org 12 September 2021 | Volume 3 | Article 731076

https://doi.org/10.1109/ESSCIRC.2017.8094575
https://doi.org/10.1109/ICCAD.2017.8203813
https://doi.org/10.1177/1059712307084688
https://doi.org/10.1177/1059712303114001
https://doi.org/10.4108/bodynets.2007.149
https://doi.org/10.3217/jucs-011-06-0898
https://doi.org/10.1063/1.5081804
https://doi.org/10.1109/JSEN.2016.2562599
https://doi.org/10.1109/DEVLRN.2018.8761019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

	Simulation for a Mems-Based CTRNN Ultra-Low Power Implementation of Human Activity Recognition
	Introduction
	Literature Review
	Method
	Input Quantization
	Genetic Mutation-Based Training Set Augmentation
	MEMS-CTRNN Model Architecture

	Performance Evaluation
	Dataset
	Activity Detection Performance Using Traditional CTRNN and LSTM Models
	Evaluation of Performance With Accelerometer and Gyroscope Inputs
	Evaluation of Performance With Only Accelerometer Inputs

	Activity Detection Performance for MEMS-CTRNN Model While Accounting for Its Physical Implementation Limitations
	MEMS-CTRNN Model Accuracy Sensitivity Analysis to Threshold Value, Network Size, and Time Constant
	Impact of Network Size on Model Accuracy
	Impact of Changing Labeling Threshold During the Training Process
	Impact of Varying CTRNN Time-Constant on Model Accuracy

	Conclusion
	Code Availability
	Data Availability Statement
	Author Contributions
	Funding
	References

