
ORIGINAL RESEARCH
published: 04 November 2021

doi: 10.3389/fdgth.2021.736418

Frontiers in Digital Health | www.frontiersin.org 1 November 2021 | Volume 3 | Article 736418

Edited by:

Mohamed Elgendi,

University of British Columbia, Canada

Reviewed by:

Thibault Bernard Warlop,

Catholic University of Louvain,

Belgium

Matthew R. Patterson,

Data Scientist Shimmer Research Ltd

Dublin, Ireland

*Correspondence:

Daniel Laidig

laidig@control.tu-berlin.de

Specialty section:

This article was submitted to

Connected Health,

a section of the journal

Frontiers in Digital Health

Received: 05 June 2021

Accepted: 24 September 2021

Published: 04 November 2021

Citation:

Laidig D, Jocham AJ,

Guggenberger B, Adamer K,

Fischer M and Seel T (2021)

Calibration-Free Gait Assessment by

Foot-Worn Inertial Sensors.

Front. Digit. Health 3:736418.

doi: 10.3389/fdgth.2021.736418

Calibration-Free Gait Assessment by
Foot-Worn Inertial Sensors
Daniel Laidig 1*, Andreas J. Jocham 2, Bernhard Guggenberger 2, Klemens Adamer 3,

Michael Fischer 3,4,5 and Thomas Seel 6

1Control Systems Group, Technische Universität Berlin, Berlin, Germany, 2 Institute of Physiotherapy, FH JOANNEUM

University of Applied Sciences, Graz, Austria, 3 Vamed Rehabilitation Center Kitzbuehel, Kitzbuehel, Austria, 4 Ludwig

Boltzmann Institute for Rehabilitation Research, Vienna, Austria, 5Hannover Medical School MHH, Clinic for Rehabilitation

Medicine, Hannover, Germany, 6Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität

Erlangen-Nürnberg, Erlangen, Germany

Walking is a central activity of daily life, and there is an increasing demand for objective

measurement-based gait assessment. In contrast to stationary systems, wearable inertial

measurement units (IMUs) have the potential to enable non-restrictive and accurate gait

assessment in daily life. We propose a set of algorithms that uses the measurements

of two foot-worn IMUs to determine major spatiotemporal gait parameters that are

essential for clinical gait assessment: durations of five gait phases for each side as well

as stride length, walking speed, and cadence. Compared to many existing methods,

the proposed algorithms neither require magnetometers nor a precise mounting of the

sensor or dedicated calibration movements. They are therefore suitable for unsupervised

use by non-experts in indoor as well as outdoor environments. While previously proposed

methods are rarely validated in pathological gait, we evaluate the accuracy of the

proposed algorithms on a very broad dataset consisting of 215 trials and three different

subject groups walking on a treadmill: healthy subjects (n = 39), walking at three

different speeds, as well as orthopedic (n = 62) and neurological (n = 36) patients,

walking at a self-selected speed. The results show a very strong correlation of all gait

parameters (Pearson’s r between 0.83 and 0.99, p < 0.01) between the IMU system

and the reference system. The mean absolute difference (MAD) is 1.4% for the gait

phase durations, 1.7 cm for the stride length, 0.04 km/h for the walking speed, and

0.7 steps/min for the cadence. We show that the proposed methods achieve high

accuracy not only for a large range of walking speeds but also in pathological gait as it

occurs in orthopedic and neurological diseases. In contrast to all previous research, we

present calibration-free methods for the estimation of gait phases and spatiotemporal

parameters and validate them in a large number of patients with different pathologies.

The proposed methods lay the foundation for ubiquitous unsupervised gait assessment

in daily-life environments.

Keywords: inertial sensors, IMU, human motion analysis, gait analysis, gait assessment, gait phases,

rehabilitation, walking
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1. INTRODUCTION

Walking is a central activity of daily life, and restrictions of
this ability lead to a reduction in the quality of life (1, 2).
Therefore, gait analysis is an important tool in different medical
and therapeutic fields (3, 4). The measurement of various gait
characteristics can either facilitate diagnosis or be used to

track the progress of rehabilitation. Gait can be measured by
spatial (e.g., step or stride length) and temporal (e.g., stride
time, cadence) parameters, relative durations of gait phases, and
kinematic and kinetic gait variables (5). These parameters are
used to quantify gait deviation in both clinical practice and
research, and their use varies with the medical field, the research

question, and the analysis options. While gait assessment in
clinical practice is mostly based on visual observation by medical
experts (6), it is desirable to support expert knowledge and

time by objective measurements. This is also important because
relevant gait changes are often too subtle to be detected by the
naked eye (7).

Traditionally, sensor-based gait assessment is performed with
stationary systems like marker-based optical motion tracking,
instrumented treadmills, or pressure-sensitive walkways (6, 8).
Besides being expensive, one major drawback of those systems
is that they are limited to a small capture space or require the
subject to walk on a treadmill (4, 9–12). Furthermore, the use of
walking aids is often not possible or restricted in combination
with such systems.

A promising, more ambulatory, and less restrictive
alternative is inertial gait analysis, i.e., gait analysis with
inertial sensor technology. Lightweight and battery-powered
inertial measurement units (IMUs) are used, which transmit the
data wirelessly.

The transition from expensive stationary systems to small
wearable sensors opens up possibilities that go beyond replacing
themeasurement technology used for gait assessment in a clinical
setting. Integrating objective long-term gait monitoring in day-
to-day life—as illustrated in Figure 1—could provide more
powerful tools for clinicians to help patients in rehabilitation
but also to gain further insights into disease progression.
Furthermore, non-obtrusive wearable plug-and-play systems
facilitate applications in neuroprosthetics (13) or exoskeletons
and can be used to provide biofeedback (14). In the last years,
wireless battery-powered IMUs have become smaller, lighter,
more accurate, and at the same time cheaper and more energy-
efficient, and it is to be expected that this development is going
to continue. For those new trends, it is important to develop
methods that can provide a wide variety of gait parameters that
are useful to medical experts. At the same time, the methods
need to be robust so that the system can be used by patients in
unsupervised settings, outdoors as well as indoors.

It has been shown by previous contributions (15–17) that
major gait parameters can be determined with two IMUs that are
placed on the feet or the shoes, as illustrated in Figure 1. This
includes stride length, gait phase durations (e.g., stance and swing
percentage), and also the cadence and walking speed.

Our aim is to propose methods for gait assessment that meet
the requirements for day-to-day life monitoring in unsupervised

settings and that are validated on a broad group of subjects
including patients with various gait pathologies. The proposed
methods do not assume any fixed orientation of the sensor with
respect to the foot and do not require the subject to perform
dedicated calibration movements. Furthermore, magnetometers
are not used since the magnetic field is known to be severely
disturbed in indoor environments (18). This makes the use
of inertial gait analysis easy and practical in clinical settings
and facilitates future applications of ubiquitous gait analysis in
home environments.

The remainder of the article is structured as follows. In
section 2, we briefly review existing methods for IMU-based
spatiotemporal gait parameter estimation. In section 3, we
describe the proposedmethods, which we then validate in section
4 using experimental data of 98 orthopedic and neurological
patients, as well as 39 healthy subjects walking at different
speeds. The results are discussed in section 5, and section 6
provides conclusions.

2. BRIEF REVIEW OF IMU-BASED
SPATIOTEMPORAL GAIT PARAMETER
ESTIMATION

Several methods have been proposed that employ inertial sensors
to obtain spatiotemporal gait parameters. In the following, we
present a brief overview of the current state of the art and
summarize the different hardware setups that are used, which
parameters are calculated, and how the methods were validated.
Table 1 categorizes 23 publications that provide a range of
examples for the variety of existing approaches in the estimation
of spatiotemporal gait parameters with inertial sensors.

There are different hardware setups, based on the number
of inertial sensors and their placement. The chosen setup has
an impact on which and how many parameters can be derived
from themeasured data. Themost commonly used setup consists
of two IMUs. As shown in Table 1, sensors are typically placed
on the feet or shoes and sometimes on the shank. This setup
is occasionally extended by adding a third sensor on the pelvis
or lumbar spine (34, 35). Note that it has even been shown
that temporal gait events can be obtained from a single IMU at
the pelvis (38), but the potential for extracting further spatial
parameters is limited. Full (lower) body motion tracking opens
up additional possibilities, as demonstrated with 7 IMUs on the
lower body and pelvis in (37) and with 8–15 IMUs in (36).
Another, less common, option consists of combining inertial
sensors with further measurement devices, e.g., a camera on
one foot and LEDs on the other foot to facilitate the direct
measurement of relative positions (39).

Some methods require that a known orientation of the sensor
axes with respect to the anatomical foot axes has to be ensured
by precise placement. Many methods in the literature are based
on such assumptions, including (13, 15–17, 22, 23, 25, 26, 30–
33). In practice, however, ensuring a precise placement is a
challenge, especially in non-supervised application scenarios and
during activities of daily life. Alternatives are to develop methods
that are agnostic to the sensor-to-segment orientation—e.g., by
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FIGURE 1 | Inertial gait analysis can be realized with two miniaturized IMUs on the shoes, enabling daily-life assessment outside of laboratory environments. From the

raw sensor data, orientation, gait phases, and velocity and position trajectories can be estimated. Parameters commonly used in gait analysis, such as stride length,

cadence, and walking speed, can easily be derived from this.

only relying on signal norms—or to determine this orientation
in a process commonly called anatomical calibration (40). For
setups with more sensors, there are recently developed methods
that facilitate automatic anatomical calibration by exploiting
kinematic constraints of the respective joints without requiring
the subject to perform precise calibration movements (41, 42).
For those setups, the linking of the sensors to the body segments
poses another challenge to a plug-and-play approach, which can
be solved by automatic pairing methods (43).

The calculation of spatiotemporal gait parameters is usually
implemented in a two-stage approach. In a first step, gait events
and corresponding gait phases are detected. In a second step,
spatial parameters are calculated.

Existing methods vary in the set of gait events or phases that
are detected. In many cases, the focus is only on the separation
between stance and swing (cf. Table 1), although sometimes
additional events, such as mid-swing (33), are also detected. It is
also common to detect four events that occur during the gait cycle
and are only defined by the ipsilateral (same) foot. Those events
are initial contact, full contact, heel rise, and toe-off, although
the terminology varies. Despite being common practice in gait
analysis (5, 44), employing bilateral information, i.e., combining
information from both feet to define the gait phase, is far less
common in IMU-based gait analysis. One example is (36) in
which single and double limb support durations are calculated.

There are various approaches for detection of gait events
using inertial sensors. It has been shown that exploiting features
of the angular rate signal in the sagittal plane is sufficient to
achieve reliable gait event detection (16, 22, 25, 30, 32). Many
other methods use both accelerometers and gyroscopes and
detect characteristic signal features in the inertial sensor data,
including (13, 15, 17, 19–21, 23, 31, 33). Sometimes automatic
adaption mechanisms are used to adjust thresholds based on

TABLE 1 | Overview of IMU-based spatiotemporal gait parameter estimation

literature.

Employed sensor setup

2 IMUs on feet/shoes (15, 17, 19–31)

2 IMUs on shank (13, 16, 27, 30, 32, 33)

3 or more IMUs (34–37)

Detected gait phases

Stance/swing (13, 16, 17, 22, 23, 27, 30, 32, 33, 35, 37)

4 unilateral events (15, 19–21, 25, 26)

Single/double support (29, 36)

Ground truth used for evaluation

Optical motion capture (20, 25, 26, 28, 29, 31, 34, 37)

Pressure-sensitive walkways (16, 17, 23, 32, 33, 35)

Instrumented treadmills (24, 27)

Pressure insoles (15, 30)

Others/none (19, 21, 22, 36)

Non-healthy subjects included in evaluation

None (healthy only) (21, 22, 24–28, 34, 36, 37)

≤ 20 (20, 30, 31, 33, 35)

> 20 (15–17, 23, 29, 32)

A total of 23 publications that describe estimation of spatiotemporal gait parameters with

IMUs are categorized based on sensor setup, detected gait phases, and the ground truth

and number of non-healthy subjects for evaluation.

the subject’s walking style (19–21, 33). An alternative to the
signal-based methods is to rely on a kinematic model to detect
gait events (36, 37). Machine learning methods, often based
on hidden Markov models (26, 35), are also used for event
detection [cf. (45)].

In addition to the detection of gait events, spatial parameters
such as stride length and walking speed are often calculated.
Those parameters are obtained by either signal integration,
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human gait models, or by machine learning methods (46).
By far the most common approach is numerical strapdown
integration of the accelerations (16, 17, 22, 27, 28, 31, 32, 37).
The cyclic nature of gait and the fact that there is frequent
ground contact are exploited to correct for drift that is due
to double integration. It has been shown that Fourier-based
integration is an alternative to numerical integration (34), that
spatial parameters can be obtained from kinematic models (27,
36), and that convolutional neural networks can also be used to
estimate spatial parameters (23).

Most publications focus on common spatiotemporal
parameters such as stride length, walking speed, and cadence.
Other than those spatiotemporal parameters, there is a multitude
of spatiotemporal gait parameters that are relevant in a clinical
context for various pathologies (6). Examples that can be
estimated using inertial sensors include step width (37), swing
width (31, 37), incline (22), and foot clearance (47).

Some publications (13, 19–21, 25, 33) focus on real-
time detection of events, e.g., to trigger functional electrical
stimulation (FES). While the approaches used are usually similar
to the ones used in offline gait analysis, this typically implies a
focus on minimizing the detection delay rather than the accuracy
of the reported values.

As shown in Table 1, evaluation is often performed with
marker-based optical motion capture as ground truth. Systems
based on the detection of pressure, such as pressure-sensitive
walkways, instrumented treadmills, and pressure insoles, are a
common alternative. In some cases, no validation with respect
to a gold standard is performed. Instead, the settings of a
(calibrated) treadmill are used for walking speed and incline
(22), a manually counted number of steps is combined with the
detection of irregularities (21), validation is performed by visual
inspection of the results (19), or the focus is only on test-retest
reliability (36).

Even though it has been shown that the accuracy of gait
analysis methods decreases when applied to non-healthy subjects
(45), the evaluation of inertial gait analysis methods is often only
based on healthy subjects. When data obtained from non-healthy
subjects is part of the evaluation, the number of subjects is often
small, for example five transfemoral amputees (20), 10 stroke
patients (33), 10 hemiparetic patients and 10 Huntington’s
disease patients (35), or 10 patients with Parkinson’s
disease (31).

To the best of our knowledge, few publications (15–17, 23, 29,
32) exist which propose methods for IMU-based spatiotemporal
gait parameter estimation and validate the methods on a larger
set of subjects with gait pathologies. In the following, we briefly
summarize those publications.

In (15), sensors are placed on the forefoot in a known
orientation, and four different unilateral gait events are detected
based on features of the angular velocity in the sagittal plane, the
norm of the accelerometer signal, and the derivative of angular
velocity norm. Using pressure insoles as reference, the method is
validated on 10 healthy and 32 orthopedic subjects.

The commercial Gait Up system is evaluated in (29) with 25
subacute stroke patients as subjects and marker-based optical
motion capture as reference.

Gait events and stride length are calculated in (16) based
on shank-mounted IMUs. Events are detected based on the
angular rate in the sagittal plane, and stride length is obtained
via double integration of the accelerations. The latter relies on
the proprietary orientation estimation algorithm provided by
the sensor manufacturer. Experimental evaluation is performed
using the GAITRite pressure-sensitive walkway as reference on
10 healthy elderly and 30 non-healthy subjects.

In (32), the same method is validated on a much larger
group of subjects, consisting of 236 community-living older
adults, including 31 mild cognitive impaired subjects and 125
Parkinson’s disease patients.

In (17), IMUs are placed laterally on the shoe in a fixed
orientation, stance, and swing durations are calculated based on
characteristic signal features, and the stride length is obtained via
double integration. The method is evaluated using a large data
set of 101 geriatric inpatients, with reference data obtained from
a GAITRite pressure-sensitive walkway.

Using the same gait event detection method and the same
data set for evaluation as (17), Hannink et al. (23) estimates
stride length, stride width, mediolateral change in foot angle, heel
contact times, and toe contact times using deep convolutional
neural networks.

In summary, the main shortcoming of existing approaches
for the vision of plug-and-play ambulatory gait analysis is that
most methods—especially those with broad validation—require
a precise attachment of the sensor to the subject’s foot. Some
methods only focus on gait events and do not provide spatial
parameters, and some methods rely on proprietary algorithms of
the sensor manufacturers. Furthermore, very few of the proposed
methods are validated on a large group of subjects with diverse
gait pathologies.

In the following section, we propose a set of methods that
combine the valuable achievements of existing methods with
additional features that overcome the remaining limitations.

3. METHODS

In the following, we propose a set of methods to determine
gait parameters from two IMUs attached to the foot. The
proposed methods are based on the following assumptions and
requirements: An IMU is attached to each foot (or shoe) in an
arbitrary orientation. This implies that the proposedmethod does
not make any assumption about the orientation of the sensor
coordinate system, which means it does not require any specific
sensor axis to be aligned with an anatomical or functional axis
of the foot. In order to avoid artifacts caused by toe or ankle
motions, and also to not limit the subject’s freedom of movement,
we propose to attach the IMU on the instep, i.e., the dorsal
side of the midfoot. We obtain the accelerometer and gyroscope
readings of both IMUs at a fixed sampling rate (typically in the
range 50–1,000Hz). We assume that data for several steps is
processed at once, which allows us to employ non-causal signal
processing to increase the accuracy compared to sample-by-
sample real-time capable methods. This processing can either be
performed in batches while the subject is walking, e.g., for use
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FIGURE 2 | Overview of the proposed modular set of methods to determine spatiotemporal gait parameters from foot-worn IMUs. While gait phase durations and

cadence are determined from gait events, stride length and walking speed are derived from a position trajectory obtained via piecewise strapdown integration of the

acceleration.

in biofeedback applications, or after the recording is completed.
During the recording, the subject walks either on a treadmill or
an indoor or outdoor ground.

The set of methods that we propose is explained in the
following subsections, and the presentation is structured as
follows. Separately for each foot, we use the recorded sensor
data to separate phases in which the foot is in full contact with

the ground from phases in which the foot moves, i.e., we detect
when strides take place (section 3.3). For each detected stride,

we then detect toe-off (section 3.5) and initial contact (section
3.6). The gait events from the ipsilateral and contralateral foot
are combined to define gait phases. We calculate the relative

duration of each gait phase and the cadence (section 3.7). We
then estimate the sensor orientation by sensor fusion of the
gyroscope and accelerometer readings (section 3.8) and double-
integrate the acceleration to obtain a position trajectory (section

3.9). From this position trajectory, we obtain the stride length and
the walking speed (section 3.10). Figure 2 provides an overview
of the proposed set of methods.

In the remainder of this section, we define parameters used by
the method. For an overview of those parameters and proposed

values, please refer to Table 2 in section 4. Our aim is to
define the parameters in a way that they are not sensitive to
different gait styles or velocities. In section 4, we demonstrate
that this approach works by only employing one common set of
parameters for validation on a very broad data set with healthy
and non-healthy subjects walking at different speeds.

3.1. Notation
Denote the accelerometer readings a(tk) ∈ R

3 and the gyroscope
readings ω(tk) ∈ R

3, sampled at times tk = kTs, k ∈ {1 . . N},
Ts ∈ R>0.

In the following, all times t with any index are multiples of
Ts. If any calculation yields a time that is not a multiple of Ts,
we assume that this value is rounded to the nearest multiple of Ts

and do not explicitly write this for the sake of a compact notation.
Furthermore, any summation over τ should be interpreted as
a summation with a non-integer step size of Ts, i.e., we simply
write

∑t2
τ=t1

x(τ ) instead of the longer butmathematically precise

notation
∑k2

k=k1
x(tk), k1 =

t1
Ts
, k2 =

t2
Ts
.

Unit quaternions in vector notation are used to represent
rotations and orientations (48). When a quaternion is used
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to represent the sensor orientation, it is the rotation from an
inertial reference frame with the z-axis pointing up (and arbitrary
heading) to the coordinate system of the sensor. In the context
of quaternion multiplication, which we denote by ⊗, three-
dimensional vectors are implicitly regarded as quaternions with
zero real part.

Furthermore, v⊺ denotes the transpose of the vector v.

3.2. Gait Events and Gait Phases
According to standard literature (44) and as illustrated in
Figure 3A, the gait cycle starts at initial contact. Each stride can
be separated into stance and swing. Stance consists of the gait
phases loading response, mid-stance, terminal stance, and pre-
swing. Swing can be separated into initial swing, mid-swing, and
terminal swing. The combination of mid-stance and terminal
stance is called single limb support and corresponds to the swing
phase of the contralateral foot. In standard literature (44), the
initial contact is commonly considered to be a very short gait
phase with a duration of 2%. As it is common practice in IMU-
based gait analysis (15, 19, 21, 26), we define the initial contact
as an event without duration. Note that sometimes the initial
contact is also called foot strike (26) or heel strike (15).

The separation between stance and swing and the separation
of stance into loading response, mid-stance, terminal stance, and
pre-swing is defined based on three events that describe a change
of ground contact of the feet: initial contact, heel rise, and toe-off.
In contrast, the separation of swing into initial swing, mid-swing,
and terminal swing is based on positional information of the feet
and on the tibia orientation. The gait phases are defined based
on bilateral events, i.e., the gait phase of the ipsilateral foot is
not only described based on the events of the same (ipsilateral)
foot but also based on toe-off and initial contact of the other
(contralateral) foot.

We will now describe how we determine five of those
gait phases (swing and the four sub-phases of stance) using
IMUs in a two-step approach. First, we detect four gait events
independently for each foot. We then use this gait event cycle of
both feet to derive gait phases for each foot.

To this end, for each stride i ∈ {1 . . M}, we define
the following events that we want to detect independently for
the right and left foot from the raw measurement data of the
corresponding IMU:

• initial contact – tic,i
• full contact – tfc,i
• heel rise – thr,i
• toe-off – tto,i.

Note that in addition to the three events used to define gait phase
transitions in Figure 3A, we introduce an event called full contact
that indicates that the foot is in full contact with the ground.
For various processing steps, such as zero-velocity updates and
position integration, we further define a rest instant trest,i at the
middle of the foot flat phase, i.e.,

trest,i :=
1

2

(

tfc,i + thr,i
)

. (1)

See Figure 3B for a plot of the raw accelerometer and gyroscope
data measured during one stride along with a graphical
representation of the gait event cycle defined by the introduced
events. In the following subsections, we will describe in detail
how we determine those time instants from the raw sensor data.

After having determined the gait events for both feet, we use
the gait event cycles from both feet to determine the gait phase
according to the commonly used definitions by (44). As shown in
Figure 4, finite automata for the gait phases of the left and right
foot are each driven by the gait event cycles of both feet.

Since time instances from both sensors are used for the
definition of the gait phase transitions, both feet must be
equipped with sensors, and precise time synchronization is
required. However, note that the separation into stance and
swing directly follows from the gait event cycle (as shown
in Figure 4) and is independent of the contralateral foot.
Therefore, we can determine stance and swing regardless of
the synchronization between the sensors. This is also useful if
only one foot is equipped with a sensor and facilitates on-chip
data processing.

Note that the three sub-phases of stance in the gait event
cycle hold further information that is not directly captured by
the standard gait phase definitions as given in Figure 3A. We
denote the phase from tfc,i to thr,i, in which the foot is fully
on the ground, as foot flat. Note that the other two sub-phases
of the stance phase, tic,i to tfc,i and thr,i to tto,i, are sometimes
called loading response and pre-swing (19, 21) but do not
correspond to the phases with the same name as defined in
standard literature (44).

Furthermore, as also shown in Figure 4, time-synchronized
events from both feet also allow for the distinction of double
support, single support, and zero-contact phases, which occur only
during running (44).

3.3. Foot Flat Detection
As the first step of gait phase detection, the phases in which
the foot is fully on the ground (foot flat) are detected.
When the foot is fully on the ground, the Euclidean norm
of the accelerometer readings will be close to 9.81m/s2,
and the norm of the gyroscope readings will be close to
zero. During a stride, we typically will see an increase in
the signal norms. However, it is possible that during the
motion phase there are long periods with only small changes
of velocity or small rotations. To obtain a robust stride
detection, we, therefore, first find activity using either the
accelerometer or the gyroscope readings and then combine
this information.

For an acceleration-based rest signal ra(tk), we consider the
absolute difference of the norm from 9.81m/s2,

a(tk) :=
∣

∣‖a(tk)‖ − 9.81
∣

∣ , (2)

and perform acausal thresholding using a threshold ath and
a hysteresis factor ha by applying hysteresis in forward and
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A

B

FIGURE 3 | (A) Definition of gait phases as used in standard literature [cf. (44)], and transitions based on gait events of the ipsilateral and contralateral foot. (B) Raw

accelerometer and gyroscope sensor readings and representation of the gait event cycle with a staircase-shaped signal. We define time instants tic,i , tfc,i , thr,i , tto,i that

mark characteristic events and a rest instant trest,i in the middle of the phase in which the foot is fully on the ground (foot flat).

backward direction, i.e.,

r∗a(tk) :=











1 a(tk) > (1+ ha)ath

0 a(tk) < (1− ha)ath

ra(tk−1) otherwise

(3)

ra(tk) :=











1 r∗a(tk) = 1

0 a(tk) < (1− ha)ath

ra(tk+1) otherwise

(4)

with r∗a(0) = 0 and ra(tN) = r∗a(tN). In the resulting signal,
zero-phases shorter than T0,min are set to one, and afterward,
one-phases shorter than T1,min are set to zero.

The same acausal thresholding with the removal of short
phases is applied to the gyroscope norm signal ω(tk) := ‖ω(tk)‖
using a threshold ωth and hysteresis factor hω , which yields
a gyroscope-based rest signal rω(tk). See Figure 5A for an
illustration of the thresholding method.

Both rest signals, ra(tk) and rω(tk), are combined into r(tk),
which is set to one if at least one of the two signals is one.
Afterward, zero-phases shorter than T0,min are set to one, and
then one-phases shorter than 2T1,min are set to zero. This process
is illustrated in Figure 5B. Each zero-to-one transition of the
resulting signal marks a heel rise thr,i, and each one-to-zero
transition marks a full contact tfc,i+1.

3.4. Automatic Threshold Adaptation
A common issue with thresholding approaches is that the
thresholds have to be adapted based on gait velocity and
also other gait and sensor characteristics (19, 20). Therefore,
instead of performing the thresholding of the accelerometer and
gyroscope norm using manually tuned thresholds ath and ωth,
we propose an algorithm that automatically determines these
thresholds for each trial based on the measured data.

The threshold ath is determined using an iterative algorithm
similar to (49), with l being the iteration index and wa being a
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FIGURE 4 | Derivation of clinically relevant gait phases from the gait event cycles. Following standard literature (44), events from both the left foot (filled arrows) and

the right root (outlined arrows) are necessary to define the gait phase of each foot. Furthermore, support phases based on the number of feet that are in contact with

the ground can be defined based on the gait events.

weighting parameter:

ath,0 =
1

2

(

max
tk∈[t1 ,tN ]

a(tk)+ min
tk∈[t1 ,tN ]

a(tk)

)

(5)

T+ = {tk ∈ [t1, tN]|a(tk) > ath,l} (6)

T− = {tk ∈ [t1, tN]|a(tk) ≤ ath,l} (7)

ath,l+1 =
wa

|T−|

∑

tk∈T
−

a(tk)+
1− wa

|T+|

∑

tk∈T
+

a(tk). (8)

We perform 200 iterations to ensure convergence, i.e., ath : =
ath,200. Figure 6 illustrates the result of this process. Further, we
define a lower bound ath,min for this threshold.

Similarly, we determine the threshold ωth based on the
gyroscope norm ω(tk) and a weighting factor wω.

3.5. Toe-Off Detection
After determining heel rise and full contact, we want to detect
the beginning of the swing phase, i.e., the toe-off. During toe-off,
the foot first rotates approximately along the mediolateral axis
as the heel rises, then loses contact with the ground and rotates
in the opposite direction. An inertial sensor attached to the foot
cannot directly measure when the foot fully loses contact with
the ground, in contrast to, e.g., pressure-sensitive walkways. Note
that the accuracy of toe-off detection using pressure sensors also
depends on calibration and the chosen thresholds (12).

As rotation can be measured precisely with IMUs, we exploit
the fact that the direction of rotation of the foot changes when
transitioning from the phase in which the heel rises while the
toe stays on the ground to the phase in which the toe leaves the
ground. This approach is commonly used in existing literature, as
detailed in section 2. However, most methods directly rely on the
angular rate measured in the sagittal plane and thereby require at
least one sensor axis to be well-aligned with a functional axis of
the foot.

To be independent of the sensor orientation and also to obtain
a reliable detection if the subject exhibits strong inversion or
eversion during toe-off, we define a signal called tilt-rate Ŵi(tk),
from each heel rise thr,i to the subsequent full contact tfc,i+1, as

Ŵi(tk) := ω(tk)
⊺

∑tk
τ=thr,i

ω(τ )
∥

∥

∥

∑tk
τ=thr,i

ω(τ )
∥

∥

∥

, tk ∈ [thr,i, tfc,i+1]. (9)

The rationale behind the definition of the tilt-rate Ŵi(tk) is to
identify the main axis of rotation since the last heel rise and
compute the current rate of rotation around this main axis. This
enables us to detect a zero-crossing of the main rotation without
making any assumptions on the orientation of the sensor with
respect to the foot.

In general, the tilt-rate Ŵi(tk) will exhibit a change of sign after
a distinct peak (cf. Figure 7A). As theremight be noise, leading to
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A B

FIGURE 5 | (A) Illustration of the thresholding algorithm. Acausal hysteresis and the removal of short phases ensure the robust detection of the desired rest phase.

(B) Illustration of the combination of rω (tk ) and ra(tk ) into r(tk ). By using the OR combination of the accelerometer- and gyroscope-based signals, we are able to robustly

detect when the foot is not fully on the ground.

FIGURE 6 | Illustration of the result of the automatic thresholding algorithm for

a short segment of accelerometer data. The threshold ath is chosen such that

the mean of the values above and the mean of the values below are in a

certain proportion.

frequent sign changes right after thr,i, as well as large peaks later
during the stride, we propose the following strategy to robustly
determine the sign change of interest:

During the first half of the movement phase, let Ŵmax,i denote
the maximum value of Ŵi(tk), i.e.,

Ŵmax,i := max
tk∈[thr,i ,

1
2 (thr,i+tfc,i+1)]

Ŵi(tk). (10)

We then find the first time instant for which Ŵi(tk) ≥ 1
2Ŵmax,i.

Starting from this time instant, we find the first time instant at
which Ŵi(tk) ≤ 0. We assume this time instant to be the toe-
off tto,i, i.e., the start of the swing phase. Figure 7A illustrates
this process.

Note that tto,i is defined based on a feature of the rotation
of the foot and not directly as the lift-off of the toes.

Using the maximum of the tilt rate (or any weighted average
of the maximum and zero-crossing time instant) are also
plausible approaches.

3.6. Initial Contact Detection
The initial contact marks the beginning of the loading response
and can be detected by the jerk, i.e., the change of acceleration,
caused by the foot touching the ground. We calculate the jerk
using the first-order backward difference approximation, i.e.,

j(tk) :=
1

Ts

(

a(tk)− a(tk−1)
)

. (11)

For every stride, we only consider a sub-window of the phase
between toe-off and the beginning of the subsequent foot-flat
phase and denote the start time of this window as twin,i : =
jwintto,i−1 + (1 − jwin)tfc,i, jwin ∈ [0, 1]. In this time window, we
first determine the maximum value of the jerk norm, i.e.,

jmax,i := max
tk∈[twin,i ,tfc,i]

‖j(tk)‖. (12)

We thenmark the first time instant in this windowwith ‖j(tk)‖ ≥

jthjmax,i as the start of the loading response tic,i. See Figure 7B for
an illustration of the initial contact detection.

3.7. Stride and Gait Phase Durations and
Cadence
For each detected stride, we calculate the stride duration as the
duration from one initial contact to the subsequent initial contact
of the same foot, i.e.,

Tstride,i := tic,i+1 − tic,i. (13)

For each detected stride, the duration of the swing phase
is the time between toe-off and initial contact of the
subsequent stride, i.e.,

Tswing,i := tic,i+1 − tto,i. (14)
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A B

FIGURE 7 | Detection of toe-off and initial contact events that define the swing phase. (A) Illustration of the toe-off detection. Between heel rise and full contact, the

tilt rate might exhibit multiple local maxima and zero-crossings. For a robust detection of the correct zero-crossing, we first find the maximum value during the first half

of the phase from thr,i to tfc,i+1 and search for the first zero-crossing after the tilt rate has reached half of this maximum. (B) Illustration of the initial contact detection

based on the jerk norm. Note how the jerk norm reflects the sudden change when the foot touches the ground much better than the accelerometer norm signal a(tk ).

The stance duration is the remaining duration of the stride:

Tstance,i := Tstride,i − Tswing,i. (15)

Since relative gait phase durations are easier to
interpret, we calculate

Tswing,rel,i :=
Tswing,i

Tstride,i
, (16)

Tstance,rel,i :=
Tstance,i

Tstride,i
. (17)

Similarly, for every stride we calculate relative gait phase
durations for loading response Tlr,rel,i, single limb support
Tsl,rel,i, terminal stance Tts,rel,i, and pre-swing Tps,rel,i, based on
the bilateral gait phases as defined in Figure 3A. Note that,
analogously, we can also calculate absolute and relative durations
for all other gait phases defined in Figure 3A.

To calculate the cadence, we multiply the inverse of the stride
duration by two in order to express the cadence as the number of
steps per minute instead of strides per minute, i.e.,

ci :=
2

Tstride,i
. (18)

3.8. Orientation Estimation
By fusing the gyroscope and accelerometer measurements, we
obtain an estimate of the sensor orientation with respect to a
global frame that has a vertical z-axis and an arbitrary heading.

Starting with an arbitrary initial orientation qω(0), e.g.,
[

1 0 0 0
]T
, we perform gyroscope strapdown integration

qω(tk) := qω(tk−1)⊗
[

cos
(

Ts
2 ‖ω(tk)‖

)

ω
⊺(tk)

‖ω(tk)‖
sin
(

Ts
2 ‖ω(tk)‖

)]

⊺

.

(19)

Using this orientation, we transform the measured acceleration
into a (slowly drifting) inertial frame, i.e.,

aω(tk) := qω(tk)⊗ a(tk)⊗ qω(tk)
−1. (20)

In the rotating sensor frame, the gravitational acceleration can
point in different directions depending on sensor orientation.
In the inertial frame, however, the gravitational acceleration will
point in (almost) the same direction regardless of the sensor
orientation, and, when integrating, acceleration and deceleration
will cancel out. Exploiting this property, we low-pass filter each
component of aω(tk) by applying a moving average filter with a
window length of Ta in forward and reverse direction. Assuming
that the change of velocity over the filter window length is
small, the resulting filtered acceleration will be dominated by
the gravitational acceleration. This filtered acceleration aω,f(tk) is
then transferred back to the sensor frame

af(tk) := qω(tk)
−1 ⊗ aω,f(tk)⊗ qω(tk). (21)

We then correct the inclination of the gyroscope strapdown
integration quaternion qω(tk) by using the filtered acceleration
as a vertical reference. To this end, we transform the filtered
acceleration into the global frame

ar(tk) := qa(tk−1)⊗qω(tk)⊗af(tk)⊗(qa(tk−1)⊗qω(tk))
−1, (22)

with qa(0) :=
[

1 0 0 0
]T
, and correct the inclination

n(tk) := ar(tk)×
[

0 0 1
]T

(23)

α(tk) := arccos

(

[

0 0 1
]T ar(tk)
∥

∥ar(tk)
∥

∥

)

(24)

qa(tk) := qa(tk−1)⊗
[

cos
(

α(tk)
2

)

n(tk)

‖n(tk)‖
sin
(

α(tk)
2

)]⊺

. (25)

Frontiers in Digital Health | www.frontiersin.org 10 November 2021 | Volume 3 | Article 736418

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Laidig et al. Gait Assessment by Inertial Sensors

FIGURE 8 | Velocity trajectories with (solid) and without (dashed) linear drift

correction. The dotted line represents the subtracted linear drift approximation

for stride i. For demonstration purposes, the drift has been artificially increased

by a factor of 10.

Multiplication of the gyroscope strapdown integration
quaternion and the accelerometer correction quaternion
yields the sensor orientation,

q(tk) := qa(tk)⊗ qω(tk). (26)

3.9. Foot Velocity and Position Tracking
Using the estimated orientation, we perform double integration
of the measured accelerations to estimate the length of each
stride, i.e., the horizontal displacement between two adjacent
foot-flat phases.

To integrate accelerations, they are first transformed into the
reference frame

aε(tk) := q(tk)⊗ a(tk)⊗ q(tk)
−1. (27)

Assuming that the velocity is zero in the middle of the foot-flat
phase, i.e., at trest,i, we integrate those accelerations for each stride
which yields a velocity

vi(tk) := Ts

tk
∑

τ=trest,i

(

aε(τ )−
[

0 0 9.81
]T
)

, tk ∈ [trest,i, trest,i+1].

(28)
Due to measurement errors, mainly accelerometer bias, this
velocity is usually not zero at trest,i+1 even if the foot is perfectly
at rest. Therefore, we correct this drift linearly over the time
duration of the stride:

vdf,i(tk) := vi(tk)−
tk − trest,i

trest,i+1 − trest,i
vi(trest,i+1). (29)

See Figure 8 for an example velocity trajectory with and without
drift correction.

By integrating this drift-free velocity over the stride duration,
we obtain a position trajectory,

pi(tk) := Ts

tk
∑

τ=trest,i

vdf,i(τ ) = :

[

pi,x(t) pi,y(t) pi,z(t)
]T

. (30)

3.10. Stride Length and Walking Speed
We calculate the stride length Li as the horizontal displacement
during the stride i. Since pi(trest,i) = 0,

Li :=
√

pi,x(trest,i+1)2 + pi,y(trest,i+1)2. (31)

Note that this method does not make any assumption on the
orientation in which the sensor is attached to the foot. Also, note
that we integrate from trest,i to trest,i+1 and not from tic,i to tic,i+1

since this makes the zero-velocity assumption more robust.
By dividing the stride length by the stride duration, we obtain

the walking speed,

vi :=
Li

Tstride,i
. (32)

3.11. Summary of the Estimated
Parameters
After performing all steps presented above, the set of proposed
methods provides the time instants of the defined gait events,
the sensor orientation quaternion for each time instant, and
velocity and position trajectories. From those time-based signals,
the following gait parameters are extracted for each stride i:

• swing duration Tswing,rel,i [%]
• stance duration Tstance,rel,i [%]
• analogously, relative durations for the other gait phases as

defined in Figure 4

• stride length Li [cm]
• walking speed vi [km/h]
• cadence ci [steps/min]

Note that all quantities are calculated separately for each stride
of each foot. In many cases, only the mean of those values
over multiple steps will be of interest. However, this stepwise
calculation also allows for analysis of the variance and the
detection of trends.

The accuracy of those gait parameters is validated in the
next section.

4. EXPERIMENTAL VALIDATION

In this section, we aim to show that the less restrictive IMU-
based setup combined with the methods proposed in section 3 is
able to determine the same parameters as stationary systems that
are used in clinical practice while providing similar accuracy. To
this end, with a large data set consisting of three different subject
groups, we compare the parameters calculated by the proposed
methods with values reported by instrumented treadmills.

4.1. Setup
One PABLO R© Lower Extremity inertial sensor (Tyromotion
GmbH, Graz, Austria) was attached to each shoe (cf. Figure 9A).
The sensors measure angular rate and acceleration at a sampling
frequency of 110Hz. Each sensor has a size of 56 × 34 × 21 mm
and transmits the data wirelessly using Bluetooth. The sensors
were attached to the subjects’ shoes with special Velcro straps.
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B

A

FIGURE 9 | Experimental setup. (A) Patient with inertial sensors attached to

the shoe. (B) Instrumented treadmill at NTK Kapfenberg. Gait parameters are

derived from the measurement data of the inertial sensors with the proposed

methods and validated against parameters obtained from the instrumented

treadmill serving as ground truth.

Zebris Rehawalk instrumented treadmills (Zebris Medical,
Isny, Germany) were used as reference systems. Since the data
collection took place in various institutions (FH Joanneum Graz,
NTK Kapfenberg, Rehabilitation Center Kitzbühel), different
systems with identical function were used. See Figure 9B for a
picture of the setup at NTK Kapfenberg.

• FH Joanneum (Graz, Austria)

– Treadmill: h-p-c Mercury Med Treadmill (HP Cosmos,
Nussdorf, Germany), walking speed: 0–22 km/h in 0.1 km/h
steps, walking surface: 150× 50 cm

– Pressure measuring platform: FDM-THM-M-3i (Zebris
Medical, Isny, Germany), 120Hz, sensor area: 108.4 × 47.4
cm, 7,168 sensors.

• NTK (Kapfenberg, Austria)

– Treadmill: h-p-c Locomotion Med Treadmill (HP Cosmos,
Nussdorf, Germany), walking speed: 0–10 km/h in 0.1 km/h
steps, walking surface: 150× 50 cm

– Pressure measuring platform: FDM-THM-M-2i (Zebris
Medical, Isny, Germany), 120Hz, sensor area: 111.8 × 49.5
cm, 3,432 sensors.

• Rehabilitation Center Kitzbühel (Kitzbühel, Austria)

– Treadmill: h-p-c Mercury Med Treadmill (HP Cosmos,
Nussdorf, Germany), walking speed: 0–22 km/h in 0.1 km/h
steps, walking surface: 150× 50 cm

– Pressure measuring platform: FDM-THM-M-2i (Zebris
Medical, Isny, Germany), 120Hz, sensor area: 111.8 × 49.5
cm, 3,432 sensors.

4.2. Subjects and Experimental Procedure
The data collection was carried out in three different institutions
with different groups of subjects. Approval from the ethics
committee of the University of Graz was obtained, and an
informed consent form was signed by all participants.

Healthy participants were recorded at three different walking
speeds, each for two minutes: 1.5, 3, and 5 km/h. A prerequisite
for participation was the ability to walk on a treadmill at different
speeds. The healthy participants (n = 39) were recruited from the
students at the Physiotherapy Institute of FH Joanneum Graz.

Non-healthy participants with affected ability to walk were
asked to walk on a treadmill at a self-selected comfortable
walking speed. Patients who were unable to walk on a treadmill
were excluded during participant selection. The following set of
participants were recruited:

• Participants with different neurological diseases (n = 36)
were recruited from patients who were in neurological
inpatient rehabilitation at NTK Kapfenberg at the time of
data collection. This comprises 20 post-stroke patients, 6
patients with Parkinson’s disease, two with multiple sclerosis,
two with meningioma, two after polytrauma, and one patient
each with epilepsy, spinocerebellar ataxia, low back pain,
and polyneuropathy.

• Participants with various orthopedic diseases (n = 62) were
recruited from the patients who were in orthopedic inpatient
rehabilitation at Rehazentrum Kitzbühel at the time of data
collection. Of these, four patients had pathologies in the area
of the ankle or lower leg (e.g., ankle joint fractures, tibia
fractures), 21 patients at the knee (e.g., osteoarthritis, total
knee arthroplasty), 18 patients in the area of the thigh and hip
(e.g., osteoarthritis, total hip arthroplasty, femur fractures), 16
patients in the area of the lumbar spine (low back pain, lumbar
vertebrae fractures) as well as three patients in whom different
body areas were affected (polytrauma, polymyositis).

All participants had time to get used to walking on the treadmill
prior to the data collection. All participants were free to use the
treadmill support (handrail, fall protection system). For the data
collection, two minutes of walking was recorded simultaneously
by both systems. IMU data was recorded with a tool of the TyroS
software (Tyromotion, Graz, Austria) that allows the export of
raw gyroscope and accelerometer data. Zebris data was recorded,
analyzed, and exported with the software FDM v1.18.38 (Zebris
Medical, Isny, Germany).

4.3. Data Processing
For each trial, we obtain the following gait parameters from the
Zebris Rehawalk instrumented treadmill:

• loading response duration
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TABLE 2 | Parameter values used for the proposed IMU-based methods.

Symbol Description Value

ha Hysteresis factor for acceleration 0.23

hω Hysteresis factor for angular rate 0.23

wa Factor for ath auto-tuning 0.85

ath,min Lower bound for ath 1.8m/s2

wω Factor for ωth auto-tuning 0.8

ωth,min Lower bound for ωth 0 rad/s

T0,min Minimum duration of zero-phase 120ms

T1,min Minimum duration of one-phase 180ms

jwin Ratio of the window to look for initial contact 0.7

jth Threshold for jerk norm (relative to maximum) 0.95

Ta Time constant for acceleration moving average filter 8.0 s

This parametrization is used for the processing of all trials, regardless of gait pathology,

walking speed, or style, in order to show that the method works well without tuning the

parameters for specific gait characteristics.

• single limb support duration
• pre-swing duration
• swing duration
• stride length
• walking speed
• cadence.

These parameters are reported as averages over the whole trial.
The gait phase durations are relative to the stride duration and
reported separately for the left and right foot. We add the loading
response, single limb support, and pre-swing durations to obtain
the stance duration (cf. Figure 3A).

From phases in which the treadmill is not moving and
the foot is resting on the ground for approximately 5 s at
the beginning and end of each trial, gyroscope turn-on bias
is automatically estimated and removed. Using the methods
described in section 3, each recorded trial is processed with the
parameter values given in Table 2. Note that we use the same
set of parameters for all different subject groups and walking
speeds in order to demonstrate that the method works well
without adjusting the parameters for the specific gait velocity
and style.

The sensor attachment used for recording the data sets, as
shown in Figure 9A, ensures that one sensor axis is always
roughly aligned with the mediolateral axis of the foot. To
show that the proposed methods do not make assumptions
regarding the sensor orientation, we simulate a random sensor
attachment by multiplying all gyroscope and accelerometer
measurements with a random rotation matrix that is different for
each trial.

Finally, we calculate the same gait parameters as reported
by the reference system by averaging the respective
parameters, excluding the first and last three strides of
each foot, and compare the resulting values to the values
reported by the Zebris system. The results are found in the
following section.

4.4. Results
For each trial, we first consider the five main parameters
stance duration, swing duration, stride length, walking speed,
and cadence, and evaluate the difference between the proposed
methods (IMU) and the Zebris Rehawalk reference system (REF).
The results are presented separately for each of the three subject
groups in scatter plots and Bland-Altman plots (50) and can
be found in Figure 10, for the healthy participants walking at
three different speeds; in Figure 11, for the participants with
orthopedic diseases; and in Figure 12, for the participants with
neurological diseases.

The error (mean ± standard deviation) for the relative stance
duration is 1.04± 1.34% for healthy subjects,−0.29± 1.52% for
orthopedic patients, and 2.06± 1.63% for neurological patients.
For relative swing duration, the errors are −1.01± 1.35% for
healthy subjects, 0.32± 1.54% for orthopedic patients, and
−2.02± 1.64% for neurological patients. This means that the
average swing/stance duration error is in the range of 1–2% for
all subject groups.

For the stride length, the errors are −1.59 ± 1.53, −1.74
± 1.63, and 0.51 ± 1.37 cm for healthy subjects, orthopedic
patients, and neurological patients, respectively. This means that
the average stride length error is below 2 cm for all subject groups.

The mean errors and standard deviations for the
walking speed are −0.02± 0.05 km/h for healthy
subjects, −0.03± 0.05 km/h for orthopedic patients, and
0.03± 0.03 km/h for means that the average walking speed error
is below 0.05 km/h for all subject groups.

The cadence estimates show deviations of
0.68± 0.56 steps/min for healthy subjects, 0.55± 0.47 steps/min
for orthopedic patients, and 0.57± 0.51 steps/min for
neurological patients. This means that the average cadence
error is below 1 step/min for all subject groups.

As an additional evaluation metric, we calculate the mean
of the absolute difference (MAD) between the values reported
by Zebris and the IMU-based analysis over all trials. Table 3
summarizes the results for the three subject groups and all 215
evaluated trials.

The MAD of the stance and swing durations are ∼1.3%
for healthy subjects and orthopedic patients and 2.2% for
neurological patients. Note that we also evaluated the differences
for the three sub-phases of stance that the Zebris Rehawalk
reference system reports, i.e., loading response, single limb
support, and pre-swing. Table 3 shows that we can estimate
the duration of those phases with the same accuracy as stance
and swing.

To summarize, for all subject groups, the MAD is in the range
of 1–2% for gait phase durations, below 2 cm for the stride length,
below 0.05 km/h for the walking speed, and below 1 step/min for
the cadence.

5. DISCUSSION

In the present contribution, we have proposed a set of methods
for spatiotemporal gait analysis based on two inertial sensors
attached to the feet. Our methods allow for the calculation of

Frontiers in Digital Health | www.frontiersin.org 13 November 2021 | Volume 3 | Article 736418

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Laidig et al. Gait Assessment by Inertial Sensors

FIGURE 10 | Scatter plots and Bland-Altman plots for stance and swing duration, stride length, walking speed, and cadence of 39 healthy subjects walking at 1.5, 3,

and 5 km/h. Red: 45-degree lines (y = x). Values obtained with the proposed IMU-based methods (IMU) are compared to the ground truth from the Zebris reference

system (REF). The average deviation is ∼1% for gait phase durations, below 2 cm for the stride length, below 0.05 km/h for the walking speed, and below 1 step/min

for the cadence.

the main spatiotemporal gait parameters that are also reported by
stationary laboratory systems: gait phase durations, stride length,
walking speed, and cadence. Using a large data set consisting of
healthy subjects walking at three different speeds, subjects with
orthopedic diseases, and subjects with neurological diseases, we
have validated the calculation of those parameters, using a Zebris
Rehawalk instrumented treadmill as reference. All parameters
show a very strong correlation (Pearson’s r between 0.83 and 0.99,
p < 0.01) (51). Figures 10–12 display consistent results over this

large and diverse group of subjects. Averaged over all trials, the
MAD with respect to the reference system is 1.4% for the gait
phase durations, 1.7 cm for the stride length, 0.04 km/h for the
walking speed, and 0.7 steps/min for the cadence.

In clinical practice and research, the presented parameters
are used to quantify gait abnormalities and to document
changes in the walking behavior of patients. Associations between
spatiotemporal gait parameters and functional capacity, or
increased mortality, have been demonstrated (52–54). A positive
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FIGURE 11 | Scatter plots and Bland-Altman plots for stance and swing duration, stride length, walking speed, and cadence of 62 orthopedic patients. Red:

45-degree lines (y = x). Values obtained with the proposed IMU-based methods (IMU) are compared to the ground truth from the Zebris reference system (REF). The

average deviation is below 1% for gait phase durations, below 2 cm for the stride length, below 0.05 km/h for the walking speed, and below 1 step/min for the

cadence.

correlation with cardiovascular-related mortality was found for
cadence (55). A reduction in walking speed has been shown to
correlate with fall risk, frequency of hospitalization, andmortality
(56–58). Stride length describes a strong correlation with walking
speed according to the research of (59). Slower walking speed,
altered gait phase duration, and increased variability of walking
increase the risk of falls (60). Furthermore, it was found that
psychological modalities, such as fear of falling, can also influence

stride length and gait phase duration (61). The minimal clinically
important difference (MCID) can be used to determine how
precisely these changes must be detected in order to make
a statement about their relevance. Despite thorough research,
specific values for the MCID could only be found for the walking
speed, ranging from 0.36 to 0.72 km/h (62–64). For IMU-based
measurement with the proposed methods, the smallest detectable
change (SDC) for walking speed is 0.21 km/h and clearly within
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FIGURE 12 | Scatter plots and Bland-Altman plots for stance and swing duration, stride length, walking speed, and cadence of 36 neurological patients. Red:

45-degree lines (y = x). Values obtained with the proposed IMU-based methods (IMU) are compared to the ground truth from the Zebris reference system (REF). The

average deviation is ∼2% for gait phase durations, below 1 cm for the stride length, below 0.05 km/h for the walking speed, and below 1 step/min for the cadence.

the MCID for all examined groups. For the other parameters, no
reported MCID values could be found, which is consistent with
the statement of (29).

The SDC for the cadence is 2.01 steps/min across all studied
groups of subjects. This allows for much more accurate
changes to be detected than those described as relevant in the
literature [e.g., reduction in cadence of 10 steps per minute
increases mortality by 4% (65)]. The achieved SDC for stride
length of 5.3 cm in the patients with neurological diseases

seems to be sufficiently accurate to capture the differences
occurring, for example, in Parkinson’s disease (66). The stance
and swing phase durations show an SDC of 6.5% across
all trials.

Unlike many existing contributions, we showed that the
proposed methods reliably work on patients in addition to
healthy subjects and still produce accurate results. This is
noteworthy since it has been shown that pathological walking
deteriorates the accuracy of many gait analysis methods (45)
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TABLE 3 | Deviation between IMU-based and Zebris gait parameters.

Stance [%] Swing [%] Stride Walking Cadence

LR [%] SLS [%] PS [%] length [cm] speed [km/h] [steps/min]

Healthy subjects (n = 39)

MAD 1.32 1.29 1.28 1.32 1.31 1.73 0.04 0.74

µ ± σ 1.04± 1.34 0.97± 1.34 −0.96± 1.33 1.03± 1.34 −1.01± 1.35 −1.59± 1.53 −0.02± 0.05 0.68± 0.56

rx,y 0.93 0.93 0.93 0.93 0.93 > 0.99 > 0.99 > 0.99

LoA −1.58 to 3.67 −1.65 to 3.59 −3.56 to 1.65 −1.60 to 3.66 −3.65 to 1.63 −4.59 to 1.40 −0.13 to 0.08 −0.42 to 1.77

SDC 5.25 5.24 5.21 5.26 5.28 6.00 0.21 2.19

Orthopedic patients (n = 62)

MAD 1.14 1.12 1.14 1.07 1.16 1.94 0.04 0.63

µ ± σ −0.29± 1.52 −0.33± 1.49 0.35± 1.49 −0.31± 1.44 0.32± 1.54 −1.74± 1.63 −0.03± 0.05 0.55± 0.47

rx,y 0.84 0.84 0.85 0.85 0.83 > 0.99 > 0.99 > 0.99

LoA −3.27 to 2.69 −3.26 to 2.60 −2.57 to 3.26 −3.13 to 2.51 −2.68 to 3.33 −4.93 to 1.46 −0.13 to 0.06 −0.37 to 1.47

SDC 5.96 5.86 5.84 5.65 6.02 6.39 0.19 1.84

Neurological patients (n = 36)

MAD 2.26 2.20 2.23 2.21 2.22 1.09 0.03 0.60

µ ± σ 2.06± 1.63 2.04± 1.65 −2.04± 1.64 2.06± 1.65 −2.02± 1.64 0.51± 1.37 0.03± 0.03 0.57± 0.51

rx,y 0.89 0.89 0.89 0.89 0.89 > 0.99 > 0.99 > 0.99

LoA −1.13 to 5.26 −1.19 to 5.28 −5.26 to 1.18 −1.16 to 5.29 −5.22 to 1.19 −2.18 to 3.20 −0.04 to 0.09 −0.43 to 1.58

SDC 6.39 6.47 6.44 6.46 6.41 5.38 0.13 2.01

All trials (215 trials)

MAD 1.43 1.39 1.40 1.40 1.41 1.68 0.04 0.68

µ ± σ 0.83± 1.65 0.78± 1.65 −0.76± 1.64 0.82± 1.64 −0.79± 1.66 −1.28± 1.73 −0.02± 0.05 0.62± 0.53

rx,y 0.87 0.87 0.88 0.88 0.87 > 0.99 > 0.99 > 0.99

LoA −2.41 to 4.07 −2.45 to 4.0 −3.98 to 2.46 −2.39 to 4.03 −4.05 to 2.46 −4.68 to 2.11 −0.12 to 0.09 −0.41 to 1.66

SDC 6.48 6.46 6.44 6.42 6.50 6.79 0.21 2.08

LR, loading response; SLS, single limb support; PS, pre-swing.

MAD, mean absolute difference between IMU-based and Zebris values.

µ ± σ , mean and standard deviation of difference between IMU-based and Zebris values.

rx,y : Pearson correlation coefficient (p < 0.01 for all values).

LoA, limits of agreement, µ − 1.96σ to µ + 1.96σ .

SDC, smallest detectable change, range between both LoA.

and specifically the neurologically induced gait abnormalities are
challenging for IMU-based gait analysis (29).

A fundamental challenge of IMU-based gait event detection
is that IMUs do not directly measure the gait parameters of
interest. For toe-off detection, the time instant of load relief
cannot directly be measured, and instead, the inversion of the
direction of rotation is used. Similarly, initial contact is not
detected based on the onset of load but based on the change of
acceleration. It is therefore important to properly validate the
IMU-based methods by comparing the estimated gait parameters
to a reliable ground truth.

As reference system, treadmills instrumented with Zebris
pressure measurement platforms were used, which are frequently
employed for gait analysis in clinical practice as well as scientific
data collection (12). This system shows good reliability (67),
but no studies could be found in which the validity of the gait
parameters was investigated. It should be noted that due to the
length of the pressure sensors (FDM-THM-M-3i: 0.85 cm; FDM-
THM-M-2i: 1.27 cm) there may be inaccuracies in the recording
of spatial parameters, which may have an effect on the results
of the comparative measurements. Moreover, calibration and

proper thresholding pose challenges in gait event detection based
on pressure measurements (12).

For the neurological patients, the reported duration of stance
is, on average, 2% longer than the reference duration. While
this is still a small deviation, it is worth noting because this
bias suggests a pattern that is common to this subject group.
One likely explanation is that toe-off is being detected later than
with the Zebris system. This might be due to a comparatively
long phase of load relief that causes the pressure to fall below
the threshold too early. Furthermore, the reversal of rotation
direction might happen later than for healthy subjects or
orthopedic patients. Still, even though both systems measure
inherently different phenomena, the observation deviation
is only 2%.

As a replacement for traditional stationary gait analysis
systems, which are commonly used in clinical practice, IMU-
based gait analysis offers several advantages. Measurement is
possible both on treadmills and overground and not restricted
to a dedicated laboratory. The small and lightweight IMUs
do not restrict the movement of the subject and can be used
in conjunction with walking aids such as wheeled walkers.
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Furthermore, only a very short setup time is required before
starting the actual measurement.

Unlike most existing methods (cf. section 2), the proposed
method makes gait analysis easier and faster by not requiring any
specific sensor attachment, which we demonstrated by simulating
a different random sensor-to-foot orientation in each trial. It does
notmake use of magnetometers and can therefore be used in both
indoor and outdoor environments.

While evaluation was limited to the gait phases reported by
the reference system, our proposed set of methods further allows
for the calculation of many gait phases (Figure 4), i.e., swing and
stance for each foot, four unilateral gait phases for each foot,
five bilateral gait phases following standard literature (44) for
each foot, and finally the distinction between double and single
support. To the best of our knowledge, no existing work on
IMU-based gait analysis describes the calculation of this set of
gait phases.

Besides the more fine-grained gait phases, there are many
more parameters that can be extracted, e.g., from the velocity
and position trajectories, such as the maximum velocity during
swing, foot clearance, and symmetry parameters. While it is not
surprising that the prevalence of pressure-based systems has led
researchers to focus on features based on ground contact, it is
to be expected that the focus of clinical gait analysis will be
directed toward other parameters as IMU-based systems become
more popular.

Furthermore, miniaturized lightweight sensors with a long
battery life open up possibilities for objective gait analysis outside
of clinical laboratories. Daily-life gait assessment over the course
ofmultiple days can bring insights that are not possible with short
sessions in a laboratory. If patients place the sensors on or in
the shoes themselves in an unsupervised telemedicine setting, not
requiring the sensor to be oriented in a special way becomes even
more important.

Technological advancement also facilitates real-time
biofeedback applications. While there are methods for real-
time applications that require event detection during a step (41),
e.g., to trigger FES, the proposed set of methods is real-time
capable in the sense that during walking, sections of data
containing a small number of strides can be processed and used
to provide feedback to the subject.

The presented work exhibits a few remaining limitations. In
the statistical analysis, the gait parameters were averaged over the
duration of the trial before comparison with the reference. While
it allows for single-stride errors to cancel out, this methodology
corresponds well with the use case of clinical gait analysis, in
which a subject is asked to walk for several steps, and averaged
parameters are then used to assess the gait. An additional stride-
by-stride comparison was not performed because the employed
reference system can only export averaged gait parameters. In
addition, it should be noted that all recordings were made on
treadmills and not while walking overground, which has an
influence on the movement pattern of gait (68, 69). Despite the
known differences between treadmill walking and overground
walking, treadmill gait analysis is considered a standard method
in clinical practice (70, 71), especially when weight support and
handrails are required for safety reasons.

6. CONCLUSION

In the present contribution, we have proposed a set of
methods for IMU-based gait analysis. Based on gyroscope
and accelerometer measurements from two inertial sensors
on the feet, we estimate durations of five gait phases, stride
length, walking speed, and cadence. Using a Zebris Rehawalk
instrumented treadmill as reference, we validated the proposed
methods based on a large data set consisting of healthy subjects
(n = 39) walking at three different speeds, subjects with
orthopedic diseases (n = 62), and subjects with neurological
diseases (n = 36). Averaged over all trials, the MAD with respect
to the reference system are 1.4% for the gait phase durations,
1.7 cm for the stride length, 0.04 km/h for the walking speed,
and 0.7 steps/min for the cadence. We also demonstrated that the
proposed methods work reliably not only in healthy subjects but
also in patients and still provide accurate results under different
pathological gait patterns.

This shows that the proposed setup in combination with
the proposed methods can accurately calculate relevant gait
parameters from the inertial sensor data and thus has the
potential to replace traditional stationary gait analysis systems.

Furthermore, we validated that the proposed methods work
well regardless of the orientation in which the sensor is
attached to the foot, and dedicated calibration movements
and magnetometer measurements are completely avoided.
The combination of these advantages facilitates long-term
ambulatory gait analysis in day-to-day situations without the
need for supervision by health professionals.

Future research will focus on the estimation of additional
gait parameters, on the validation on stairs and slopes,
and the validation against marker-based optical motion
capture systems.
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