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Analysis of long-term multichannel EEG signals for automatic seizure detection is an

active area of research that has seen application of methods from different domains of

signal processing and machine learning. The majority of approaches developed in this

context consist of extraction of hand-crafted features that are used to train a classifier

for eventual seizure detection. Approaches that are data-driven, do not use hand-crafted

features, and use small amounts of patients’ historical EEG data for classifier training

are few in number. The approach presented in this paper falls in the latter category,

and is based on a signal-derived empirical dictionary approach, which utilizes empirical

mode decomposition (EMD) and discrete wavelet transform (DWT) based dictionaries

learned using a framework inspired by traditional methods of dictionary learning. Three

features associated with traditional dictionary learning approaches, namely projection

coefficients, coefficient vector and reconstruction error, are extracted from both EMD

and DWT based dictionaries for automated seizure detection. This is the first time these

features have been applied for automatic seizure detection using an empirical dictionary

approach. Small amounts of patients’ historical multi-channel EEG data are used for

classifier training, and multiple classifiers are used for seizure detection using newer

data. In addition, the seizure detection results are validated using 5-fold cross-validation

to rule out any bias in the results. The CHB-MIT benchmark database containing

long-term EEG recordings of pediatric patients is used for validation of the approach,

and seizure detection performance comparable to the state-of-the-art is obtained.

Seizure detection is performed using five classifiers, thereby allowing a comparison of

the dictionary approaches, features extracted, and classifiers used. The best seizure

detection performance is obtained using EMD based dictionary and reconstruction error

feature and support vector machine classifier, with accuracy, sensitivity and specificity

values of 88.2, 90.3, and 88.1%, respectively. Comparison is also made with other recent
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studies using the same database. The methodology presented in this paper is shown to

be computationally efficient and robust for patient-specific automatic seizure detection.

A data-driven methodology utilizing a small amount of patients’ historical data is hence

demonstrated as a practical solution for automatic seizure detection.

Keywords: patient-specific seizure detection, long-term EEG, signal derived dictionary approach, signal

decomposition, feature extraction, classification

1. INTRODUCTION

Epilepsy is a neurological disorder characterized by seizures
caused by sudden abnormalities in the electrical activity of the
brain. A large number of people worldwide are affected by
epilepsy, which places them at risk of facing effects of seizures
such as attention lapses, convulsions and unconsciousness, which
may also lead to physical injury (1). Automatic detection of
seizures using analysis of electroencephalogram (EEG) signals
represents a promising mechanism for diagnosis, long-term
monitoring and rehabilitation of epilepsy patients (2). This is
however a challenging task due to the non-stationary nature
of EEG signals (3). Analysis of multi-channel EEG signals for
automatic seizure detection is therefore an active area of research.

For this purpose, analysis of EEG signals and seizure detection
using EEG signal recordings has been done using methods
from the time, frequency, and time-frequency domains (4).
Signal adaptive methods such as empirical mode decomposition
and wavelet decomposition have also been extensively used for
automatic seizure detection [e.g., (2, 5–10)]. Methods from the
domain of dynamic systems, which use, for example, properties
of high dimensional phase spaces to capture dynamics of seizures,
have also been successful (11). Seizure detection methods have
also been classified in terms of linear and non-linear methods
(12). Linear methods can be simple as using metrics such as
the signal variance or the signal autocorrelation function, or
may use time-frequency techniques, such as the discrete wavelet
transform. Non-linear methods are based on analysis of non-
linear dynamics of EEG signals, and use measures such as the
fractal dimension, Lyapunov exponent, ormeasures derived from
information theory such as different forms of entropy (12). A
method from the domain of non-linear dynamics in the form
of characterization of dynamic behavior of seizures by nullcline
analysis in the phase space is presented in Zabihi et al. (13).
Discussion of univariate and bivariate measures comprising both
linear and non-linear approaches is given in Mormann et al.
(14).Methods from the domain ofmorphological analysis of EEG
signals have also found application for seizure detection (12). The
common aspect in these approaches from different domains is the
hand-crafting or hand-engineering of features, which are then fed
into a classifier for automatic seizure detection. Methods from
the domain of deep learning are also now being applied to the
problem of automatic seizure detection [e.g., (15, 16)].

Dictionary learning approaches represent an important tool
for signal and image classification [e.g., (17–21)]. In general,
the signal classification problem is formulated in the context of
finding a sparse signal representation in a given, over-complete

dictionary (22). For classification of test signals, features obtained
through sparse decomposition of signals are used, with examples
of such features being the reconstruction error and the coefficient
vector. There are newer dictionary learning approaches which
combine reconstruction and discrimination, such that the over-
complete dictionaries are simultaneously reconstructive and
discriminative (20). An approach based on a time-frequency
dictionary constructed from time and frequency shifts of a
parametric function followed by seizure detection based on the
reconstruction error is described in Nagaraj et al. (23). Another
approach to learn discriminative dictionaries is presented in
Akhtar et al. (21), where sparse codes of a test query over the
learned dictionary form the input to a classifier.

Over-complete dictionaries of Gabor atoms have been used
in conjunction with the matching-pursuit algorithm to extract
features for seizure detection. Hand-crafted features, such as the
Gabor atom density, normalized Gabor entropy, or regularity
statistics based on the Hoelder exponent are used in conjunction
with a classifier, such as SVM, for seizure detection (24–27). A
method for seizure detection based on atomic decomposition via
orthogonal matching pursuit using an overcomplete dictionary of
pseudoperiodic Duffing atoms is presented in Nagaraj et al. (22),
where the rate of convergence of atomic decomposition is used as
a feature for seizure detection.

A signal derived empirical dictionary learning approach
for automatic seizure detection has been presented in Kaleem
et al. (28). Based on empirical mode decomposition (EMD),
this approach, called the EMD-based dictionary approach, is
a methodology inspired by traditional methods of dictionary
learning. The EMD-based dictionary approach learns a
dictionary composed for atoms formed using intrinsic mode
functions obtained after decomposing a signal using EMD, and
can be used for seizure detection using the projection coefficients
as features, obtained after projecting the testing signals against
the trained EMD-based dictionary. Seizure detection can be
performed using a classifier, whereby a support vector machine
classifier was used in Kaleem et al. (28).

Although EMD is a fully data-driven decomposition approach
that does not require a basis function, it shares many
similarities with the discrete wavelet transform (DWT), such as
the decomposition behavior of both techniques corresponding
to a dyadic filter-bank (29). In this paper, we extend our
previous work in the following significant ways: 1) a DWT-
based empirical dictionary approach is introduced, where the
atoms of the dictionary are composed of components obtained
after decomposition using DWT. 2) For automatic seizure
detection, the projection coefficients, coefficient vector and
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reconstruction error are used as features. These all are features
used in traditional dictionary learning techniques, thereby
demonstrating the versatility of the signal derived empirical
dictionary learning approach. To the best of our knowledge, this
is the first time features used in traditional dictionary learning
techniques have been successfully applied for automatic seizure
detection using empirical EMD and DWT-based dictionaries. 3)
The dictionary creation and learning performance of EMD and
DWT-based dictionary approaches is compared, and the seizure
detection performance of both approaches using all features is
also compared. 4) The seizure detection approach is formulated
in a realistic scenario, where the classifiers are first trained using
small amounts of patients’ historical seizure and non-seizure
data, and then tested on newer data. The seizure detection results
are then also validated using k-fold cross validation, to rule out
any bias in the classifier. 5) Seizure detection performance of
the methodology is tested with five commonly used classifiers,
thereby also enabling a comparison between different classifiers.
Additionally, our approach is also distinguished from the other
seizure detection approaches from different domains by being
data-driven, and not utilizing hand-crafted features, as well as
being one of the few studies that utilizes patients’ historical data
for classifier training.

The methodology proposed in this paper falls in the category
of patient-specific seizure detection approaches. For automatic
seizure detection, patient-specific approaches are most common
[e.g., (7, 13, 28, 30, 31)]. Patient-specific approaches allow more
flexible application to different patients, each with their unique
EEG patterns. Importantly, a patient-specific seizure detection
system can be used for a particular patient as per need, or
if newer data for the patient is available. This can result in
reduction of the neurologist’s burden of monitoring long-term
EEG records. Newer patients may also be added independently to
the automatic seizure detection system. On the other hand, some
studies have employed patient-independent seizure detection as
well [e.g., (22)], where the seizure detection results are cross-
validated using a leave-one-patient-out scheme that is built on
the combined EEG of all patients. Some other studies also
describe patient-independent seizure detection approaches [e.g.,
(32–34)]. However, these approaches randomly take seizure and
non-seizure portions of the data for the purpose of seizure
detection, and the contribution of such approaches to a real-
world scenario is not clear.

2. MATERIALS AND METHODS

2.1. EEG Data
This study uses the CHB-MIT scalp EEG database (35),
which is a publicly available online database. This database
contains multiple long-term EEG recordings from 23 pediatric
patients with intractable seizures. These recordings share 23
common channels for each recording, which are, according
to the International 10-20 system of electrode positions and
nomenclature, FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-
P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8,
P8-O2, FZ-CZ, CZ-PZ, P7-T7, T7-FT9, FT9-FT10, FT10-T8, and
T8-P8. As is the case with previous studies [e.g., (7, 11, 28)],

recordings with at least one seizure event are used. The total
duration of seizure and non-seizure recordings that have been
used is 2.9 and 171 h, respectively.

Some important aspects with respect to long-term recordings
of scalp EEG may be highlighted as considerable overlap in
the seizure and non-seizure EEG, and onset of most seizures
accompanied by the development of rhythmic activity consisting
of multiple frequency components. Furthermore, the structure of
this activity differs from one patient to another, as do the channels
on which this activity is most apparent (35). Examples of seizure
and non-seizure recordings of two patients from the database are
shown in Figure 1, which illustrate these aspects.

Segmentation of the long-term EEG recordings is used for
efficient processing, and the recordings are segmented into 4-s
lengths for this study. Since the EEG recordings were originally
sampled at 256 samples per second, a 4-s segment length contains
1,024 samples. Different lengths have been used in previous
studies, with lengths of 1, 2, 3, 4, and even 10 s having been used
(2, 7, 11, 33, 36, 37).

One aspect for using shorter segment lengths, such as 1 s, is to
ensure stationarity (38), which is not relevant for our approach
as our proposed methodology can cater to non-stationary signals
as well. Another aspect considered in choosing segment length
is associated with resolving the lowest frequency in the EEG
signals, which are normally filtered in the range 0.5–60 Hz in
the preprocessing stage (39). The proposed methodology does
not use any pre-processing, nor is limited to particular frequency
bands. In this study we used 4-s long segments based on our
previous work using the EMD-based dictionary approach (28),
where we had compared 1, 2, 3, and 4 s segments and found
4-s segments to be most suitable. This choice was based on the
best results for seizure detection having been obtained using 4 s
segments. As our approach does not use hand-crafted features,
but instead uses features that capture similarity of testing signals
with either the seizure or non-seizure class, longer segments are
better able to capture this similarity.

2.2. EMD and DWT Decomposition
EMD is a data-adaptive technique that decomposes a signal
x[n] into components called intrinsic mode functions (IMFs)
aj[n], j ∈ {1, ..., J}, such that x[n] =

∑J
j=1 aj[n]. This

decomposition takes place through an iterative process called
sifting, which stops after a stopping criterion is fulfilled.
Components are considered IMFs if they can be considered
zero-mean according to the stopping criterion, and if the
number of maxima and minima in the components differs
by at most one (40). The EMD algorithm operates at the
level of one oscillation, and is adaptive to the local frequency
content of the signal. The IMFs demonstrate a dyadic filter-bank
behavior (29), though slight deviations from this behavior are
possible due to the data-adaptive nature of the decomposition.
The IMFs represent a hierarchical separation of a signal’s
spectral content, with lower index IMFs containing the higher
frequency signal components. The number of IMFs J is not
known in advance, though in general J ≤ log2(n), where n
is the length of the signal (41). For this work, we used an
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FIGURE 1 | Examples of seizure and non-seizure recordings: (A) A 9-s long seizure recording (top plot) of channel 21 of patient 2, and same length of non-seizure

signal (bottom plot) from the same recording. (B) A 49 s long seizure recording (top plot) of channel 21 of patient 4, and same length of non-seizure signal (bottom

plot) from the same recording.

implementation of the EMD algorithm as presented in Rilling
et al. (40).

The DWT can be used to decompose a signal into
components, called the details and approximation components,
through a pre-defined dyadic sub-band filtering using a basis
function called the mother wavelet. These components can be
obtained by decomposing a signal x[n] using DWT given by:

x[n] =
∑

k

aJ, k2
−J/2φ(2−Jn−k)+

∑

j, k

dj, k2
−j/2ϕ(2−jn−k) (1)

where ϕ(n) is an orthonormal basis function called the mother
wavelet, φ(n) is the scaling function orthogonal to ϕ(n), (j =
1, ..., J), k is the translation parameter, and dj,k and aJ,k are
the details and approximation components, respectively. The
number of DWT components depends on the levels specified for
decomposition, such that for a J-level decomposition there are J
details and 1 approximation component. In this paper, we utilize
the MATLAB implementation of the maximal overlap discrete
wavelet transform, which is an energy preserving DWT, with
Daubechies db4 as the mother wavelet.

Although the filter-bank structure of IMFs shares similarities
with wavelet decomposition, such as in terms of self-
similarity, quasi de-correlation and variance progression,
wavelet decomposition at each level happens according to
a pre-determined frequency division, and the use of linear
time-invariant filters for wavelet decomposition does not lend
to adaptation to local variations in the frequency content of the
signal (42). On the other hand, the data-adaptive nature of EMD
lends itself well to non-linear and non-stationary data analysis.
In this context, a comprehensive listing of applications of EMD
in varied domains is presented in Stallone et al. (43).

2.3. Dictionary Learning Algorithm
The signal derived dictionary approach for EMD-based
dictionaries has been presented in Kaleem et al. (28).

In this section only the main steps of the signal derived
dictionary approach are summarized in the context of DWT,
and comparison with the EMD-based approach is made
where required. We used the db4 mother wavelet for DWT
decomposition, which is the most commonly used mother
wavelet in seizure detection studies (44), and a 7-level
decomposition was used for reasons described later in this
section. The background to the selection of the mother wavelet
for this study is discussed in further detail later in section 4.1.

The dictionary approach starts with a training matrixXc
Train ∈

R
n × kc . The columns of the matrix consist of kc training signals

xc ∈ R
n (1,024 samples length segments of EEG recordings)

associated with class c. For this work, c ∈ C, C = {c1, c2}, where
c1 represents the seizure class, and c2 represents the non-seizure
class. The first step of the dictionary approach entails forming
a raw dictionary DC

raw = {ψ
m}Mm= 1 with M atoms ψ , where,

in general, M < n. For the DWT-based dictionary approach,
the dictionary atoms ψ are composed of approximation and
details components obtained by decomposing signals xc ∈ Xc

Train
using DWT, whereas for the EMD-based dictionary approach,
the dictionary atoms ψ are composed of the IMFs. For DWT,
a 7-level decomposition is used in this work, such that 7 details
and 1 approximation component are available. For the EMD-
based dictionary approach, the average number of IMFs obtained
by decomposing all segments, averaged over all patients, was
found to be 8. Hence a 7-level DWT decomposition is used,
such that the number of components obtained by EMD and
DWT decomposition is comparable. Here, we use the notation
acq(n), q ∈ {1, ...,Q} for DWT components as well as the

IMFs. The formation of the raw dictionary DC
raw consists of the

following sub-steps:

1. For the DWT and EMD-based dictionaries, DWT
components and IMFs, respectively, form the atoms of
class-specific raw dictionaries Dc

raw = [d1|d2, ..., |dL] ∈
R
n×L, L = kc × Q. The atoms of the class-specific raw
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dictionaries are constrained to have l2-norm ≤ 1, so that
dl = âcq, l ∈ {1, ..., L}, q ∈ {1, ...,Q}, and â

c
q = acq/||a

c
q||2. It may

be re-iterated that for a 7 level DWT decomposition, J = 7,
hence Q = J + 1 = 8 whereas Q is not known in advance in
case of EMD, but for this study, Q = 8 on average.

2. A combined raw dictionary
DC

raw = [Dc1
raw|D

c2
raw] ∈ R

n×M is then formed by merging
the class-specific raw dictionaries. Here, since C = {c1, c2},
thereforeM = 2L.

Once the combined raw dictionary is available, a trained
dictionary DC

Train = {ψ
p}Pp= 1 is learned from the raw dictionary

DC
raw = {ψ

m}Mm= 1. Here, P << M, which indicates that the
dictionary learning step is accompanied by a significant decrease
in dictionary size. The trained dictionary is learned according
to a dictionary learning algorithm using the training signals xc,
which are the same signals belonging to the seizure and non-
seizure classes in the training matrices X

c1
Train and X

c2
Train. The

dictionary learning algorithm is terminated after I iterations,
where I is determined using a validation scheme. The validation
scheme uses validation signals x̂c belonging to the seizure and
non-seizure classes, which are different from the signals xc

used for dictionary creation. The number of validation signals
is the same for seizure and non-seizure classes, and is fixed.
The trained dictionary DC

Train results from the completion of
the dictionary learning algorithm. Based on our initial testing,
the steps of the dictionary learning algorithm are repeated
up to seven iterations to determine the value of I using the
validation scheme.

The dictionary learning algorithm consists of the
following steps:

1. Initialize an empty trained dictionaryDC
Train = [ ].

2. Initialize a raw dictionaryDC
raw(x) for each training signal x.

3. Repeat for up to 7 iterations I:I = 1 to 7:

a. For each training signal x ∈ X
c1
Train ∪ X

c2
Train:

(1) Compute the projection coefficient αm of x against
each atom ψm in the raw dictionary DC

raw(x) :αm =
< x,ψm >;

(2) Select the atom ψ̃m whose projection coefficient has the
largest absolute value |αm|;

(3) If ψ̃m is not in DC
Train, then add it to the trained

dictionary:DC
Train ← DC

Train ∪ {ψ̃
m}

(4) Remove ψ̃m from the raw dictionary: DC
raw(x) ←

DC
raw(x) \ {ψ̃

m}

(5) Replace x by the residue after projecting on ψ̃m
: x ←

x− ψ̃m < x, ψ̃m >

b. The trained dictionary DC
Train for the current value of I is

available.
Then the validation scheme is used:

c. For each class c ∈ {c1, c2}:

(1) Initialize an empty projection coefficients vector Ŵc;
(2) For each validation signal x̂c of class c:

(1) Compute the projection coefficient αm of
x̂c against each atom ψm in the current

trained dictionary obtained after I iterations
DC

Train
:αm =< x̂c,ψm >.

(2) Select the projection coefficient with the largest
absolute value |αm|, and append this value |αm|
to Ŵc.

d. Calculate the distance between the projection coefficient
vectors of both classes: d = ||Ŵc1 − Ŵc2 ||

2
2.

e. If d is the largest distance encountered so far, the current
trained dictionary is retained as the best trained dictionary
DC

Train.

4. Return the best trained dictionaryDC
Train.

A few aspects of the dictionary learning algorithm are now
mentioned here. The raw dictionary DC

raw = {ψ
m}Mm= 1 has

M atoms, where M = 2L = 2(k × Q), where k represents
the number of training signals in each training matrix Xc

Train,

whereas the trained dictionary DC
Train = {ψ

p}Pp= 1 has P atoms.

When the same k training signals are used for dictionary training,
a maximum of 2×k atoms can be added to the trained dictionary
in one iteration of dictionary learning. Therefore, the change
from raw to trained dictionary is accompanied by a decrease
in dictionary size from M to P. Furthermore, if the number of
iterations I for dictionary learning is small, then the difference
in size between the raw and trained dictionaries is large, such
that P << M. A smaller dictionary is expected to result in
computationally fast feature extraction.

As far as the validation signals x̂c are concerned, these are
arranged in the order they occur in time in the EEG records.
However, the pairing used to calculate the distance between the
projection coefficient vectors during the validation stage (Step
3.d) is arbitrary.

2.4. Application of Dictionary Learning
Approach to the CHB-MIT Database
The signal derived dictionary approach described in the last
section is applied to the segmented CHB-MIT database EEG
recordings for dictionary creation and learning as follows. Firstly,
from each of the 23 channels of each patient, 15% of the seizure
segments are used for dictionary creation and learning, and 5%
for validation. The same number of segments are selected from
non-seizure segments. In addition, 30% of seizure segments are
kept for classifier training, with the same number being kept
from non-seizure segments. These segments are not selected
randomly, instead the order in time is maintained. This means
that starting from the beginning of the EEG records, the first
20% segments are kept for dictionary creation, learning and
validation, and the next 30% segments for classifier training. The
remaining 50% of the seizure segments, and all the remaining
non-seizure segments are then kept for testing seizure detection
performance. This partitioning of EEG records is meant tomimic
a real-world situation, where the system would be trained on
existing data, and then used for automatic seizure detection
for newly available data (13). The division of available data as
mentioned here allows us to keep the later 50% of the EEG
records for testing seizure detection, and the earlier 50% for
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FIGURE 2 | Example of some trained dictionary atoms from (A) EMD and (B) DWT-based dictionaries of patient 3. These atoms are of 4 s length, or 1,024 samples.

The atoms consist of intrinsic mode functions (IMFs)/details/approximation components of both seizure and non-seizure segments, and have been normalized as

mentioned in Step 2 of the dictionary approach (section 2.3).

the dictionary approach and classifier training. We chose 20%
of the data for dictionary creation, learning and validation,
and 30% for classifier training in order to demonstrate the
efficacy of our approach using smaller dictionaries, and to have
classifier training data comparable to other approaches such as
Zabihi et al. (13). For dictionary creation and validation, the
4-s segments obtained from the records of all 23 channels are
combined. This allows us to incorporate the multivariate aspect
of the data in the dictionary creation and learning approach. The
size of the raw dictionary as well as the trained dictionary will
be larger when the segments of all 23 channels are combined,
compared to the case where dictionaries are created and trained
per channel, as in our previous work (28). The trained dictionary
is expected to contain the relevant atoms obtained from all
the channels after the dictionary learning and validation steps
are complete. The total number of segments for each patient
for the tasks of dictionary creation, learning and validation,
classifier training and testing seizure detection are shown in
Supplementary Table S4.

For each patient, a raw dictionary DC
raw is created using

the allocated segments combined from all channels. Each raw
dictionary is then trained using the dictionary learning steps to
obtainDC

Train after I iterations, where the number I is determined
using the validation step, using the segments allocated for
validation (having been combined from all channels).

Some examples of trained dictionary atoms for both EMD
and DWT-based dictionaries are shown in Figures 2A,B, which
illustrate the variety of atoms in the trained dictionary. As already
explained previously, these atoms consist of IMFs or DWTdetails
and approximation components. Here we would like to point
out that depending on the nature of the application, physical
meaning can also be assigned to EMD and DWT components,
in the context of understanding different contributions to a given
phenomenon made evident through decomposition (43). In this
work, however, assigning a physical meaning to the components
is not important, as the components form atoms of a dictionary

which is trained according to a dictionary learning algorithm,
resulting in the selection of atoms most similar to the two classes
(seizure and non-seizure). This also precludes requirement of
any hand-crafted scheme for selection of IMFs, whereby the
important or relevant IMFs have to be selected for a particular
application, e.g., seizure detection (45).

A common aspect of the majority of seizure detection studies
is pre-processing of EEG records for removal of artifacts [e.g., as
mentioned in Mehla et al. (33) and Zabihi et al. (13) etc.]. The
dictionary learning algorithm selects atoms (DWT components
or IMFs) most similar to the seizure and non-seizure classes
for inclusion in the trained dictionary, thereby excluding any
components that may contain artifacts. For this reason there is no
need for any pre-processing in the proposed methodology, which
represents another strength of the proposed approach.

2.5. Feature Extraction
In this work, three features are extracted using the trained
dictionary, and are listed below. To compare seizure detection
performance using these three features, all features are extracted
using both EMD and DWT-based dictionaries.

2.5.1. Feature 1: Projection Coefficients (F1)
The projection coefficients are obtained as in dictionary learning
Step 3 in section 2.3. The projection coefficient αm =< xc,ψm >

having the maximum value is selected as a feature point, where
xc represents all seizure and non-seizure classifier training and
testing segments, and ψm represents all atoms of the trained
dictionary. The projection coefficients have been used as features
in the EMD-based dictionary approach previously (28).

2.5.2. Feature 2: Coefficient Vector (F2)
The coefficients vector a is used as a feature vector obtained
using the trained dictionary DC

Train and a signal x. This feature
is obtained using the relation

a = (D)†x (2)
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where x represents a classifier training or testing signal, and (D)†

is the left pseudo-inverse of the trained dictionary DC
Train. Also,

since DC
Train ∈ R

n×P, the coefficient vector a ∈ R
P, and hence is

a feature vector.

2.5.3. Feature 3: Reconstruction Error (F3)
The reconstruction error ǫ for a classifier training or testing
signal x is given by ||x−Da||2, whereD is the trained dictionary
and a is the coefficient vector. Even though the learned dictionary
D is not designed as a reconstructive dictionary, it is possible to
obtain a coarse reconstruction of the training or testing signal,
given by x̂, using the relation

x̂ = D(D)†x (3)

The reconstruction error feature is then obtained as ǫ = ||x−x̂||2.

2.5.4. All Three Features Combined
In addition to using the three features mentioned above
individually, we also use combinations of the three features,
and evaluate the seizure detection performance using these
combinations. The combinations of the three features F1, F2, and
F3 are as follows: all three combined (F1, F2, and F3), Feature
1 and Feature 2 combined (F1 and 2), Feature 1 and Feature 3
combined (F1 and F3) and Feature 2 and Feature 3 combined
(F2 and F3).

2.6. Classification Methodology
For classification of seizure and non-seizure segments using
the three features extracted from the data, five classifiers are
used. These are the linear discriminant analysis (LDA) classifier,
a support vector machine (SVM) classifier with a radial basis
function kernel, the naive-Bayes (NB) classifier, the k-nearest
neighbor (k-NN) classifier (k=1), and classification trees (CT)
classifier. Using multiple classifiers allows us to validate our
approach with a diverse set of classifiers, as has been done in
previous works also [e.g., (7, 46, 47)].

The three features are used to classify seizure and non-seizure
segments for each of the 23 EEG channels individually. This is
different from the dictionary creation and learning stage, where
the seizure and non-seizure segments from all channels are
combined. At the seizure detection stage, we use each channel
individually as seizures may manifest themselves at different
brain locations (13), and hence using each channel individually
allows us to better capture the seizures.

Once the classifiers have been trained using the features
obtained from seizure and non-seizure segments kept for
classifier training, the features extracted from the seizure and
non-seizure segments kept for testing are used to evaluate
and compare the seizure detection performance of all features
and classifiers.

The seizure detection results obtained from each channel
are processed in the following simple manner. The area under
the receiver operating curve (AUC) is used as a performance
measure such that the channel with the highest value of the
AUC is selected for seizure detection. Due to this approach,
only one channel per patient is used for seizure detection. No
channels have to be selected before the seizure detection step

[e.g., as in Bhattacharyya and Pachori (7)], nor is any post-
processing required, e.g., fusing the results of multiple channels
incorporating multiple filters and artificial neural network [e.g.,
as in Zabihi et al. (11, 13)].

Since we use all channels for seizure detection, the possibility
of using the results ofmore than one channel for seizure detection
exists. For this purpose, an extension of the technique described
in the last paragraph is used. Instead of using only the channel
with the highest value of the AUC, the first three channels ranked
in terms of the highest value of the AUC are identified. Then a
testing segment is identified as a seizure segment if this segment
has been classified as a seizure segment in at least two channels.
This technique is applied to patients with seizure detection results
lower than a set threshold, and adopted if an improvement in
seizure detection results is obtained.

The seizure detection results are evaluated in terms of the
performance measures of accuracy, sensitivity and specificity,
which are defined in Equation (4). The number of seizure
segments correctly classified are represented by TP (True
Positive), whereas FN (False Negative) represents the number
of incorrectly classified seizure segments. Non-seizure segments
which are correctly classified are given by TN (True Negative),
and incorrectly classified non-seizure segments are given by
FP (False Positive).

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

(4)

3. RESULTS

3.1. EMD and DWT-based Dictionary
Approach Performance
The number of iterations required for dictionary learning
termination, averaged over all patients, are 3.26 ± 1.63 and
3.09 ± 1.56 for EMD and DWT-based dictionary approaches,
respectively. The DWT-based dictionary is trained using a
slightly lesser number of iterations than the EMD-based
dictionary. On average, therefore, the size of the DWT-based
trained dictionaries is less than those of EMD-based dictionaries,
as can be observed in Table 1. The decrease in size going from
raw dictionary to trained dictionary is similar on average for both
EMD and DWT-based dictionaries, at 68 and 66%, respectively,
with similar dispersion around the average. To test the equality of
medians of EMD and DWT-based trained dictionaries, the non-
parametric Wilcoxon ranksum test was used, which resulted in
failure to reject the hypothesis of equal medians.

The 7-level DWTdecomposition used results in 8 components
for each decomposed segment, whereas the number of IMFs
resulting from EMD decomposition is not known beforehand.
Although the number of IMFs averaged over all segments of
all subjects comes to 8, the number of IMFs vary for each 4 s
segment, ranging in general between 7 and 10 IMFs. Due to this
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TABLE 1 | Number of atoms in raw and trained dictionaries (variables M and P, respectively, mentioned in section 2.3) for all subjects for both EMD and DWT-based

dictionaries.

Patient DWT EMD

No. DC
raw DC

Train
Iterations I Change (%) DC

raw DC
Train

Iterations I Change (%)

1 5,888 675 1 88 6,018 1,184 2 80

2 2,208 1,192 5 46 2,307 428 2 81

3 5,520 1,258 2 77 5,850 2,826 5 52

4 5,152 2,859 5 44 5,622 2,733 5 51

5 7,728 2,617 3 66 8,040 4,015 5 50

6 1,840 1,028 5 44 1,875 979 5 48

7 4,416 1,959 4 56 4,583 1,822 4 60

8 12,512 1,403 1 89 12,727 2,518 2 80

9 3,680 412 1 89 4,044 387 1 90

10 6,256 2,774 4 56 6,303 3,256 5 48

11 11,040 1,253 1 89 11,727 1,125 1 90

12 13,616 4,620 3 66 13,418 7,230 5 46

13 5,888 2,633 4 55 6,223 1,843 3 70

14 2,208 495 2 78 2,239 637 3 71

15 27,600 9,544 3 65 28,191 14,728 5 48

16 1,104 123 1 89 1,171 216 2 81

17 4,048 1,789 4 56 4,346 2,014 5 54

18 4,416 1,489 3 66 4,520 2,171 5 52

19 3,312 1,840 5 44 3,493 342 1 90

20 4,048 2,248 5 44 4,147 854 2 79

21 2,576 290 1 89 2,729 236 1 91

22 2,944 1,602 5 46 3,187 1,174 4 63

23 5,888 1,992 3 66 6,078 1,235 2 80

Average 6,256 2,004 3.09 ± 1.56 66 ± 17% 6471 2346 3.26 ± 1.63 68 ± 17%

The number of iterations I required for termination of dictionary learning algorithm is also mentioned (section 2.3).

reason, the number of atoms in the EMD raw dictionaries is in
general greater than DWT raw dictionaries.

At the individual patient level, the decrease in dictionary size
is comparable for EMD and DWT-based dictionaries. Individual
dictionaries that have been trained using a lesser number of
iterations have the most decrease in size going from raw to
trained dictionary.

As far as decomposition of the signals is concerned, EMD uses
an iterative decomposition algorithm that does not require any
basis function. On the other hand, selection of a basis function
in the form of a mother wavelet is an important aspect of DWT
decomposition. This is discussed further in section 4.1.

3.2. Classification Performance
The patient-specific seizure detection results in terms of these
performance measures were obtained using all features and the
five classifiers. For this purpose, the features obtained from
the training data are used for training the classifier, whereas
classification is performed using the features obtained from
the testing data. As already explained in section 2.4, the same
number of seizure and non-seizure segments, having occurred
earlier in time, are used for obtaining features for training
the classifier. This is unlike the work in Zabihi et al. (13),
where random under-sampling technique is selected to balance

the training data after comparing the performance of different
sampling techniques. The seizure detection results in terms
of the performance measures for the EMD and DWT-based
dictionary approaches are shown in terms of bar graphs in
Figure 3. These results have been calculated by selecting the
channel with the highest value of AUC (section 2.6). From
this figure, it can be observed that on average, the seizure
detection performance follows the same pattern for both EMD
and DWT-based approaches over all features and classifiers.
However, it is clear that the values of accuracy, sensitivity and
specificity are higher for EMD-based dictionary approach. In
terms of sensitivity, which represents the ability to correctly
detect seizures, and hence is of utmost importance (13), Feature
3 (reconstruction error ǫ) performs best for seizure detection
across all classifiers, for both EMD and DWT-based approaches.
Patient-specific seizure detection results in terms of accuracy,
sensitivity and specificity using Features 1, 2 and 3, for all 5
classifiers and both EMD and DWT-based dictionaries are shown
in Supplementary Tables S1–S3.

The best averaged sensitivity value is obtained for Feature 3
using SVM classifier (89.9%) and EMD-based dictionary. This
is followed by the average sensitivity value of obtained for
the same feature using the k-NN classifier (89.2%). Feature 2
does not perform well for seizure detection with all classifiers,
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FIGURE 3 | The averaged performance measures of accuracy, sensitivity and specificity obtained using all three features and five classifiers for EMD (top row in figure)

and DWT (bottom row in figure) based dictionaries.

except with NB and CT classifiers, as can be seen from Figure 3

and Supplementary Table S2. In the same context, the averaged
performance measures of accuracy, sensitivity and specificity
obtained using all three features and five classifiers for both EMD
and DWT based dictionaries are shown with upper and lower
confidence bounds for the 95% confidence intervals in Figure 4.
Significant variation of seizure detection results using Feature 2
with SVM classifier can also be observed from Figure 4.

If specificity is also taken into account, the best seizure
detection performance is still obtained using Feature 3 with
SVM classifier. This is not surprising, as SVM has been the
classifier of choice for seizure detection [e.g., (24, 33, 47, 48)].
The seizure detection results obtained using Feature 3 and SVM
classifier for the EMD-based dictionary approach in terms of
the averaged values of accuracy, sensitivity and specificity are
86.5, 89.9, and 86.4%, respectively. Analyzing the patient-specific
seizure detection results (Supplementary Table S3), it can be
seen that the sensitivity value of patient 4 is very low at 34.8%,
although with a high specificity of 91.1%. For patient 2, which has
a sensitivity value of 100%, the specificity value is low at 46.9%
(part of EEG recordings of patient 2 from the channel selected
for seizure detection are shown in Figure 1). Patient number
12 is another patient with a relatively low sensitivity value at
81.3%, and a lower specificity value of 60.5%, whereas patient 13,
while having a higher sensitivity value of 87.3%, also has a lower
specificity value of 78.2%. Patient 17 is another patient with a
specificity value lower than 80%, with a value of 78.2%, though
with a high value of sensitivity at 94.4%.

While the sensitivity for patient 4 (part of EEG recordings
from the channel selected for seizure detection are shown in
Figure 1) is quite low with a high specificity with Feature 3
and SVM classifier for EMD-based dictionary approach, the
values for the same feature and classifier using the DWT-based
dictionary approach are 52.2 and 86.9% for sensitivity and
specificity, respectively. This shows that for this patient, the
DWT-based dictionary is better able to capture the structure
of the seizures. However, there appears to be a trade-off
between sensitivity and specificity for this patient. If Feature 1
is considered for this patient, the seizure detection performance
is considerably improved with a sensitivity value of 93.5% and
specificity value of 60.8% with SVM classifier using DWT-based
dictionary. On the other hand, using the linear LDA classifier
considerable improvement is obtained in the specificity (73.3%)
with only slight loss in sensitivity (91.3%), again with DWT-
based dictionary. Similar values of sensitivity and specificity
are obtained for the same feature using NB classifier, and
the difference between EMD and DWT-based dictionaries is
also small.

The trade-off between sensitivity and specificity values can
also be seen for other patients as well, such as patient 2, which has
a high sensitivity value (100%) but a low specificity value (46.9%)
obtained using Feature 3 with SVM classifier as shown in Table 2.
However, for the same feature and EMD-based dictionary, there
is considerable improvement in the specificity value, but at the
expense of sensitivity, for CT classifier (85.7% sens. and 92.7%
spec.). Although some patients show better seizure detection
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FIGURE 4 | The averaged performance measures of accuracy, sensitivity and specificity obtained using all three features and five classifiers for EMD (top row in figure)

and DWT (bottom row in figure) based dictionaries, shown with upper and lower confidence bounds for the 95% confidence intervals.

performance with some feature or classifier, the seizure detection
performance of other patients with that particular feature and
classifier is low, thereby demonstrating the challenge presented
by the data of these patients for seizure detection.

The averaged seizure detection results obtained using different
combinations of the three features with EMD and DWT-
based dictionaries both are shown in Figure 5. The values of
accuracy, sensitivity and specificity obtained using EMD-based
dictionary are in general higher than those obtained using
DWT-based dictionaries. The best seizure detection results are
obtained using the combination (F1,F3), whereby Feature 1 and
Feature 3 are combined (section 2.5.4). Using this combination
and EMD-based dictionary, the averaged values of accuracy,
sensitivity and specificity obtained using SVM classifier are
83.3, 89.8, and 83.2%, respectively, whereas the k-NN classifier
gives the highest averaged value of sensitivity, which is 91.9%,
with values of 82.0 and 81.9% for accuracy and specificity,
respectively. Although high averaged values of sensitivity are
obtained using the combination (F1 and F3) and SVM and
k-NN classifiers, the values of specificity are relatively lower,
compared to the values obtained using Feature 3 with SVM
classifier and EMD-based dictionary. When all features are
combined (F1, F2, and F3), the seizure detection performance
is in general not good, except for NB and CT classifiers, with
similar pattern holding for combination of Feature 2 and 3
(F2 and F3). For Features 1 and 2 combined (F1 and F2),
averaged seizure detection results are quite low, except for
NB classifier.

As already mentioned, the best seizure detection performance
is obtained using the SVM classifier with Feature 3 and EMD-
based dictionary, with averaged values of accuracy, sensitivity
and specificity given by 86.5, 89.9, and 86.4%, respectively. We
have already mentioned in this section that patients 2, 4, 12, 13,
and 17 have comparatively low sensitivity or specificity values
(less than 80%) for this combination of dictionary, feature and
classifier. For these patients, we apply the extension of the
channel selection technique described in section 2.6 to improve
the seizure detection performance. For patient 2, application of
this extended channel selection technique results in improvement
of specificity from 46.9 to 89.2%, though at the cost of decrease
in sensitivity from 100 to 90.5%. For patient 4, the sensitivity
value increases from 34.8 to 50%, but is accompanied by a
decrease in specificity from 91.1 to 83.5%. For patient 13, the
specificity value decreases slightly from 78.2 to 75.8%, but the
sensitivity value increases to 94.6% from 87.3%. In the case
of patient 17, there is an increase in sensitivity and specificity
both, from 94.4 to 97.2%, and 79.7% from 78.6%, respectively.
For patient 12, however, increase in specificity to 66.1% from
60.5% is accompanied by a decrease in sensitivity to 74.8% from
81.3%, thereby representing the case where improvement in one
performance measure is obtained at the cost of similar decrease
in another performance measure.

The seizure detection results obtained using Feature 3 and
SVM classifier for the EMD-based dictionary approach and this
extended channel selection technique for patients 2, 3, 12, 13,
and 17 are shown in Table 2 for all 23 patients, which also lists
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TABLE 2 | Patient-specific classification results in terms of accuracy, sensitivity and specificity, obtained using EMD-based dictionary approach with Feature 3

(reconstruction error ǫ) and SVM classifier.

Patient No. Channel No. AUC Accuracy (%) Sensitivity (%) Specificity (%)

1 14 0.98 94.6 (99.6, 98.6) 90.9 (99.4, 97.3) 94.7 (99.6, 98.7)

2 21,11,2 0.88 89.2 (94.0, 94.4) 90.5 (99.2, 100) 89.2 (93.9, 94.3)

3 20 0.97 87.9 (93.4, 92.0) 100.0 (100, 100) 87.8 (93.3, 91.9)

4 21,12,11 0.71 83.3 (97.7, 83.2) 50.0 (100, 96.5) 83.5 (97.6, 83.1)

5 12 0.99 91.9 (98.5, 98.9) 97.1 (91.5, 82.9) 91.8 (98.7, 99.5)

6 20 0.96 86.3 (99.8, 67.7) 94.1 (0, 81.1) 86.3 (100, 67.7)

7 15 0.99 98.3 (99.3, 99.2) 87.5 (93.9, 85.8) 98.4 (99.4, 99.3)

8 11 0.95 80.7 (96.2, 96.1) 99.1 (77.2, 82.8) 80.1 (97.2, 96.8)

9 9 0.99 98.2 (98.1, 96.8) 88.2 (97.21, 98.1) 98.2 (98.2, 96.8)

10 4 0.94 88.4 (96.7, 98.9) 94.6 (95.6, 86.2) 88.4 (96.7, 98.9)

11 6 0.99 98.8 (99.7, 94.8) 93.0 (96.5, 98.5) 99.0 (99.9, 94.5)

12 16,13,12 0.75 66.2 (95.5, 80.5) 74.8 (92.7, 73.5) 66.1 (95.6, 80.7)

13 6,1,9 0.86 76.0 (91.7, 94.1) 94.6 (97.9, 96.4) 75.8 (91.6, 94.0)

14 14 0.92 85.9 (90.1, 92.0) 90.0 (98.5, 97.7) 85.9 (90.1, 91.9)

15 8 0.90 82.0 (NR, NR) 93.2 (NR, NR) 81.8 (NR, NR)

16 15 0.97 93.8 (79.9, 88.2) 87.5 (91.2, 73.7) 93.6 (79.7, 88.2)

17 18,13,10 0.93 79.9 (95.7, 96.2) 97.2 (99.6, 86.0) 79.7 (95.6, 96.5)

18 21 0.95 83.8 (75.8, 80.2) 97.4 (100, 100) 83.7 (75.4, 79.9)

19 6 0.97 95.6 (97.8, 98.4) 86.2 (96.1, 75.4) 95.7 (97.8, 98.9)

20 21 0.99 97.8 (94.3, 98.1) 94.4 (99.6, 94.2) 97.9 (94.2, 98.1)

21 10 0.87 81.0 (98.3, 98.5) 83.3 (98.7, 99.3) 81.0 (98.3, 98.5)

22 9 0.99 97.7 (97.5, 98.6) 96.0 (89.7, 97.4) 97.7 (97.7, 98.6)

23 8 0.98 90.3 (99.5, 98.8) 98.1 (96.3, 59.8) 90.3 (98.6, 99.4)

24 NR NR NR (99.6, 97.1) NR (85.9, 67.3) NR (99.7, 97.5)

Average 0.93 88.2 (95.1, 93.1) 90.3 (91.1, 88.3) 88.1 (95.2, 93.2)

The values in brackets correspond to Zabihi et al. (11, 13), respectively, which are two recent works using a classifier training approach similar to ours with 25% training data (25% of

seizure and non-seizure data, balanced using random under-sampling in Zabihi et al. (13), whereas our approach uses 30% of seizure data, and same amount of non-seizure data). NR

means not recorded.

the channel(s) used for each patient and the associated AUC.
The averaged values of accuracy, sensitivity and specificity are
improved to 88.2, 90.3, and 88.1%.

In order to rule out any bias in the seizure detection results,
we validated the results reported in Table 2 using 5-fold cross-
validation with the same testing data for each patient, and
obtained values of 90.3, 93.5, and 87.12% for accuracy, sensitivity
and specificity, respectively. The seizure detection results were
obtained as before, by selecting the channel with the best value
of AUC. For some patients, the channels selected in this case
were different from the ones reported in Table 2, however these
belong to the same region of the brain. This demonstrates that the
seizure detection approach demonstrated here is robust, as for k-
fold cross-validation, the data is divided into k-folds randomly,
which are then used for training and testing.

As mentioned earlier in section 2.4, our approach does not
require any pre-processing. In order to verify this experimentally,
we bandpass filtered the EEG records between 1 and 60 Hz before
segmentation (using a second order Butterworth bandpass filter),
as in Zabihi et al. (13). The difference in seizure detection results
was found to be insignificant.

3.3. Computational Time Requirements
All the experiments reported in this paper were implemented
using MATLAB version 2019b on a desktop computer with a
2.40 GHz processor and 16GB of RAM. The computational time
requirements were measured in terms of time required for EMD
and DWT decomposition, EMD and DWT-based dictionary
training, feature extraction, classifier training and classification.

The runtime per segment (4 s length) is measured, which is
then averaged over all channels of all patients. The decomposition
time for one segment using DWT is 7.8 ms compared to 71.8
ms using EMD. This is not surprising, given that EMD is an
iterative algorithm, implementation of which is time intensive.
However, since dictionaries can be created independent of seizure
detection, the comparatively higher computational time for
EMD-based dictionary creation does not preclude its use in a
practical scenario.

The time for dictionary training for one segment is 0.88 ms on
average for DWT-based approach compared to 1.10ms for EMD-
based approach. This difference can be explained in terms of
the lower number of iterations required for training DWT-based
dictionaries, as discussed in section 3.1.
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FIGURE 5 | The averaged performance measures of accuracy, sensitivity and specificity obtained using combinations of all three features and five classifiers for EMD

(top row in figure) and DWT (bottom row in figure) based dictionaries.

The time required for feature extraction in terms of Feature
2 (coefficient vector) and Feature 3 (reconstruction error) is
0.34 ms and 0.41 ms on average for one segment, respectively,
for DWT-based dictionary. The corresponding times for
EMD-based dictionary are 0.39 and 0.46 ms per segment.
Extraction of Feature 1 (projections coefficients) feature is more
computationally expensive, with 7.9 ms per 4-s segment for
DWT-based dictionary compared to 8.6 ms for EMD-based
dictionary, due to the iterative nature of projecting testing
segments against the trained dictionary, as in the current
implementation the testing segments are projected one by
one against the trained dictionary. The slight difference in
computational time for the EMD and DWT-based dictionaries
can be attributed to the smaller size of DWT-based dictionaries
on average, as reported in Table 1.

For classifier training and testing, we report the computational
time required by Feature 3 (reconstruction error) and SVM
classifier, as we have reported seizure detection results based on
this combination in Table 2. The time required for SVM classifier
training is 89 ms, whereas the time required for classification is
0.47ms, for 1-h of EEG recording. The time required for classifier
training and testing for the other classifiers is much less than
that required by the non-linear SVM. The computational times
reported here are also summarized in Table 3.

4. DISCUSSION

4.1. Effect of Mother Wavelet
Many previous seizure detection studies have used the

Debauchies family of mother wavelets when decomposing
EEG signals, with the db4 mother wavelet most commonly used

(2, 36, 46, 48, 49). Some studies have used other mother wavelets

as well, such as db5 (3), db6 (5, 50), sym4 (51) or theMexican Hat

(47). However, the reason for using any of the particular mother

wavelets is never mentioned, except for the study in Tian et al.
(36), which considers higher order Debauchies mother wavelets
to be better suited for EEG signals, but more computationally

expensive, and hence settles for db4. A study presented in Rafiee
et al. (52) tests a number of mother wavelet functions across
different signals, and considers db44 to be the most similar
mother wavelet functions across a variety of biological signals.
In this context, the study in Al-Qazzaz et al. (53) considers
the sym9 to be most similar to EEG signals recorded during a
working memory task, but also finds db7 to be very similar to the
recorded EEG signals.

As already mentioned in section 2.3, for this study we
used the db4 mother wavelet. However, we also tested our
approach with db6 mother wavelet in order to quantify the
difference between db4 and db6 mother wavelets in the
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TABLE 3 | Computational time requirements of the proposed methodology for 1 h EEG recording.

Dictionary training Feature extraction Classifier training and testing

EMD DWT Feature 1 Feature 2 Feature 3 EMD Dictionary, Feature 3, SVM Classifier

EMD DWT EMD DWT EMD DWT Classifier training Seizure detection

0.99 s 0.79 s 8.6 s 7.1 s 0.35 s 0.31 s 0.41 s 0.37 s 89 ms 0.47 ms

context of seizure detection using the proposed approach.
In this context, it was observed that the seizure detection
performance using these mother wavelets is quite similar,
and an increase in sensitivity/specificity is accompanied by a
decrease in specificity/sensitivity, particularly for Feature 1 and
Feature 2. For Feature 3, however, there is increase in both
sensitivity and specificity using db4 with all classifiers except
CT classifier. These performance aspects can also be seen from
Supplementary Figure S1. One other difference between using
db4 and db6 mother wavelets relates to lesser dispersion of the
performance measure values around the mean when using db4
compared to db6 mother wavelet.

4.2. Use of Different Features
The seizure detection performance of all features obtained
using both EMD and DWT-based dictionaries with all
classifiers in terms of averaged performance measures of
accuracy, sensitivity and specificity are shown in Figure 3, and
Supplementary Tables S1–S3. It may be observed from this
figure and tables that for Feature 1, there is small difference in
values of the performance measures for EMD and DWT-based
dictionaries. For Feature 2, the averaged sensitivity values are in
general greater for DWT-based dictionaries. On the contrary, for
Feature 3, the averaged sensitivity values are higher in general
for EMD-based dictionaries, with a value greater than 80% for all
classifiers. Feature 3 therefore turns out to be the best performing
of all features with all classifiers.

We have shown that all three features, which have been used
in traditional approaches for dictionary learning, can be used
for seizure detection with the data-driven dictionary approach
using both EMD and DWT-based dictionaries. From among
the features, the best seizure detection performance has been
obtained using Feature 3, namely the reconstruction error, and
EMD-based dictionary. An EMD-based dictionary, consisting of
atoms composed of IMFs that have been decomposed using a
data-driven algorithm, instead of using a basis function, is better
able to capture the distinctive characteristics of seizures in EEG
signals. However, a DWT-based dictionary also performs well,
and can be of practical use in a seizure detection scenario as well.

4.3. Comparison With Other Approaches
Due to high inter and intra-patient seizure variation in the
long-term recordings of the CHB-MIT EEG database, as well
as contamination by sleep and physiological artifacts, not many
studies have used this database due to the adverse affect of these
factors on seizure detection performance (11).

InTable 2, we have directly compared seizure detection results
of this study with the results of a recent study, where the seizure
detection methodology has been structured in the same way
using early part of the data as training data, and the later part
as testing data (13), as well as a previous study by the same
authors (11). Both of these studies use 25% of the data for
training. However, the study in Zabihi et al. (13) uses 25% of
the early seizure as well as non-seizure data, and then balances
the data using random under-sampling, as the number of seizure
segments is much less than the non-seizure segments. On the
other hand, our approach uses 30% of the seizure segments, and
then selects an equal number of non-seizure segments. In the
CHB-MIT database, the lengths of recordings with seizures vary
for each patient, and for all patients, seizure recordings are much
smaller than non-seizure recordings. As a result, the actual data
used for training will be much less in our approach.

The seizure detection results obtained using our approach
compare very well with the results of the two approaches reported
in the Table 2, despite using the smallest amount of data for
classifier training.

The difference in averaged sensitivity value obtained using
our approach and that in Zabihi et al. (13) is small, at 90.3%
against 91.1%. The sensitivity value is an adequate comparison
metric, as detection of all seizures at the cost of more false
alarms is preferable to missing seizures with less false alarms (54).
Furthermore, it has also been pointed out in Zabihi et al. (13) that
accuracy is not a reliable performance metric due to unbalanced
numbers of seizure and non-seizure segments. Furthermore, the
work in Zabihi et al. (13) uses a two-layer classification scheme,
using LDA classifiers per channel in the first layer, followed by
an artificial neural network, and incorporates a post-processing
consisting of morphological filtering as well. The methodology
of our classification scheme, in contrast, is much simpler, and
the computational requirements, as described in section 3.3,
are meager.

In Table 4, the seizure detection results obtained using EMD-
based dictionary approach with Feature 3 and SVM classifier
are compared with some recently reported studies on patient-
specific seizure detection. This comparison is in terms of the
performance measures of accuracy, sensitivity and specificity.
The seizure detection results of this study compare very well with
studies using similar training/testing partitions. Other studies,
such as Bhattacharyya and Pachori (7), Kaleem et al. (8), and
et al. (28) have used hand-engineered features or k-fold cross-
validation techniques with data balancing, which might not hold
well in a practical scenario. Furthermore, the approach in this
paper does not require feature processing before classification
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TABLE 4 | Comparison with some other patient-specific seizure detection methods using the CHB-MIT EEG database.

Results

Reference Patients Training set (%) Av. Sen (%) Av. Spec. (%) Av. Acc. (%)

Bhattacharyya and Pachori (7) All (except 12) 10-fold CV 97.9 99.6 99.4

Kaleem et al. (8) All 5-fold CV 99.8 99.6 99.6

Kaleem et al. (28) All 5-fold CV 94.3 91.5 92.9

Zabihi et al. (11) All (except 15) 50% of seizure and non-seizure 89.1 94.8 94.7

Zabihi et al. (11) All (except 15) 25% of seizure and non-seizure 88.3 93.2 93.1

Zabihi et al. (13) All (except 15) 25% of seizure and non-seizure, balanced using random

undersampling technique

91.1 95.2 95.1

This work All 30% of seizure, and equal amount of non-seizure 90.3 88.1 88.2

and post-processing of the results after classification to obtain
seizure detection, such as in Bhattacharyya and Pachori (7).
Additionally, as mentioned before, the proposed approach uses
the smallest amount of data for classifier training of all the other
approaches. Another aspect that distinguishes our approach is
that although the training and testing data have been selected by
maintaining the order in time, with training data having occurred
earlier than testing data, our approach is robust to changes in this
order, as demonstrated using 5-fold cross validation mentioned
in section 3.2.

We would also like to point out that some other recent
studies not listed in Table 4, such as Li et al. (55) and
Mehla et al. (33), also report very high values of the
performance measures of accuracy, sensitivity and specificity
for the same EEG database. However, the seizure detection
methodology in such studies is also constructed in a way
which may not be conducive in a practical scenario, as
mentioned in the previous paragraph. For example, the study
in Li et al. (55) balances the data using an over-sampling
technique by adding synthetic data, whereas the study in
Mehla et al. (33) selects 1 h long records randomly from
seizure and non-seizure data of all patients combined. In
this regard, we would like to reiterate our position that
our proposed approach caters to the realistic scenario of
using a small portion of patients’ historical data for the
steps that lead to seizure detection using newer data. Fair
comparison of our approach, therefore, is to the very few
studies that are constructed as such, such as the ones
listed in Table 2. As we show next, our proposed approach
outperforms the approaches listed in Table 2 in terms of
computational efficiency.

Compared to the computational time requirements of
the methodology presented in Zabihi et al. (13), which
requires around 38 s for pre-processing, feature extraction,
classifier training and classification for 1-h EEG recording,
our presented approach requires around 1.5 s for dictionary
creation, feature extraction, classifier training and classification.
There is also a 9 s gap required for post-processing after
each segment in the approach of Zabihi et al. (13), which
would significantly add to the overall computational time
requirements. The proposed approach is therefore significantly
efficient and thus practical than the approach presented in Zabihi
et al. (13).

For seizure detection, we use all the available seizure and
non-seizure testing data. For each patient, the number of non-
seizure testing segments is significantly more than seizure testing
segments. The seizure detection results we have presented in
Table 2 have been obtained using the unequal testing data. If,
however, we use the same number of seizure and non-seizure
testing segments with the EMD-based dictionary approach
with Feature 3 and SVM classifier, we obtain the values of
accuracy, sensitivity and specificity given by 93.0, 90.9, and
95.1%, respectively. These values of the performance measures
are obtained when the same number of non-seizure segments
as the seizure segments are taken from the available testing
segments while maintaining the order in time. However, even if
the same number of non-seizure testing segments are selected
randomly, the change in values of the performance measures
is negligible. Therefore, a practical seizure detection scenario
could involve using equal-sized seizure and non-seizure data.
Furthermore, as more and more data for each patient becomes
available, the size of the training data could be increased, and
we expect the proposed method to provide even better seizure
detection performance, also for unequal seizure and non-seizure
testing data.

4.4. Limitations of the Study
Since the proposed method requires seizure and non-seizure
data for dictionary creation and learning, and classifier training,
patients with few and short duration seizures would represent a
challenge to the proposed methodology, specially for classifier
training, which happens for each EEG channel individually,
contrary to the dictionary creation and learning stage, where
data of all channels is combined. This situation could be dealt
with by decreasing the segment length, which is currently 4 s.
However, this may lead to a decrease in the seizure detection
performance, as discussed in section 2.1. Another option could
be to combine the data of all EEG channels, as opposed to having
seizure detection per channel.

4.4.1. Limitations of EMD
While DWT has a rich mathematical formulation, and the
decomposition behavior can be studied precisely, EMD is
an empirical technique that does not have a mathematical
formulation. Although numerous extensions of the EMD
algorithm have been introduced that formulate the basic EMD
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algorithm in a formal framework [e.g., the method described in
Dragomiretskiy and Zosso (56), or the many methods referenced
in Stallone et al. (43)], such extensions require numerous
parameters to be set, often heuristically (57), which in our
view defeats the purpose of a model-free and data-driven
decomposition. Therefore, we have used the EMD algorithm in
its basic form.

However, there are certain limitations of EMD which have to
be kept in view. One of these is the effect of boundary conditions,
or end effects on the decomposition process, whereby, due
to the finite length of the signal, the sifting process in the
EMD algorithm may result in anomalously high amplitudes and
spurious wave peaks for the IMFs (specially higher order IMFs)
near the boundaries (43). Numerous methods are available to
mitigate the end effects; the implementation of EMD algorithm
that we use mirrors the signal extrema near the boundaries
with good results (40). Furthermore, due to the nature of the
dictionary learning algorithm (section 2.3), only those atoms
(IMFs) are added to the trained EMD-based dictionary which
are most similar to the dictionary training signals, thereby
significantly reducing the chance of any atoms with spurious
decomposition artifacts being added to the trained dictionary.

The other important aspect to be considered is the effect of
mode-mixing. IMFs are considered to be zero-mean amplitude
and frequency modulated components. Mode-mixing refers to
the phenomenon whereby different frequency components in
the original signal are decomposed into the same IMF, or
the same frequency component is decomposed into different
IMFs. Numerous methods for mitigating the effect of mode-
mixing have been proposed (58). Due to mode-mixing, IMFs can
become devoid of any physical meaning. However, as we have
explained in section 2.4, our proposed approach does not rely on
assigning a physical meaning to the decomposed components.
Also, for the case of EMD-based dictionary, the task of seizure
detection is not affected by mode-mixing, as both seizure and
non-seizure signals will be affected by mode-mixing, if at all.
Also, the DWT components are different from the definition of
IMFs, and may also be similar to mode-mixed IMFs. Therefore,
we do not consider mode-mixing to be detrimental to EMD-
based dictionaries.

5. CONCLUSION

This paper has presented the signal-derived dictionary approach
using both EMD and DWT-based dictionaries. Similar to the
EMD-based approach, the DWT-based dictionary approach is
also a viable approach, and benefits from a well-established
and computationally fast decomposition approach. The use of
three features used in traditional dictionary learning approaches
obtained from EMD and DWT-based dictionaries has also been
demonstrated with good seizure detection results, and compared
for both types of dictionaries. These features, when used with

different classifiers, are robust to variations of seizure types
amongst patients, as seizures can be consistently detected across
all patients with high sensitivity and specificity. This work
has also shown that the signal-derived dictionary approach
is robust to the use of a model-free, data-driven dictionary,
as well as a model-based dictionary that requires an a priori
basis. The current methodology is a patient-specific seizure
detection methodology, though it could be extended to patient-
independent seizure detection as well. This will require a
complete re-design of the methodology, following which the
seizure detection results could be cross-validated using a leave-
one-out scheme, as implemented in Nagaraj et al. (22).

Despite using small amounts of data for classifier training,
seizures were detected with a sensitivity of 90.3% and specificity
of 88.1% over the EEG records of all 23 patients. The sensitivity
rate of all patients is above 85%, except for 2 patients.
This work represents one of the few works which caters to
the realistic scenario where a small portion of the historical
patient data is used for the methodology, including classifier
training, and seizure detection is then performed using the
newer data.

The proposed approach and the features used are also different
from seizure detection using hand-engineered features. No pre-
processing of data or feature processing of any kind is required
for the proposed approach. Furthermore, all channels of EEG
recordings are used for seizure detection, and the channel(s) with
the best performance is selected based on the criterion of highest
area under the receiver operating curve.

The computational requirements of different aspects of
the overall methodology, including dictionary creation and
training, feature extraction, classifier training and classification,
are also practical compared to similar approaches. On the
whole, using small amounts of patients’ historical data for
classifier training, the computational efficiency, and seizure
detection with high sensitivity distinguish our approach from
other available approaches for automatic seizure detection.
Furthermore, as the proposed approach is a data-driven
approach, as more and more data will be available, the
performance of the proposed approach will continue to
further improve.

An interesting direction of further work will involve a
new model for signal-derived empirical dictionary approach,
whereby class-specific dictionaries are learned, instead of
learning a combined dictionary. The features extracted from
class-specific trained dictionaries can be expected to contain
characteristics representing similarities with one class as well
as dissimilarities with the other class, and hence contain more
discriminatory information. Furthermore, the methodology
presented in this paper can be categorized as a machine
learning approach. An interesting future direction will consist
of incorporating deep learning for automatic seizure detection
using the signal-derived empirical dictionary approach.
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