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The world of healthcare constantly aims to improve the lives of people while nurturing

their health and comfort. Digital health and wearable technologies are aimed at making

this possible. However, there are numerous factors that need to be addressed such

as aging, disabilities, and health hazards. These factors are intensified in palliative care

(PC) patients and limited hospital capacities make it challenging for health care providers

(HCP) to handle the crisis. One of the most common symptoms reported by PC patients

with severe conditions is dyspnoea. Monitoring devices with sufficient comfort could

improve symptom control of patients with dyspnoea in PC. In this article, we discuss the

proof-of-concept study to investigate a smart patch (SP), which monitors the pulmonary

parameters: (a) breathing rate (BR) and inspiration to expiration ratio (I:E); markers for

distress: (b) heart rate (HR) and heart rate variability (HRV), and (c) transmits real-time data

securely to an adaptable user interface, primarily geared for palliative HCP but scalable to

specific needs. The concept is verified by measuring and analyzing physiological signals

from different electrode positions on the chest and comparing the results achieved with

the gold standard Task Force Monitor (TFM).

Keywords: wearable devices, dyspnoea, smart patch, palliative care, digital health

1. INTRODUCTION

Symptoms related to breathing are common among palliative care (PC) patients (1), highly
distressing (2), complicate treatment and discharge (3), and their prevalence is rising (4). Dyspnoea
occurs in about 30% of PC cancer patients (5) and is prevalent (about 40–60%) in non-cancer
patients (1, 5). The prevalence of dyspnoeamay be higher in long-term care settings (6, 7) due to the
growing proportion of chronic diseases such as heart rate insufficiency (8), and chronic obstructive
pulmonary disease (COPD) (3) among PC patients. Also, symptoms related to breathing are
increasing steadily, and thus aggressive symptom management is required in order to enhance the
quality of life (4, 9, 10).

Pain, fatigue and dyspnoea are the most common symptoms faced the PC patients. Dyspnoea
was rated as both distressing and severe, and was reported spontaneously by 27% of the PC patients
(11). As dyspnoea is a subjective symptom, only the patient can rate its severity and the distress
caused. Thus, the detection and treatment of dyspnoea rely heavily on the patient’s assessment.
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Due to constraints in frequency and duration of visits,
assessment of symptoms and their severity becomes difficult
for outpatients (12, 13). Thus, it requires identification of
various biomarkers, raising the need for specialized services.
It is also important for patients in ambulatory settings to
recognize their PC needs promptly and for patients with
cognitive impairment to relate their symptoms seamlessly.
Prominent biomarkers for dyspnoea comprise breathing rate
(BR), breathing sounds, and their changes over time as well
as the ratio of inspiration to expiration (I:E). In addition,
heart rate (HR) and heart rate variability (HRV) will help
to determine the degree of breathlessness and the distress
it causes.

Biomarkers from physiological signals can be monitored in
real-time in three different ways: using 1) contact sensors, 2)
non-contact sensors, and 3) in a hybrid manner combining
contact and non-contact sensors. Contact sensors require a
physical connection with a stimulus to get electrical signals
from the body whereas, non-contact sensors do not require
a direct connection but need to be in proximity to get the
signals. Non-contact based radar sensors have high precision
in detecting respiration rate and can be used to replace the
use of a respiratory belt (14), but radar sensors are highly
sensitive to the external environment, and the movement
of the patient makes it difficult to analyze the respiration
rate and other biomarkers (14). Patients in ambulatory care
are not in their bed all day long, however, all the relevant
biomarkers need to be measured in all situations. Thus, when
a patient performs activities for daily living, a radar-based non-
contact system does not provide satisfactory results. Therefore,
a procedure is desirable to acquire said biomarkers in a
way that is non-invasive, easy to implement, and applicable
in home care by laymen. The data have to be transferred
securely to specialized care services in order to tailor their
therapeutic approach.

BR can be measured from several sensors such as piezo-
resistive sensors (15) or flex sensors (16). BR can also be derived
from electrocardiogram (ECG) and photoplethysmogram (PPG)
(17). Some extant researches and algorithms show that
breathing parameters can be calculated from raw ECG (18,
19). But, determining I:E, one of the crucial pulmonary
parameters, is not possible with the existing sensors to the
best of our knowledge. Sensor fusion would enable us to
integrate and compare breathing parameters obtained from
impedance measurement and raw ECG to deliver reliable and
precise outputs.

In our prototype, we assess BR, I:E, HR, and HRV, focusing
on the trade-off between robustness and reliability against
expense and burden by the innovative system. Our smart
patch (SP) was implemented and tested on four healthy
subjects and the performance was compared with the TFM
while placing the electrodes at different positions. In the
course of performance analysis of the SP, we have achieved
an overall accuracy of 92.0 ± 7.4% for HR and 77.5 ±

13.2% for BR. We still need to improve our BR and
I:E extraction algorithms and also miniaturize the SP in
future development.

2. ARCHITECTURE

2.1. Materials and Methods
We have formulated our prototype as a proof-of-concept study
to design and validate a SP to primarily monitor BR, I:E, HR,
and HRV in real-time for PC patients. Fixed solid gel electrodes
are connected to the raspberry pi with coaxial cables to measure
impedance. The change of field voltage over time while breathing
is measured on the person’s chest to determine BR and I:E. An
AD8232 SparkFun single lead heart rate monitor is employed
for ECG monitoring. R- peaks of ECG were detected using the
Pan Tompkins algorithm (20) and thereby HR and HRV were
calculated. Further, an MPU-6000 motion interface was used as
the inertial measurement unit (IMU) and an I2S SPH0645LM4H
microphone was integrated with the SP prototype for future
use. The overall architecture of the SP is shown schematically
in Figure 1. The IMU sensor data would be used to recognize
activity performed by the patient in real-time and a microphone
could be used to record and store lung sounds of the patient.
This information might be helpful for the HCP to diagnose and
provide better care.

2.2. Breathing Parameters From
Impedance Measurement
An impedance measurement sensor is used to independently
measure the breathing parameters. However, the sensor only
records impedance over time, which is why some data analysis
is needed to extract parameters like BR and I:E. A fast fourier
transform (FFT) was used after applying a low-pass filter to
extract the dominant frequency, which is the BR. This method
is found to be stable and also computationally inexpensive, but
the key drawback was that it did not allow extraction of other
parameters from the BR. Therefore, this is not used in the
final prototype.

In our prototype, a univariate spline of fourth-order was
fitted to the data after it was passed through a lowpass filter to
determine BR and I:E. Since a univariate spline is just a piecewise-
defined polynomial function, the first and second derivatives can
be used to find minima and maxima. Then, BR is calculated from
the average distance between the last five minimas, and I:E is
calculated from the average distance between aminimum and the
next maximum divided by the distance between a maximum to
the next minimum.

2.3. HR and HRV From ECG
Besides BR and I:E, HR, and HRV also play an important
role. The variability of HR originates from our autonomic
nervous system (ANS), more concrete of different sympathetic
and parasympathetic activities (21). The parasympathetic branch
causes the heart to beat slower, the sympathetic one lets it beat
faster, which causes a fluctuation in HR and HRV (22). The HRV
can therefore be a valuable predictor in terms of distress.

The analysis of HRV involves examining the normal rhythmic
fluctuations in HR using either statistical indices such as standard
deviation and root mean square of the successive differences or
more complex spectral analytic techniques. Since the latter is
more computationally intensive and requires a lot of expertise
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FIGURE 1 | The hardware architecture of the SP: consists of a micro-controller unit (MCU) which is connected to ECG sensor, Impedance Measurement unit, Inertial

Measurement Unit (IMU) and a microphone.

to apply correctly, an algorithm to measure the ratio of the
standard deviation of the RR-interval over the root mean square
of the successive differences (rMSSD) was implemented. Balocchi
et al. (23) showed that this simple statistical index could be used
to surrogate the low-to-high frequency ratio, which reflects the
interplay between two different branches of the ANS. The rMSSD
from heart period data can be calculated by (24):

rMSSD =

√

∑N−1
i=1 (RRi − RRi+1)2

N − 1
[ms],

where RRi is the time interval between adjacent R-waves, RRi+1

is the next RR-interval, and N is the number of RR intervals.
The HRV has a very strong clinical importance since it

can predict adverse prognosis in patients with heart disease as
well as in the general population. Especially in a PC setting,
the interest in HRV is prominent since it indicates a risk for
mortality (25). Furthermore, the BR stimulates the cardiovascular
system, thereby influencing the HRVmaking our prototype more
robust (26).

2.4. Psychometric Data Analysis
To start the process of data collection, an overview of the
necessary Psychometric data to be analyzed is key. Beyond that,
an exhaustive exploration (27, 28) was performed where all
possible parameters were taken into consideration for extracting

the respiratory data of a patient. Figure 2 shows an overview of
the different parameters.

The classification is based on biometric, demographic, and
psychometric data. Basic details of the patient collected via
the initial registration on the application would include how
old the patient is, the gender, and the occupation because
in certain situations, a COPD patient could be at the risk
of asbestosis occupationally. Biometric details are used for
calculating parameters like the body mass index (BMI) and
certain lung volumes.

Considering psychometric data, we have a long list beginning
with habitual and environmental changes like smoking, up to
preconditions and medication. One of the leading causes of
COPD is an alpha-1-antitrypsin deficiency which has a high
prevalence among other genetic diseases along with habitual
smoking. Hence, a need to consider detailed genetics arises. We
included recent tests just to facilitate the patient in keeping track
of their symptoms.

2.5. Network Architecture and Wireless
Protocol
An essential part of our SP is the ability to transmit the recorded
data from the raspberry pi to another machine, for example, a
data server. There are several important requirements that any
method of transmission must fulfill. It has to be efficient, because
of the low power target that the SP will have, secure, since we are
dealing with confidential patient data, and needs to be integrated
into existing hospital and home infrastructure. To make sure that
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FIGURE 2 | Complete overview of data to be collected.

the data is secured during transmission, data access is handled
via the secure shell (SSH) protocol. A public-private key pair was
generated with the public key being stored in the raspberry pi
and the private key being used to authenticate the user. Another
security feature of the design is that we only pull data from the
raspberry pi. Since we do not push data from the raspberry pi,
man-in-the-middle attacks are almost impossible. In an eventual
deployment of this system, more attention will have to be placed
on security, but for testing and validation, this should be secure
enough. To make sure the transmission is efficient the rsync
algorithm was used.

2.6. Prototype Validation
To validate the aforementioned setup and the implemented
algorithms, a study with four test subjects was conducted in
cooperation with the PC department of the University Hospital,
Erlangen. The study participants, including two males and two
females, were between 24 ± 4 years of age, 176.25 ± 18.59 cm
tall, 71.00 ± 6.68 kg in weight, and had no known heart or lung
diseases. The recording was carried out with the participants in
seated positions in a relaxed atmosphere. The purpose of the
study was to compare the output of the SP to the values of the
TFM. Furthermore, the study shows how close the electrodes of
the SP can be placed together while getting comparable results.

FIGURE 3 | (A) TFM setup: measuring BR, 4 other electrodes (light blue)

measuring HR, (B) SP setup: 2 electrodes (dark blue) measuring BR, 3

electrodes (light blue) measuring HR. During the study the electrodes of the SP

are placed closer after every iteration, which is schematically shown with the

black arrows.

Figure 3A shows the TFM setup: BR is measured with three
electrodes (dark blue) of which two are placed on the chest
and one at the back of the neck. For measuring HR, four more
electrodes (light blue) are placed on the subject: two are at each
side of the shoulder and two at the left and right side of the belly.
Furthermore, a reference electrode is placed on the wrist of the
subject. The electrodes of the TFM stay at the same place during
the whole study.
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FIGURE 4 | Example of timestamp matching (subject 1 position 2). On the left side HR over time is shown of SP (blue) and TFM (orange) before matching up the

timestamp, on the right after. The sudden drops in the HR of the SP can be explained with missed beats (this will half the HR of the next beat since the interbeat

interval is now twice as long).

Figure 3B shows the SP setup: two electrodes (dark blue) are
placed on the outer part of the chest below the clavicle during
the first iteration to measure BR as well as I:E. HR and HRV are
measured with three further electrodes (light blue) first placed at
the right mid clavicle, left mid clavicle and close to the sternum.
The electrodes of the SP are placed closer together after each
iteration (see arrow).

For every placement, data from the TFM and SP are recorded
for 10 min to be able to compare the values. The measurement
of the TFM and the SP are started at the same moment. An
internal delay (approximately 4 s) is observed between the first
data point being recorded by TFM and the start of SP. Therefore,
the timestamps are matched by correlating the recorded features
manually (Figure 4). This leaves an error on the time axis of
about 0.2 s. Since the measurements do not start at the same time,
30 s of data are cut from the start and end of every recording. To
calculate the accuracy of the SP, HR and BR are interpolated and
the absolute difference is calculated between HR of the SP and
TFM. This absolute difference is then integrated from 30 to 570 s,
and divided by the integral of the TFMHR. This gives the relative
accuracy of the SP compared to the TFM. The analysis for the BR
is analogous.

3. RESULTS AND DISCUSSION

As described in subsection 2.6, the accuracy of the SP is compared
with the TFM for HR and BR. The overall relative accuracy of
the SP is 92.0 ± 7.4% for HR and 77.5 ± 13.2% for BR. The
individual accuracy for all subjects can be found in Tables 1–4.
An example for HR validation can be found in Figure 4 and for
BR in Figure 5.

The accuracy varies a lot between measurements, even for the
same subjects while changing the electrode positions (Position
1: farthest, Position 3: closest). There are several factors causing
the variation in results. One major factor could be the level of
contact between the electrodes and the body. In men with a lot
of body hair, the contact often varied for different positions. The
impedance measurement relies heavily on good contact, thereby
impacting BR in case of feeble contact. Other factors could be

TABLE 1 | Subject 1: Accuracy of HR and BR.

HR-Accuracy BR-Accuracy rMSSD

Position 1 n.A. n.A. n.A.

Position 2 91.6% 74.7% 342ms

Position 3 97.8% 91.1% 121ms

TABLE 2 | Subject 2: Accuracy of HR and BR.

HR-Accuracy BR-Accuracy rMSSD

Position 1 98.1% 77.9% 124ms

Position 2 98.7% 83.3% 76ms

Position 3 98.6% 44.5% 96ms

TABLE 3 | Subject 3: Accuracy of HR and BR.

HR-Accuracy BR-Accuracy rMSSD

Position 1 95.0% 51.0% 217ms

Position 2 n.A. n.A. n.A.

Position 3 55.3% n.A. 2264ms

TABLE 4 | Subject 4: Accuracy of HR and BR.

HR-Accuracy BR-Accuracy rMSSD

Position 1 97.0% 95.2% 155ms

Position 2 89.1% 91.4% 415ms

Position 3 91.6% 80.0% 339ms

the movement and inherent characteristics of the subjects. Since
the electrodes are attached by cables, the movement of a subject
can easily influence the readings. Impedancemeasurement works
best if there is a significant movement of the chest during each
breathing cycle. Thus, it works better on people who naturally
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FIGURE 5 | BR over time for SP (blue) and TFM (orange).

take deep and slow breaths compared to people who take shallow
and fast breaths.

PPG based smartwatches show the agreement of results
between 3 and 4 beats per minute (BPM) for HR, which implies
an accuracy of approximately 93% and difference of 1 breath per
minute i.e., 92% approximately for BR (29). Upon comparison,
our SP provides accuracy in the same range depending on
positions and contact of electrodes.

Furthermore, the I:E and HRV in the form of rMSSD were
also calculated by the SP. A graph of I:E over time can be
found Figure 6, and the values for rMSSD are tabulated in
Tables 1–4 for all the subjects. The mean value across all subjects
for I:E is 1.09 ± 0.18. While this value is higher compared to
the normal value of 1:2, this could be partly explained by the
test situation. The subjects were aware that their breathing was
being monitored and this might have changed their breathing
cycle. Unfortunately, the TFM did not record I:E, thus, the
corresponding SP performance could not be validated. The
rMSSD is found to be higher than the normal value, which is
in the range of 30ms (30). The possible reason could be missed
beats which drastically increased the rMSSD. Since a missed beat
means the RR-interval becoming twice as long, increasing the
variance of the RR-intervals and in turn rMSSD.

4. CONCLUSION

With the population increasing at a pace faster than healthcare
technologies, the necessity to monitor patients remotely, is
peaking. Wearable technologies help in tackling such situations
and reducing the risk of emergencies. Patients can get precise
care and the HCP can understand behaviors that impact their
health in real-time with wearable technologies. The feasibility
of remote accumulation of physiological data and real-time
analyses, increases the scope for wearable technology and in turn,
improves the quality of life.

FIGURE 6 | I:E for subject 1 at position 2.

The SP developed in our study to monitor breathing
parameters and other biomarkers would be an essential device
for PC patients. Given the accuracy rates, we can infer that the
SP has a promising future with better algorithms, incorporating
proper contact and restricting artifacts. Based on this study, it is
safe to conclude that the SP could be a reliable and convenient
solution favoring early detection and continuous monitoring.

5. FUTURE WORKS

In our prototype, the HR measurement shows comparable
results with the TFM. But, the algorithms to determine BR
and I:E need further improvement. Looking at the accuracy
of our SP from section 3, it is clear that it can be reliably
utilized for home monitoring after fine-tuning. Along with BR,
I:E, HR, HRV, acquiring breathing sounds are also considered
important biomarkers for HCP. We aspire to improve the
microphone integrated into our SP to track and analyse varied
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breathing sounds that could be potential indicators of specific
lung disorders.

In the future development, incorporating the concept of
sensor fusion and determining breathing parameters such as BR
and I:E from ECG along with measuring breathing parameters
from the impedance measurement would make the SP more
consistent, accurate, and reliable.

A predominant hindrance to wearable technologies in the
field of digital health is data privacy. Any device needs to
be well equipped in terms of data security and privacy as
per the government rules and regulations. This is one aspect
that we have to improve upon once sufficient approvals
are obtained and the software application is perfected. Our
final goal is to miniaturize the complete setup, conclude
on a patch material and assemble the wearable SP with
required software.
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