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Regular blood pressure (BP) monitoring enables earlier detection of hypertension and

reduces cardiovascular disease. Cuff-based BP measurements require equipment that

is inconvenient for some individuals and deters regular home-based monitoring. Since

smartphones contain sensors such as video cameras that detect arterial pulsations,

they could also be used to assess cardiovascular health. Researchers have developed

a variety of image processing and machine learning techniques for predicting BP via

smartphone or video camera. This review highlights research behind smartphone and

video camera methods for measuring BP. These methods may in future be used at home

or in clinics, but must be tested over a larger range of BP and lighting conditions. The

review concludes with a discussion of the advantages of the various techniques, their

potential clinical applications, and future directions and challenges. Video cameras may

potentially measure multiple cardiovascular metrics including and beyond BP, reducing

the risk of cardiovascular disease.
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INTRODUCTION

Blood pressure (BP) measurement is necessary in determining an individual’s risk for
cardiovascular disease and the need for early treatment. Early detection and treatment of BP may
delay or prevent conditions related to high BP, such as stroke. This is particularly important in the
Covid era, where there has been an increase in the number of virtual consultations with patients
(1). Digital or at-homemethods where individuals accurately and easily determine BPmay improve
population health, while minimizing hospital visits.

Methods for measuring BP at home or in the clinic are commonly cuff-based. Cuff-based
systems are automated; however, they present difficulty in portability outside the home. Many
individuals find application of the cuff awkward, inconvenient, and uncomfortable. This limits the
number of daily BP measurements. Since BP varies according to time, season, amount of sleep,
and activity, a single measurement over the course of a day, or every few days, does not provide an
accurate assessment of cardiovascular changes and BP variation in an individual (2).

Smartphones could serve as alternatives to the cuff. Many individuals possess smartphones and
operate their features with ease. Phones are embedded with cameras, microphones, light emitters,
and force sensors that can be used to obtain a cardiovascular pulse signal, and ultimately predict
BP. Due to their size, they overcome issues of portability, discomfort, or inconvenience.
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Methods that utilize video cameras to predict BP are
continually undergoing research and development for improved
accuracy. Most smartphone techniques utilize the video camera
to extract the photoplethysmography (PPG) signal from light
reflected from the skin. Due to complexity in relating the PPG
signal to BP, methodologies have been developed to determine
BP from video PPG. This includes image processing to extract
blood flow, machine learning algorithms for calculating BP, and
incorporation of smartphone features such as the microphone or
force sensors. Mathematical models may be applied to separate
hemoglobin signals from melanin and light, and the shape of the
pulse or different arrival times of the pulse used to predict BP (3).

This paper focuses on currently published video camera
and smartphone methods for BP measurement, highlighting
research efforts and experiments from a variety of groups. The
two categories of smartphone/video-camera BP measurements,
contact and non-contact, are covered. Present use of these
techniques is discussed, together with their clinical applicability.
We conclude by discussing the role of video cameras in
health and BP monitoring. This paper provides an in-
depth review of BP-video camera measurement technologies,
including their accuracy, image processing methodologies, and
machine learning algorithms used for predicting BP. This will
provide a resource for researchers in this field to compare
the advantages/disadvantages and technical details of various
published methods.

Video cameras and smartphones could measure BP non-
invasively. Through simultaneously measuring additional
cardiovascular properties such as heart rate or blood
oxygenation, video camera technologies may provide continuous
monitoring of multiple cardiovascular properties from an
individual’s home.

NON-INVASIVE SMARTPHONE CONTACT
MEASUREMENTS OF BLOOD PRESSURE

Contact methods typically involve pressing the fingertip against
the rear camera to acquire a PPG signal. The theory of reflection
mode PPG in video cameras is initially discussed. This is followed
by a description of the three categories of contact-based BP
measurements (see Table 1 and Figure 1): (1) Oscillometry; (2)
Analysis of pulse waveform features; (3) and Pulse transit time
(PTT), calculated as the time delay between two PPG waveforms
at different arterial sites.

Reflection Photoplethysmography and
Smartphones: An Introduction
The heart generates pulsatile flow, causing blood vessels in the
skin to expand and contract. Light absorption by hemoglobin in
the blood is maximized when the vessel is fully expanded during
systole and minimized during diastole. In reflection mode PPG,
light reflected from the skin is detected by a sensor or camera. The
PPG waveform has an oscillating “AC” component largely due to
arterial pulsation, which is superimposed on a DC component
corresponding to fat and blood volume.

In 2010, the smartphone was used to obtain a PPG signal
for heart rate assessment by pressing the finger against the rear
camera (27). Although data from red, green, and blue color
channels are obtained, the green channel is typically used for
calculating physiological parameters via video camera methods.
This is likely due to green light possessing higher absorption
by hemoglobin than red, while penetrating deeper into tissue
than blue (28). These techniques have been extended to estimate
BP (systolic, diastolic, mean) via a logarithmic equation relating
pressure to heart rate and pulse volume (19).

Application of Oscillometry to
Smartphones
Oscillometry techniques produce an automated digital pressure
output and determine BP with limited user input. Vibrations
produced through opening of the arterial wall travel through
air inside the cuff, and into a transducer producing an electrical
signal (29). The upper and lower envelopes of the oscillation are
traced as cuff pressure varies from above systolic pressure (SP)
to below diastolic pressure (DP). Algorithms then estimate the
mean, systolic, and diastolic pressures from the oscillogram (plot
of the oscillation amplitude vs. cuff pressure) (30, 31).

Oscillometry has been extended to smartphones.
Chandrasekhar et al. (16) developed a smartphone-based
device to detect varying pressure in a finger artery, similar to
that of a changing cuff pressure as with cuff-based oscillometry.
A case was attached to the smartphone that contained a PPG
sensor overlaying a force transducer, since a sensor capable of
detecting force applied by the finger was not present within the
phone itself. An infrared LED illuminated the finger pressed
against the PPG sensor, and the force sensor detected the varying
force applied by the user. An oscillogram was generated, and
finger BP related to brachial BP via fitting a parametric model to
the oscillogram.

Most users found the technique user-friendly and learned it
after 1–2 trials. However, whereas the accuracy of this technique
was comparable to a finger-cuff, only approximately 60 % of
BP measurements were successful with the device. More than
half the failures to output a BP value were attributed to a
“computation failure.” A special case was also required for
this method that incorporated sensors for production of a
finger oscillogram. An additional study by the same group (17)
incorporated the iPhone X’s built-in 3D touch force sensor and
camera for PPG detection, eliminating the need for a special case.

PPG Waveform Analysis to Predict Blood
Pressure
Calculating Blood Pressure From Waveform Analysis
A common approach to calculating BP is to extract features
from the pulse waveform related to the shape of the pulse.
The user turns on the LED flash, presses their finger against
the phone camera, and records a video. The resulting video
can be analyzed to produce a pulsatile waveform. Features
are then extracted characterizing the waveform such as pulse
width, slope of initial upstroke, height, time between pulses, etc.
These features are input into machine learning models, such as
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TABLE 1 | Contact methods for smartphone blood pressure (BP) measurement.

Publications Number of subjects in study and

additional experimental details

Accuracy of method Analysis/processing

method

Chandrasekaran et al. (4) 5 subjects

- 2 phones (1 camera, 1 microphone)

OR single phone camera with

external microphone

Still with single mobile:

SP: 98.59% accuracy

DP: 97.96% accuracy

Movement with single mobile:

SP: 97.45% accuracy

DP: 97.63% accuracy

- mean accuracy values calculated by Steinman et al.:

original data in paper provided individual but overall

mean values

Pulse Transit Time

Lamonaca et al. (5) 5 experiments Max error in SP: 11 mHg

Max error in DP: 12 mmHg

Waveform Analysis

Visvanathan et al. (6) 17 subjects Linear regression:

SP: 98.7% detection accuracy

DP: 99.7% detection accuracy

SVM:

SP: 100% detection accuracy

DP: 99.29% detection accuracy

* BP values divided into bins

Waveform Analysis

Visvanathan et al. (7) 156 subjects SP: 98.81% detection accuracy (cross validation)

DP: 98.21% detection accuracy (cross validation)

* BP values divided into bins

Waveform Analysis

Banerjee et al. (8) 23 subjects (15 training, 8 testing) SP: 4 ± 2 mmHg (MAE ± std)

DP: 4 ± 2 mmHg (MAE ± std)

- values calculated by Steinman et al.; original data in paper

only provided for individuals but not averaged

Waveform Analysis

Liu et al. (9) 12 subjects

- 2 cameras (1 for fingertip, other for

forehead temple)

- correlation 0.86 ± 0.06 between established PTT and OFP

* OFP is the time interval between minimum PPG signal from

temple and maximum of PPG signal from fingertip

Pulse Transit Time

Peng et al. (10) 32 subjects

stethoscope attached to phone

SP: 4.339 ± 6.121 (MAE ± std)

DP: 3.171 ± 4.471 (MAE ± std)

MP: 3.480 ± 4.961 (MAE ± std)

Heart Sounds Only

Junior et al. (11)

Junior et al. (12)

3 subjects

- heart sounds and camera

Mean percent error in automated vs. manual calculation of

PTT: 2.53% (maximum 3.00%)

Pulse Transit Time

Gao et al. (13) 65 subjects SP: 5.1 ± 4.3 mmHg (ME ± std)

DP: 4.6 ± 4.3 mmHg (ME ± std)

Waveform Analysis

Plante et al. (14) 85 subjects

- heart sounds and camera

SP: 12.4 ± 10.5 mmHg (MAE ± std)

DP: 10.1 ± 8.1 mmHg (MAE ± std)

Pulse Transit Time

Datta et al. (15) 118 subjects (68 training from

oximeter PPG; 50 smartphone PPG

for testing)

SP: Mean absolute percentage difference 7.4%

Correlation 0.57 with ground truth SBP

DP: Mean absolute percentage difference 9.1 %

Correlation 0.40 with ground truth DBP

Waveform Analysis

Chandrasekhar et al. (16) 32 subjects (35 subjects originally)

- special case used to measure PPG

and applied force

SP: 3.3 ± 8.8 mmHg (ME ± std)

DP: −5.6 ± 77 mmHg (ME ± std)

Oscillometry

Chandrasekhar et al. (17) 18 subjects (20 subjects originally)

- phone camera, iPhoneX 3D touch

feature to measure applied force

SP: −4.0 ± 11.4 mmHg (ME ± std)

DP: −9.4 ± 9.7 mmHg (ME ± std)

Oscillometry

Dey et al. (18) 205 subjects (160 training, 45 testing) SP: 6.9 ± 9.0 mmHg (MAE ± std)

DP: 5.0 ± 6.1 mmHg (MAE ± std)

Waveform Analysis

Matsumara et al. (19) 13 subjects SP: 0.67 ± 12.7 mmHg (ME ± std)

DP: 0.45 ± 8.6 mmHg (ME ± std)

MP: 0.49 ± 9.6 mmHg (ME ± std)

Waveform Analysis

Wang et al. (20) 7 subjects (nine subjects originally)

- phone accelerometer and camera

DP: 5.2 ± 2.0 (RMSE ± std) Pulse Transit Time

Baek et al. (21) 26 subjects

- convolutional neural network

without feature extraction

SP: 5.28 ± 1.80 (MAE ± std)

DP: 4.92 ± 2.42 (MAE ± std)

Waveform Analysis

(Continued)
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TABLE 1 | Continued

Publications Number of subjects in study and

additional experimental details

Accuracy of method Analysis/processing

method

OptiBP, Schoettker et al.

(22)

50 subjects for training (51 originally),

40 validation (50 originally)

SP: −0.7 ± 7.7 mmHg (ME ± std)

DP: −0.4 ± 4.5 mmHg (ME ± std)

MP: −0.6 ± 5.2 mmHg (ME ± std)

Waveform Analysis

Nemcova et al. (23) 22 subjects

- heart sounds and camera

SP: −0.2 ± 6.7 mmHg (ME ± std)

DP: −0.07 ± 8.8 mmHg (ME ± std)

Pulse Transit Time

Tabei et al. (24) 6 subjects

- cameras from 2 smartphones

SP: 2.07 ± 2.06 mmHg (MAE ± std)

DP: 2.12 ± 1.85 mmHg (MAE ± std)

Pulse Transit Time

Preventicus (app) Raichle et al. (25): 32

pregnant women

Dörr et al. (26): 965 subjects (1,036

subjects originally)

Raichle 2018: SP: 5.0 ± 14.5 mmHg (ME ± std)

Dörr 2021: SP: −0.41– ± 16.52 mmHg (ME ± std)

Waveform Analysis

ME, mean error; MAE, mean absolute error; SP, systolic pressure; DP, diastolic pressure; MP, mean pressure; PTT, pulse transit time; PPG, photoplethysmography.

FIGURE 1 | Diagram outlining methods for smartphone blood pressure (BP) estimation. (A) Contact methods, which require pressing the finger against the phone

camera to obtain a finger blood volume pulse. Pixels within the video are averaged in each frame. The signal may be further processed and filtered, producing a

waveform as a function of time. Features are extracted from the waveform and input into machine learning algorithms to calculate BP. Pulse transit time (PTT) may

also be correlated with BP, however multiple sensors are required. (B) Non-contact methods utilize ambient light reflected from the face. The resulting video is

processed to enhance the signal-to-noise ratio of the hemoglobin signal, whose features are be input into a machine learning algorithm to calculate BP (similar to

contact methods). Since multiple facial regions or body parts may be imaged simultaneously, PTT may be estimated using only a single camera by estimating the

difference between pulse arrival at different body regions.

neural networks or regression models, thereby calculating blood
pressure. Multiple features render algorithms less susceptible
to data variability, and increase pressure calculation accuracy.
Unlike methods such as PTT (see below), only one sensor
is needed, and it is less sensitive to motion artifacts because
the finger is pressed against the camera. This also produces

a stronger signal than with non-contact video PPG methods
(section Non-contact Video Camera Measurement of Blood
Pressure).

Use of the PPG waveform to predict BP is not limited to
smartphone-based PPG. As such, there is a range of machine
learning methods that are used, and methods for acquiring
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data. For example, datasets may be publicly available, such as
through the Multiparameter Intelligent Monitoring in Intensive
Care MIMIC database, (32) or frequently acquired via pulse
oximeter (33).

PPG waveform analysis faces challenges, several of which
are outlined in (34). Briefly, PPG waveforms are an indirect
measure of pressure. Finger sizes and pressing pressure vary
considerably between subjects, affecting the PPG waveform
and consequently influencing prediction accuracy. Diseases,
such as anemia, reduce hemoglobin concentration and alter
the relationship between blood volume and total hemoglobin.
Other diseases alter the circulation and body temperature, in
turn reducing the correlation between the peripheral pulse
measured with PPG and BP. Nevertheless, arterial BP, and
PPG signals have a high similarity in their morphology, with
potential for determining whether patients are normotensive
or hypertensive (35). Consequently, studies employing PPG
waveform analysis via smartphones (as detailed below)
have potential for predicting BP and diagnosing conditions
such as hypertension.

Lamonaca et al. (5) trained a neural network on 15,000
PPG pulses with associated pressure from MIMIC. Features
from the PPG pulses relating to length of time in portions
of the cardiac cycle, systolic upstroke time, diastolic time, and
cardiac period were extracted and input into the neural network
algorithm for training on the database. This trained network
was applied to PPG pulses acquired with a smartphone and
compared to pressure measured in the arm with a cuff. Over
five experiments, the maximum difference between predicted
and reference systolic values was 11 and 12 mmHg between
diastolic values. This is above the accuracy threshold of 5 ± 8
mmHg according to the Association for the Advancement of
Medical Instrumentation.

Visvanathan et al. (6) analyzed 14 time domain features of
the PPG waveform, in addition to height, weight, and age. These
were input into a linear regression or support vector machine
classification model to estimate BP. In 2014, a similar analysis
was performed that included additional features in the time and
frequency domain (7).

To reduce noise, Banerjee et al. (8) approximated the PPG
signal as a sum of two Gaussian functions. The cardiovascular
system was modeled as a circuit, with a peripheral resistance (R)
and arterial compliance (C). SP and DP were expressed as an
exponential function of R and C. Seven features from the PPG
signal modeled as the sum of Gaussians were input into a neural
network to calculate R and C, enabling estimation of SP and DP.

Gao et al. (13) applied a discrete wavelet transform to the
PPG signal to extract periodic features. Feature selection was
performed using a linear support vector machine, followed by
training a non-linear support vector machine to predict BP. The
mean error for DP was 4.6 ± 4.3 mmHg, and the error for SP of
5.1± 4.3 mmHg.

Datta et al. (15) analyzed the ratio of PPG features, systolic
upstroke time, the inverse of systolic upstroke time squared,
and age and body mass index (six features total). Mean absolute
error values of 7.4% (systolic) and 9.1% (diastolic) were obtained.
The advantage of measuring the ratio of features is to reduce

dependence on use of a particular camera or smartphone.
This provides an algorithm that is applicable between phones
and manufacturers, and is less likely influenced by sensor or
phone properties.

Dey et al. (18) incorporated 233 total features in the time and
frequency domain. A mean absolute error for DP of 5.0 ± 6.1
mmHg, and 6.9± 9.0 mmHg for SP was calculated.

These studies used feature extraction to predict BP, which
may be influenced by sensor and signal quality, and vary
between studies. It is possible to eliminate feature extraction, as
demonstrated by Baek et al. (21). In this study, a convolutional
neural network was applied to PPG signals without feature
extraction. They obtained a mean absolute error for DP of 4.92
± 2.42 mmHg, and 5.28± 1.80 for SP.

Large-scale studies in patients with a range of BP values
are necessary to assess the accuracy of an app or technique,
since inaccuracy may be induced at higher or lower BP ranges.
This could be attributable to utilizing training data largely from
normotensive populations, healthy/younger individuals, or using
invasive BPmeasures (instead of cuffs) as reference data (26). The
Preventicus BP estimation algorithm overestimated SP in low BP
ranges (< 130 mmHg), and underestimated SP in medium BP
ranges (130–160 mmHg) in pregnant women (25). In a recent
study of more than 900 individuals (300 hypertensive) using
the Preventicus app, overestimation of SP occurred at lower SP,
and underestimation at higher SPs, with decreasing performance
at higher pressures. OptiBP, a smartphone app, possessed high
accuracy when tested on a range of BPs (hypotensive to
hypertensive, 101 subjects total), suggesting it is more likely
to be applicable to the general population than Preventicus
(22). It is difficult to determine presently the reasons similar
techniques (OptiBP vs. Preventicus) are not equally successful
since they both follow a similar methodology (finger-pressing).
The Preventicus algorithm is a combination of frequency and
morphology analysis, and utilizes the knowledge that time
difference between the notch and peak represent peripheral
resistance and depends on BP (26). The OptiBP algorithm
obtains an average waveform over multiple measurements, with
less weight attributed to pulses with abnormal morphology.
Derivative-based features are extracted from the pulse, and
a non-linear model is used to predict BP. The final BP is
determined following a calibration procedure (22).

Pulse Transit Time (PTT): Using Signals
From Multiple Locations to Estimate Blood
Pressure
Calculating Blood Pressure From Pulse Transit Time
Waveform analysis extracts multiple pulse features, inputting
them into machine learning algorithms to calculate BP.
Prediction accuracy is dependent on selection of correct
features based on the waveform shape, which may depend on
characteristics of the sensor. Consequently, algorithms developed
on one smartphone may not be transferable to a different
phone, since each uses a different set of sensors. Algorithms
may require further development to automatically detect subtle
features in the pulses relatable to pressure, along with acquisition
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of large datasets for machine learning. These techniques are
often limited to the fingertip (one region), whereas pulse
information frommultiple regions could increase accuracy of BP
estimation algorithms (36).

PTT overcomes some obstacles of waveform analysis,
requiring onlymeasurement of relative arrival times of two pulses
at different points in the body. PTT is inversely proportional
to pulse wave velocity, which increases with BP. It is used
as an indirect measure of BP, with a reduced PTT indicating
elevated pressure.

PTT and pulse arrival time (PAT) are often used
interchangeably. Technically, PTT is the time difference
between two points in the PPG waveforms measured at different
arterial sites. PAT represents the time difference between the
R-peak of the electrocardiogram and a characteristic point
in the PPG waveform, such as the foot. Since PTT is not in
pressure units, methods using PTT to estimate pressure require
calibration to relate the quantities. Accuracy of PTT-based BP
measurements therefore depends on calibration quality, possibly
requiring recalibration after several months. Calibration for each
individual is performed by acquiring multiple pressure and PTT
measurements and performing regression analysis to relate the
two quantities. Multiple pressure and PTT measurements may
be acquired through pressure perturbations such as exercise or
changing posture (37).

Inconsistencies impact the accuracy or variability of BP
recordings calculated from PTT. The characteristic points used
to determine PPG pulse arrival time differ between studies,
such as the foot or peak of the waveform, or the peak of the
second derivative waveform (38). Either marker may be used,
although effects of wave reflection from peripheral arteries are
minimized if the foot-to-foot time delay between waveforms is
used (37). Conditions for accurate BP calculation from PTT
include assumptions of negligible contraction of vasculature via
smooth muscle and negligible viscous effects, which induce PTT
variations without affecting blood pressure; andminimal changes
to arterial elasticity in response to disease or aging (37). Due to
this final condition, periodic recalibration is required for chronic
BP measurements, with calibration period depending on age.
In a theoretical study, for a 30-year-old the calibration period
to maintain accuracy (<1 mmHg error in BP calculation) is
approximately 1-year, decreasing to 6-months for a 70-year-old
(39). A study in 14 normotensive subjects (aged 20–36 years)
suggest shorter calibration periods, where regression coefficients
for calculating BP from PTT in a first test inaccurately predict
blood pressure in a repeat test 6-months later (40).

Incorporation of PTT Into Contact-Based

Smartphone Techniques
Two measurements are required to incorporate PTT into
smartphones: one PPG pulse, and a PPG pulse or indicator
of heartbeat. Chandrasekaran et al. (4) used two methods
for calculating BP based on recording of heart sound
(phonocardiogram, PCG) and finger pulse. The first method
required two smartphones. One was pressed against the user’s
chest to record the PCG, while the other detected the PPG finger
pulse. The second method was similar, except a single phone

was used. A finger PPG pulse was acquired, and a customized
external microphone attached to the smartphone to amplify the
acoustic heart signal. Estimated BP values achieved an accuracy
of approximately 95–100% when compared to a commercial
BP meter. Similar techniques combining PCG and PPG are
described in Junior et al. (11, 12) and Nemcova et al. (23). Such
techniques have been incorporated into phone apps, such as
AuraLife Instant Blood Pressure (IBP) (41). Clinical translation
of the AuraLife app has not been successful, where a clinical
study (85 participants, 53% with hypertension) of the app
found large errors in measured pressure and low sensitivity to
detecting hypertension (14).

A potential inaccuracy induced through PCG measurement
is reliance of the signal on closing instead of opening of heart
valves. This provides incorrect times for PTT determination since
valve closure does not indicate when blood is ejected from the
heart (20). Therefore, Wang et al. (20) instead investigated the
phone’s accelerometer to detect vibrations caused by mechanical
movement of the heart (seismocardiogram, SCG). The error in
DP over all subjects was 5.2 ± 2.0 mmHg (RMSE ± std). SP
was not calculated since the characteristic PPG point to calculate
PTT was the foot of the pulse, which measures arrival time
of diastole (20).

Some studies use two cameras and define PTT as the difference
in times between two characteristic points in the PPG pulses
at different body locations. Liu et al. (9) assembled a prototype
device with the front-camera pressed against the temple and the
finger contacting the rear-camera. Tabei et al. (24) incorporated
two smartphones, defining PTT as the time difference between
peak locations for each fingertip PPG. SP and DP were estimated
with a regression model, and compared to calculations with a
reference device. Estimates demonstrated a mean absolute error
for SP and DP of∼2 mmHg.

NON-CONTACT VIDEO CAMERA
MEASUREMENT OF BLOOD PRESSURE

A disadvantage of contact techniques is the PPG signal
dependence on finger pressing force, in contrast to non-
contact video camera techniques. Non-contact techniques can
simultaneously measure multiple body parts and regions of the
face, which are differentially innervated by sympathetic and
parasympathetic neurons. This additional information could
increase accuracy of camera prediction methods, compared
to more homogeneous data acquisition as per finger-pressing
contact techniques (36).

However, non-contact video methods are susceptible to noise
and artifacts unrelated to the hemoglobin signal. For example,
a dicrotic notch in the blood volume pulse is often absent in
video PPG, which could affect calculation of PTT. While some
signal reflected from tissue is due to hemoglobin, other light does
not pass through tissue and is reflected from the skin surface.
This is termed diffuse reflection (42). Other light reflection
is due to non-hemoglobin components, such as melanin. In
order to predict BP most accurately, and to avoid noise effects
being interpreted as part of the signal, mathematical/optical
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TABLE 2 | Non-contact methods for smartphone/video blood pressure (BP) measurement.

Publications Number of subjects and

additional experimental details

Accuracy of method Video processing method

Murakami et al. (44) 10 subjects Correlation coefficient of PTT with SP: −0.879 Single-Channel Analysis

Sugita et al. (45) 20 subjects Correlation coefficient with SP: ∼ 0.6 for pulse wave indices

from right hand

Single-Channel Analysis

Yoshioka et al. (46) 10 subjects Correlation coefficient between PTT and SP: −0.879

* same study subjects as Murakami et al. (44) above

Single-Channel Analysis

Jain et al. (47) 45 subjects SP: 3.90 ± 5.37 (MAE ± std)

DP: 3.72 ± 5.08 mmHg (MAE ± std)

Principal Component

Analysis

Jeong and Finkelstein (48) 7 subjects Correlation between SP and PTT: −0.80

- correlation obtained by averaging across values for

individual subjects provided in Jeong and Finkelstein (48)

Single-Channel Analysis

Secerbegovic et al. (49) 3 subjects PTT calculated from ECG and video forehead signal:

SP: 9.48 ± 7.13 mmHg (MAE ± std)

MP: 4.48 ± 3.29 mmHg (MAE ± std)

Correlation between PTT phase delay between forehead and

palm video signals and SP:−0.6045

Independent Component

Analysis

Huang et al. (50) 13 subjects SP: 14.02 mmHg (RMSE)

DP: 7.38 mmHg (RMSE)

Single-Channel Analysis

Khong et al. (51) 45 subjects SP: 4.22 ± 3.15 mmHg (MAE ± std)

DP: 3.24 ± 2.21 mmHg (MAE ± std)

Single-Channel Analysis

Patil et al. (52) 20 subjects Morning session

SP: 9.62 % (error rate)

DP: 11.63 % (error rate)

Afternoon session

SP: 8.4 % (error rate)

DP: 11.18 % (error rate)

Independent Component

Analysis

Chen et al. (53) 2 subjects SP: −2.40 % – 3.43 % (range of error compared to reference)

DP: −6.88 % – 5.26 % (range of error compared to reference)

Mathematical/Optical

Modeling

Fang et al. (54) 15 subjects SP: 11.2 mmHg (RMSE)

PP: 7.83 mmHg (RMSE)

Mathematical/Optical

Modeling

Viejo et al. (55) 15 subjects (70 % training, 15 %

validation, 15 % testing)

Correlation coefficient in testing phase between measured

BP, heart rate and reference BP, heart rate: 0.71

Single-Channel Analysis

Oiwa et al. (56) 8 subjects MP: range from 1.50 mmHg – 4.15 mmHg (MAE) Independent Component

Analysis

Shirbani et al. (57) 15 subjects Slope from plot of PAT measured from video PPG vs. DP:

−1.33 ± 1.70 ms/mmHg (mean ± standard error), p =

0.0024

Single-Channel Analysis

Adachi et al. (3) 10 subjects Without body movement:

SP:−1.0 ± 5.6 mmHg (ME ± std)

With body movement:

SP: −0.1 ± 12.2 mmHg (ME ± std)

Mathematical/Optical

Modeling

Luo et al. (36) 1,328 subjects (70 % training, 15 %

testing, 15 % validation) (data

collected from 2,348 subjects

originally)

SP: 0.39 ± 7.30 mmHg (ME ± std)

DP: −0.20 ± 6.00 mmHg (ME ± std)

PP: 0.52 ± 6.42 mmHg (ME ± std)

Transdermal Optical Imaging

Sugita et al. (45) 17 subjects (20 subjects originally) Correlation coefficient of right palm index with SP: < −0.5 Single-Channel Analysis

Sugita, Noro, et al. (58) 5 subjects SP: 25.7 mmHg (RMSE) Single-Channel Analysis

Fan et al. (59) 6 subjects SP: 8.42 ± 8.81 mmHg (MAE ± std)

DP: 12.34 ± 7.10 mmHg (MAE ± std)

Mathematical/Optical

Modeling

Takahashi et al. (60) 4 subjects Correlation between SP and PTT measured only in face via

video: −0.4543 (range from −0.7820 to −0.2900)

- average value not provided in original publication;

averaged here over the four individual values

Mathematical/Optical

Modeling

Rong and Li (61) 189 subjects (191 subjects originally;

70 % training; 30 % testing)

SP: 9.97, 2.1 ± 3.35 mmHg (MAE, ME ± std)

DP: 7.59, 0.79 ± 2.58 mmHg (MAE, ME ± std)

- showing here result obtained with the machine learning

method that produces the smallest MAE

Single-Channel Analysis

ME, mean error; MAE, mean absolute error; RMSE, root mean square error; SP, systolic pressure; DP, diastolic pressure; MP, mean pressure; PTT, pulse transit time; PPG,

photoplethysmography; PP, pulse pressure; PAT, pulse arrival time.
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TABLE 3 | Comparison of contact and non-contact BP measurement techniques.

Advantages of techniques Disadvantages of techniques Comments on specific contact/non-contact

techniques

Contact - higher signal achievable compared to

non-contact due to proximity of finger

to sensor and LED

- reduced sensitivity to subject motion,

since the finger is pressed against the

camera

- less sensitive to external lighting

conditions than non-contact methods

- signal may depend on finger pressing

force

- may require multiple sensors, such as

microphone, in addition to camera

- limited to certain regions of the body,

such as the finger, whereas the face

includes pulse information for predicting

BP

- may depend on height of hand relative

to heart

Oscillometry

- convenient, easy method to learn

- may require a special case to sense

applied pressure

Waveform Analysis

- prediction accuracy dependent on size of

training data, extent to which training data

reflects the characteristics of the population,

and features extracted for input into machine

learning algorithms

Pulse Transit Time

- easy, efficient measure that correlates with BP

- data may require calibration every 6-months to 1-

year, depending on age and health conditions of

subject

- multiple sensors required in the case of

contact methods

Heart Sounds Only

- may require attachment of a stethoscope to

smartphone to amplify heart sounds

Non-contact - may image multiple regions

simultaneously without additional

equipment/sensors

- signal does not depend on pressing

force, yielding more consistency across

subjects or between trials

- acquisition of blood pressure through

‘selfie’ or short video

- sensitive to lighting conditions, angle of

camera with face, and distance of

camera from face

- sensitivity to body and surface skin

movement

- relatively weak signal, since often the

camera is held a distance from the face

and ambient light is used as the

light source

Single-Channel Analysis

- usually green channel analyzed, followed by

application of PTT or waveform analysis

- susceptible to skin inhomogeneities, melanin,

lighting conditions

Transdermal Optical Imaging

- use of machine learning to extract hemoglobin

signal

- applied in study of over 1,300 individuals to

predict BP

Mathematical/Optical Modeling

- account for light reflectance from skin surface,

skin movement, melanin, and lighting. They may

therefore be potentially applied to a range of real-

life conditions outside the laboratory.

Independent Component Analysis

- assumes each channel contains a

hemoglobin component

- component with the strongest signal at the heart

rate selected as the pulse component

Principal Component Analysis

- may be used to determine which components of

the video signal are attributable to hemoglobin

pulsation

- can reduce data redundancy for optimal

performance of machine learning algorithms

models or machine learning techniques are used to specifically
extract the hemoglobin signal component. For example, the

chrominance model (CHROM) yields a higher blood volume

pulse SNR than techniques such as blind source separation,

even under conditions of movement due to its ability to remove

non-hemoglobin components such as diffuse reflection (42).

In exercise (subject movement) conditions, processing data

from only a single channel often does not yield a clear blood

volume pulse (43).
Consequently, a number of video camera processing

techniques have been developed for overcoming deficiencies

of single channel analysis, using sophisticated algorithms to

minimize noise effects. This section details these techniques.
Nevertheless, as will also be described, studies utilizing only a
single color channel for analysis are still able to produce accurate
estimates of BP or strong correlations between PTT calculations
and BP.

These methods are summarized in Table 2, while Table 3

compares the advantages and disadvantages of contact and non-
contact techniques.

Single Channel Video Analysis
PPG signal for heart and respiratory rate calculation was detected
from facial videos in 2008 by averaging pixel signal over the
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green channel (28). Machine learning techniques, such as neural
networks, can use features from the filtered, averaged signal to
predict BP (55, 61).

An advantage of video techniques is multiple regions may
be imaged simultaneously, enabling calculation of PTT using
only a single sensor (camera). This was demonstrated by Jeong
and Finkelstein, (48) who found a strong correlation between
SP and PTT through videos acquired of the face and hand.
Their study used high speed video recording (420 fps) to capture
1-min videos between/before/after exercise protocols, with the
subject seated and hand on a table. Other studies utilizing PTT
to estimate BP from single channel processing include: Yoshioka
et al. (46), Huang et al. (50), Khong et al. (51), Murakami et
al. (44) and Shirbani et al. (57). As an alternative to PTT, it
may be possible to capture videos of hands at different heights,
relating the difference in pulse amplitudes between the hands to
BP (58). Others use phase difference between PPG waveforms as
a surrogate for time delay, which has a higher correlation with SP
compared to time delay methods (62). Phase difference, however,
is distorted by skin inhomogeneities and may not provide a truly
accurate measure of PTT (63).

A disadvantage to requiring two pulse measurement locations,
as in Jeong and Finkelstein (48), is PTT varies according to
the distance between face and hand or body parts selected for
analysis. This will alter BP prediction when a subject adjusts their
posture. To overcome potential variability in measuring PTT
in different regions, Sugita et al. (45) calculated time difference
(TBH) betweenminimum values in a band-pass filtered waveform
from video of the palm, and the raw waveform from the palm.
They demonstrated smoothing the PPG waveform causes a phase
change indicating heart-rate variability, with TBH indicating
the degree of distortion of the PPG waveform. TBH showed a
similarly strong correlation with SP as the difference between
arrival times of waveforms in the palm and forehead. This
suggests TBH has similar accuracy as PTT in calculating BP, but
should be more applicable to situations where body movement
occurs, such as exercise.

Processing Video Data to Extract
Hemoglobin Information
Single-channel (typically green channel) data contains
hemoglobin information. The overall channel signal, however,
is affected by melanin content (skin tone), lighting, and subject
movement. This may be controlled in experimental situations
through consistent and bright lighting, and limiting subject
movement. In “real world” environments, there are a variety
of skin tones, background light, and subject motion. In these
situations, analysis of raw or filtered green channel data risks
acquisition of a distorted or altered waveform not accounted
for in algorithms relating waveform shape to BP. As detailed
below, video frames may be processed using machine learning
or mathematical algorithms to extract hemoglobin-dependent
features of the signal that are then used to estimate BP.

Transdermal Optical Imaging (TOI)
A study by Luo et al. (36) with over 1,300 normo-tensive subjects
demonstrated feasibility of non-contact BP measurement with

video camera (64, 65). Each 8-bit image from the three color
channels contains 8 bitplanes, with each pixel in a bitplane 0 or
1. A machine learning algorithm was trained to select bitplanes
corresponding to hemodynamic changes. This technique has
demonstrated successful calculation of heart rate and heart rate
variability, stress, facial blood flow, BP, and flow responses to
stimuli (36, 66, 67)(see Figure 2).

To calculate BP, transdermal blood flow data was acquired
from 17 facial regions with an Apple iPhone 6. The subject
was seated, with back straight and feet on the ground. Data
acquisition occurred over 2-min. One hundred and twenty
six features were extracted from the videos relating to pulse
characteristics, such as shape, amplitude, and heart rate. An
additional 29 “meta features” were selected to normalize for
variation in imaging conditions across the three channels, and
to account for ambient room temperature and demographic
characteristics. Principal component analysis (PCA) (68) reduced
data dimensions, producing 30 eigenvectors that were input
into a multi-layer perceptron to calculate BP. Accuracy was
approximately 95%, with an error bias of 0.39 ± 7.30 mmHg
(SP), −0.20 ± 6.00 mmHg (DP), and 0.52 ± 6.42 mmHg
(pulse pressure).

Mathematical and Optical Modeling
Adachi et al. (3) developed a mathematical model to determine
contributions from hemoglobin, melanin, and light shadowing
on video signal. Hemoglobin signal (PPG waveform) was
extracted through removal of the melanin and lighting effects
based on knowledge of the melanin light absorption spectrum
and camera spectral sensitivity. Features based on waveform
shape and PTT were obtained from the extracted PPG
waveforms, and used to predict BP. Following recording of data
for 30 s, BP was predicted under conditions of movement vs. no
body movement. Without body movement, the mean prediction
error from 10 subjects for SP was −1.0 ± 5.6 mmHg; with
body movement, the prediction error was −0.1 ± 12.2 mmHg.
Prediction error for DP was not included.

Fukunishi et al. (69) applied a model of light travel through
the skin to extract the hemoglobin signal and blood volume pulse
from an RGB camera. Using a high speed digital camera (capable
of 2,000 fps, operated at 500 fps), with each recording set at
8.7 s, the Fukunishi model was applied by Takahashi et al. (60) to
calculate PTT between forehead and chin, obtaining correlation
coefficients between PTT and SP ranging from∼−0.3 to−0.8 for
four subjects.

The CHROM model reduces the effect of motion and light
reflected from the skin that does not possess a pulsatile or blood
flow component. Fan et al. (59) and Chen et al. (53) (30 s of
video, at 60 fps) (53) adapted CHROM to extract PPG signals
from still videos of the face and hand, calculating PTT as the
time difference between peaks or the phase difference between
waveforms respectively. In both cases, subjects were sitting with
facing toward the camera and hand raised. In Fan et al. (59) the
authors developed a solution to a problem in video PPG where
the dicrotic notch is “buried” in the overall signal, causing a peak
shift and mis-estimation of PTT. This was accomplished through
adaptive Gaussian modeling, where the signal is modeled as a
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FIGURE 2 | Calculation of blood pressure (BP) by transdermal optical imaging (TOI). A machine learning algorithm selects the bitplanes from a video with the highest

signal for hemoglobin, from which the blood volume pulse is extracted from multiple facial regions (17 regions total). Features of the pulse are input into a multilayer

perceptron to calculate BP.

sum of two Gaussian curves and the parameters are calculated
through least squares minimization. A similar algorithm to
CHROM, plane orthogonal to surface (POS), (43) was used by
Fang et al. (54) to predict BP. The camera frame-rate was set to
90 fps, 15 subjects were video-imaged, with 10 videos each at 45 s
per video. Similar to Chen et al. and Fan et al. above, videos of
the face and hand were acquired, with PTT calculated between
the cheek and radial artery in palm due to these regions providing
the strongest signals.

Independent Component Analysis
Independent component analysis (ICA) assumes a signal is a
linear mixture of underlying sources and mathematically extracts
them (70). Poh et al. (71) demonstrated data from the color
channels could be decomposed into three components, one
corresponding to the blood volume pulse. The signal with
the largest frequency component corresponding to heart rate
is assumed to correspond to the blood volume pulse (72).
This analysis assumes each channel contains information on
hemoglobin-related fluctuations.

In a study of three healthy individuals, Secerbegovic et al.
(49) applied ICA, extracting the ICA component with the largest
signal at the heart rate frequency. Using PTT to estimate BP,mean
absolute error for SP and mean BP were 9.48 ± 7.13 and 4.48
± 3.29 mmHg respectively. Frame rate was 25 fps, with subject
seated and videos acquired simultaneously of face (forehead) and
palm, and video duration 3-min. Patil et al. (52) extracted similar
features of the PPG pulse as Adachi et al. These were input into a
single hidden layer neural network, obtaining average error rates
of 8.4–9.62% (systolic) and 11.18–11.63% (diastolic) between
afternoon and evening sessions. Subjects were permitted small
headmovements to simulate realistic work conditions. Oiwa et al.
(56) correlated facial PPG amplitude with reference BP following

ICA, obtaining a mean absolute error in the range 1.50–4.15 over
eight subjects. Data was acquired over a series of 2-min resting
state segments with eyes closed and 1-min cold stimulus state
segment, where subjects placed their hand in a cold (14◦C) water
bath with eyes opened.

Principal Component Analysis
Most of the video signal is not attributed to blood flow
fluctuations. PCA (73) calculates the main components that
contribute to signal intensity variation in an image. Jain et al. (47)
defined the PPG signal for each frame as the difference between
the raw video data in the red channel and the main principal
components. Twenty features in the time and frequency domain
(6, 74) were input into a polynomial regression algorithm (75) to
calculate BP. Mean absolute error was 3.72± 5.08 mmHg for DP
and 3.90± 5.37 mmHg for SP. Subjects were seated still with eyes
closed. Videos were acquired over 1-min. The initial and final 5-s
of the videos were discarded, with the best 10-s of the remaining
video processed further for analysis.

DISCUSSION, PERSPECTIVES, AND
FUTURE OUTLOOK

This review highlighted smartphone and video camera
techniques for measuring BP. Wearables, such as watches
or similar devices (76, 77), are outside the scope of the review,
although they increasingly play an important role in the field of
BP monitoring. Most smartphone methods for predicting BP are
PPG-based. Although Peng et al. (10) attached a stethoscope to
the smartphone microphone, using heart sounds only to estimate
BP, such studies are relatively infrequent.
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Smartphone BP monitors are potentially applicable to
ambulatory BP monitoring (examining BP continuously during
the day). Measurements in a doctor’s office are affected by
“white coat” syndrome, where patients are recorded as possessing
a higher BP recording when measured clinically. Since BP
varies throughout the day, improved understanding of how and
why these changes occur could assist physicians in prescribing
medication. Smartphones may measure pressure easily, with
no additional equipment required beyond the phone or case.
In contrast, cuffs may be awkward and bulky, inducing arm
soreness or rashes after multiple daily uses (78). Although a
smartphone may not be used at night when the user is asleep,
video cameras with infrared light can monitor vital signs using
similar techniques as those developed for the smartphone (79).

Contact methods have higher signal-to-noise-ratio due to the
proximity of skin to the sensor and usage of light beyond ambient
light (i.e., LED from phone). Additional features in the pulse wave
are distinguishable in contact vs. non-contact methods, such as
secondary peaks. In using machine learning algorithms to relate
waveform shape to BP, these additional features are helpful in
increasing the accuracy of the prediction as they may be affected
by BP. Contact methods are also less dependent on motion since
the finger remains pressed against the camera.

Non-contact methods possess other advantages. Contact
methods are influenced by the force with which the finger is
pressed against the camera. This could vary between individuals,
and between trials conducted in the same individual. For
waveform analysis, data from only a single region (fingertip)
is acquired. Non-contact methods acquire images of multiple
regions simultaneously. This enables simultaneous analysis of
waveform shape and PTT. Different regions of the body could
be affected differently by the sympathetic and parasympathetic
nervous system, which is not accounted for through analysis
of a single region. Contact methods that incorporate PTT may
require additional sensors such as themicrophonewhich produce
a weak signal, or a case containing multiple sensors such as an
electrocardiogram and PPG (27, 80). Oscillometry may require
a special case to simultaneously measure blood volume changes
and applied pressure (16), or the 3D Touch feature on the iPhone
X (17), which is not available in all phone types. Non-contact
methods do not face this issue since all phones are equipped with
a camera.

Several published methods possess a mean error ± standard
deviation within the clinically acceptable 5± 8mmHg. This is not
necessarily translatable to the clinic, as indicated in the trial of the
AuraLife app (14). Small sample sizes of published studies do not
necessarily hold for large populations. It is difficult to compare
published techniques based on accuracy measures, or to predict
which will be successful when applied to large populations.
Studies mostly use normotensive subjects, which may reduce
prediction accuracy at high and low BP. In a follow-up study
of the Anura TOI-based smartphone app (81), lower BPs tended
to be overpredicted, while higher BPs were underpredicted. This
was attributed to more limited training data at the extreme ends
of BP (81).

Many studies do not meet criteria for validating BP devices. In
addition to the AAMI criteria of MAE 5± 8mmHg, several other

criteria are listed (82), such as: at least 85 subjects; probability of
tolerable errors <10 mmHg is at least 85 %, where a tolerable
error is calculated as an average of three measurements against
a reference BP; reference BP measurements acquired by two
observers; and recording of number of absolute BP differences
within 5, 10, and 15 mmHg. The protocol must cover a sufficient
time frame to ensure that as the measurement device ages,
accuracy is not reduced (83). Many clinical validation protocols
are tested on new models, without testing sustained accuracy
over time, even though BP devices such as sphygmomanometers
decline in accuracy over 18-months (84, 85). Over time, an
individual may undergo physical changes in skin (i.e., aging)
or changes in size, which may influence PPG extraction and
BP estimation. Nevertheless, since non-contact methods should
be applicable across camera types and imaging conditions,
algorithms trained on data from a variety of subject types (age,
sex, still vs. movement, range of skin tones and types) should be
accurate for a sustainable time period.

TOI possesses advantages to other techniques for clinical
translation. The sample size of Luo et al. (36) is over 1,300; 155
features over 17 ROIs relating to waveform shape, population
demographics and PTT predicted BP. This is advantageous over
methods with small sample size and those that only measure
PTT or analyze a single region. A disadvantage of limiting
measurements to PTT is the phase shift used to measure PTT
partially depends on skin variability/inhomogeneity, affecting
PTT accuracy (63).

Luo et al. (36) acquired images under strict conditions:
normotensive, and consistent lighting and camera angle. Future
studies may include a wider range of pressures to determine
whether TOI may predict hypertension, and a variety of camera
angles and lighting conditions.

Video-camera processing techniques other than TOI may be
successful if applied to a larger population, or through optimized
analysis of PPG waveform features. For example, Adachi et
al. (3) only used eight features of the PPG waveform and the
time difference between two pulse waves from 10 subjects as
input features for learning. Due to the small sample size, it is
difficult to extrapolate their success to larger populations. Other
algorithms propose first classifying PPG waveforms into one of
three categories (hypotensive, normotensive, or hypertensive),
calculating BP according to the category to which the PPG
pulse was assigned (86). This method is an improvement
over traditional techniques which apply a generic algorithm to
calculate BP regardless of the subject’s BP range. Eulerian video
magnification is a video processing technique that enhances
blood flow signal (87). It has been applied to calculate PTT
in videos of wrist and neck, indicating its applicability to
BP measurements (88).

Future experiments may forego traditional image processing
techniques. Chen and McDuff (89) developed DeepPhys, a
convolutional neural network, and applied it to video frames
to recover the blood volume pulse, measuring heart and breath
rate. Convolutional neural network techniques may only produce
a single, total blood volume pulse. TOI, however, predicts BP
from multiple facial regions. This is advantageous since each
region is differentially innervated, possibly influencing pressure
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prediction. The potential to reduce dependence on feature
extraction is exemplified in the study by Baek et al. (21), who
applied convolutional neural networks to PPG data without
feature extraction to predict BP.

Additional possibilities are outlined in (90). This includes
(A) development of techniques and models robust to “real-life”
conditions such shadowing or movement; (B) application of
infrared light, which acquires videos in dark conditions and may
be less sensitive to variable ambient lighting; (C) development
of a large publicly available dataset, where different algorithms
may be applied and compared; (D) extraction of additional
features beyond PTT; (E) development of a model requiring
fewer calibrations.

This paper highlighted and compared the variety of methods
available for measuring BP with smartphones/video cameras. It
emphasizes variations in experimental design and the relevancy
of these variations in developing methods for BP measurement
that are efficient, easy to use, and non-invasive. This permits
regular BP monitoring, contributing to early hypertension or
cardiovascular disease risk detection. Possibilities for successful
BP monitoring was demonstrated in early studies, such as
Lamonaca et al. (5), that used the rear camera of the phone
in combination with the LED to extract a strong pulse signal
in the finger. Later studies included more features for analysis
(18), or used convolutional neural networks to predict BP
without waveform feature extraction (21). In parallel, non-
contact methods were developed that overcame deficiencies of
contact methods, such as BP prediction limited to a small field of
view (fingertip). Non-contact video methods initially processed
data from single channels, which is affected by motion, lighting,
and features not related to hemoglobin such as melanin. Recent
techniques, such as TOI or optical models, have extracted the
hemoglobin signal specifically and are less sensitive to artifacts
from non-hemoglobin sources.

Smartphone and video BP measurements will likely become
more common. Compared to cuff-based techniques, they are
cost-effective and convenient. Using a single video, BP may be
combined with heart rate detection and stress assessment (66),
blood oxygen saturation (23), and blood flow. This technology
can be developed for improved digital health consultations to
assess a number of health conditions. For example, measurement
of the multiple parameters described above currently requires a
visit to amedical health professional. This is time consuming, and
may necessitate meetings with multiple health professionals.

As methods and techniques for processing video images
advances, it is foreseeable a video consultation over Zoom
can relay to a doctor/nurse a patient’s vitals (heart rate,
BP, oxygen saturation, respiratory rate, etc.) and relate this
information to stroke risk or susceptibility to cardiovascular
disease. This information would be provided in real-time
and reduce the need for manual measurements by a medical
professional. In addition, through continuous and regular daily
monitoring of their own vitals privately with a smartphone,
patients can be alerted via algorithms whether further treatment
is necessary. Ambulatory BP monitoring (BP monitoring at

regular intervals during day, such as via a video camera)
may detect abnormal variations in BP not detectable with a
single BP measurement session at a doctor’s office. Furthermore,
ambulatory BP has been demonstrated to correlate more
strongly with organ damage caused by hypertension than BP
measurements conducted in a clinical setting (91). Data acquired
via smartphone may be automatically directed to a health
care team for further discussions and medical decisions. Such
technology can be extended to blood sugar measurements for
diabetes patients, and other information related to cholesterol,
fats, and hemoglobin (92). Video technology could be on
the cusp of a future where a patient’s home is transformed
into a “smartphone-based doctor’s office” where numerous
cardiovascular or blood-related metrics are assessed that would
previously require expertise and communication across multiple
health divisions.

Overall, smartphones and video cameras will provide a more
complete and earlier assessment of cardiovascular physiology,
helping to prevent stroke and blood vessel-related disorders.

AUTHOR’S NOTE

This review discusses video camera methods for measuring
blood pressure. During Covid, there has been an increase
in the number of virtual consultations with patients. Thus,
there is increased interest in developing technologies that
will allow patients to monitor vital signs from home. This
prevents unnecessary additional trips to doctors, provides
daily information on changes in cardiovascular health, and
may help detect signs leading to stroke or disease. In 2019,
our lab published a paper in Circulation: Cardiovascular
Imaging: “Smartphone-based blood pressure measurement using
transdermal optical imaging technology” by Luo et al. In a
study of over 1300 subjects, we demonstrated accurate blood
pressure prediction via video camera. This was achieved through
an imaging technology, transdermal optical imaging (TOI),
that uses machine learning to extract a cardiovascular pulse
signal from facial videos. As discussed in our review, there are
numerous additional smartphone technologies beyond TOI that
can also be used. Our review compares the different techniques
and their technical aspects such as image processing and data
analysis. The review concludes with the future of video camera
blood pressure measurement, and how it can be combined with
measurement of other metrics for a more complete assessment of
cardiovascular health.
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