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Poor lifestyle leads potentially to chronic diseases and low-grade physical and
mental fitness. However, ahead of time, we can measure and analyze multiple
aspects of physical and mental health, such as body parameters, health risk
factors, degrees of motivation, and the overall willingness to change the
current lifestyle. In conjunction with data representing human brain activity,
we can obtain and identify human health problems resulting from a long-
term lifestyle more precisely and, where appropriate, improve the quality and
length of human life. Currently, brain and physical health-related data are
not commonly collected and evaluated together. However, doing that is
supposed to be an interesting and viable concept, especially when followed
by a more detailed definition and description of their whole processing
lifecycle. Moreover, when best practices are used to store, annotate, analyze,
and evaluate such data collections, the necessary infrastructure development
and more intense cooperation among scientific teams and laboratories are
facilitated. This approach also improves the reproducibility of experimental
work. As a result, large collections of physical and brain health-related data
could provide a robust basis for better interpretation of a person’s overall
health. This work aims to overview and reflect some best practices used
within global communities to ensure the reproducibility of experiments,
collected datasets and related workflows. These best practices concern, e.g.,
data lifecycle models, FAIR principles, and definitions and implementations of
terminologies and ontologies. Then, an example of how an automated
workflow system could be created to support the collection, annotation,
storage, analysis, and publication of findings is shown. The Body in Numbers
pilot system, also utilizing software engineering best practices, was
developed to implement the concept of such an automated workflow
system. It is unique just due to the combination of the processing and
evaluation of physical and brain (electrophysiological) data. Its
implementation is explored in greater detail, and opportunities to use the
gained findings and results throughout various application domains are
discussed.
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1. Introduction

Poor lifestyle leads potentially to chronic diseases and
deteriorating physical and mental fitness. To overcome (at
least partly) these troubles during aging, prior collection and
evaluation of various health-related data accompanied by
health interventions for those interested in them could help
this unpleasant situation, which mainly affects developed
societies. We can measure and analyze multiple aspects of
physical and mental health, such as body parameters, health
risk factors, degrees of motivation, and the overall willingness
to change the current lifestyle in advance. In conjunction with
data representing human brain activity, we can obtain and
identify human health problems resulting from a long-term
lifestyle more precisely and, where appropriate, improve the
quality and length of human life.

However, the possibility of interpreting various health-
related data and providing subsequent reasonable health
interventions means first defining and collecting a large
amount of various health-related data that can be processed
automatically. It is impossible without using the results of
standardization efforts and best practices applied across
various domains of health-related data. These efforts and
practices significantly impact the entire data collection, storage,
processing, and interpretation lifecycle. As a result, these
(infrastructure-related) issues need to be addressed, presented,
and discussed in the scientific communities so that the
experimental work is better reproducible and the data collected
can be better analyzed across domains and scales. As technical
solutions (technical means to collect, organize, store, annotate,
and analyze data) are becoming less of a barrier, and it
depends increasingly on knowledge and acceptance of partial
solutions, existing standards, and best practices in different
domains, this article offers a synthesis of some existing
approaches to contribute to the interpretability of collected
data and their actual use for communication and possible
timely preventive adjustment of the lifestyle of individuals. It is
done by providing an overview of some current “standards”
and best practices and their integration into a proposed solution.

Health-related data accompanied by metadata are
inherently heterogeneous; they are organized and stored in
various structures, formats, and data repositories. Related
metadata contains various written points ranging from precise
data descriptions to only stated basic information based on
experimenters’ requirements and task circumstances. Also,
metadata can be structured differently and stored in various
formats, making the processing or recreating similar
experiments somewhat tedious. As a result, retrieving the
knowledge from these kinds of data is quite challenging (1).
However, it is still no exception that metadata is written down
on paper as notes without any used standards.

Recently, the popularity of Cyber-Physical Systems (CPSs)

has been on the rise. The thought that wearables, small
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electronic devices (a fitness armband like FitBit is a good

example of this) attached to the surface of the skin, collecting

large quantities of medical data (with a sufficient degree of

data quality and precision) and enhancing the lifestyle of a

person, can be used on a day-to-day basis was adopted by

many people. These CPSs can collect large amounts of health-

related data. However, each of these CPS devices collects the

data in various (generally self-made) data formats, for

example, via connection to a Smartphone of the user (2).

Sharing collected data in a thoroughly described fashion is

mainly left to the experimenter’s best knowledge; it is up to

the experimenter to assess how thoroughly or well-defined the

objectives should be. The need to know how thoroughly the

collected data should be described for a different party to

reproduce the results is often to an open interpretation, which

generally leads to different results. Some standards and

conventions that apply to health-related data can also be

applied to brain data. In our studies and this paper, we focus

on the electrical activity of the human brain, i.e., on

electroencephalography (EEG) and event-related potential

(ERP) data. To bring some widely available standards into

this domain, organizations like INCF have proposed how

neuroscience data could be collected and stored, so they could

be easily accessed and shared across the community (3).

This document emphasizes the best practices regarding the

data lifecycle process, i.e., the collection, annotation, analysis,

interpretation, and publication of data/results and offers them

to a broad scientific audience. Our suggestions will cover the

subjects ranging from the original experiment, data collection,

storage, and description to processes on how to best store and

publish the results. The benefit of a wider audience taking a

look at one’s raw data and findings might lead to a healthy

debate about the achieved goals (highlighting errors or

discovering new findings in the already collected data), as

highlighted in (4). This was, for example, emphasized in win-

win data sharing in neuroscience (5); there can be a lot of

hidden benefits to being discovered when leading a procreative

discussion of results. The data need to be stored to be

understandable and easy to interpret to make the discussion as

frictionless as possible. The general rules of practical data

sharing that can be applied to either neuroscientific or physical

health data were also mentioned in (6).

Inside the growing field, such as neuroscience, giving such

“order” to the collected data is mostly used through the use of

a dynamic “ever-evolving” ontology for the current subject (7).

These ontologies precisely define the used terms inside the

application domain, which again help in easier understanding

and reuse of the once-collected data with new research goals.

The dynamic ontology will help in this regard that the defined

terminology may be used across the scope of multiple subjects

and help thus to answer a variety of questions (8). Also, for a

truly dynamic ontology, it is necessary to ensure how the

changes will be propagated or added in the already existing
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whole (9). There were already proposed multiple ways how it can

be done, for example, through the usage of dynamic web

ontology language (dOWL) (10).

In this document, we would like to show and help visualize

our best practices focusing on all aspects of creating an

experiment and help with the definition and categorization of

results/findings through the use of widely used knowledge

models (in this specific case, through a dynamic ontology)

and publication of the results in an easy-to-understand way.

Finally, various research groups worldwide can either discuss

these findings or reuse these conclusions for their own

specific research without the need to reinvent the wheel.

Since most of these steps seem too abstract, we would like to

show a possible way on how such a data lifecycle might look,

together with practical examples and underlying data

published in widely accessible journals that followed these

above-mentioned best practices. In this paper, we will cover

the subjects ranging from experiment design, collection of

generally heterogeneous data (e.g., heart rate, glucose, body

proportions, physical strength with electroencephalography

data, and many more), and the description of collected data

(for example, by using ontologies) to the publication of both

the findings and underlying raw data for a further

verification/analysis done by the broad scientific audience.
2. Materials and methods

In this chapter, we will focus on showing the current state of

the art and the technological background that was utilized

during the conceptualization and development of the module

architecture utilized by an information system for health-

related data collection.
2.1. State of the art

The lifecycle (Section 2.1.1) of any entity (such as software or

health-related data) should follow key principles (Section 2.1.2).

We recognize the functional aspects (processing) and data

(objects, subjects) stepping into the process. The descriptions of

data and their organizations are various, and we prefer

terminologies (Section 2.1.3) and ontologies (Section 2.1.3)

when it comes to health-related data. The data properly

identified and described are stored in the standardized and

interchangeable data format (Section 2.1.4).

2.1.1. Software engineering methodologies and
data management lifecycles

The organization of software development and data

processing as critical activities to achieve work effectiveness

and efficiency has led to defining development methodologies

and software/data lifecycles. These methodologies and
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lifecycles also create a primary platform to achieve another

challenge—open, fair, and reproducible science.

Agile development methodologies have followed waterfall

software development methodologies (11). At the same time as

the agile methodologies, the era of big data began. It took

significant importance in the last decade when cheap data

storage and computational power increased exponentially. Agile

software development has evolved into a complementary set of

practices called DevOps (12–14), where software development

(Dev, Software Engineering), IT (technology) operations (Ops),

and quality assurance (QA) are present (Figure 1, left part).

Processwise, DevOps represents a typical chain for delivering

software solutions; it includes software development, building,

testing, deployment, and running (Figure 2, upper part).

However, the DevOps does not correspond to the specific

needs of big data; thus, DataOps (15) has been introduced.

DataOps includes other data-driven disciplines like data

engineering, data integration, data security, and data quality

(Figure 1, right part). It represents a complete data lifecycle

from data preparation and gathering over the transformation to

reporting. It brings a bridge between data analytics teams and

IT operations. DataOps focuses highly on data pipeline

orchestration, data quality, and continuous integration/delivery.

It provides the chance to get a consistent and reliable source

for data ingestion and reporting and advanced analytics

represented by machine learning (ML) models and artificial

intelligence (AI) solutions. Next to the processwise qualities,

DataOps provides capabilities about data lifecycle, data

annotation (relations, the meaning given by ontology,

versioning), and data lineage (auditability, explainability).

Processwise, DataOps extends the processing chain to focus

more on the data-related products instead of being software-

centric. It adds sandbox management for implementing data

prototype products, replaces the build process, runs with

orchestration, and addsmonitoring at the end (Figure 2, lower part).

For machine learning, DataOps moved even further and

evolved into the MLOps (18) lifecycle, which covers specific

needs of data science. It represents the practice of

collaboration and communication among data scientists and

operations professionals to help manage the production ML

(or deep learning) lifecycle. The movement of DataOps to

MLOps and later to AIOps (19) for artificial intelligence was

natural since there was technical debt.

Tom et al. (20) explain the technical debt as follows:

“Technical debt is a metaphor that refers to the consequences

of poor software development. Cunningham (1992), who

introduced the concept of technical debt, described how

‘shipping first time code is like going into debt. A little debt

speeds development so long as it is paid back promptly with a

rewrite.’ Since then, the suitability of debt as a way of

explaining the various drivers of increasing costs throughout

the life of a software system has been affirmed by the software

development community (21–25). On the other hand, debt is
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FIGURE 2

DevOps and DataOps processes (17).

FIGURE 1

DevOps (16) and DataOps in the enterprise (16).

1Available at: https://researchops.community.
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not necessarily ‘bad’—a small level of debt can help developers

speed up the development process in the short term (21). In any

case, this consequence may be felt in the longer term if the

project is highly ‘geared’ (which implies onerous debt

repayments), leading to slower development and killing of

productivity.”

Science has been evolving to be more open, fair, and

reproducible (Section 2.2.4) in the last years. Data are

published on various platforms and processed in

on-premise, private, or public cloud storage and services.

The importance of sharing data across scientific fields has

been raised.
Frontiers in Digital Health 04
The technical debt can thus also be considered for research.

The research systems should provide functionality like data

preprocessing and sharing, analytical tools, reporting tools,

and a complex methodology and ecosystem that consider all

those steps part of a unified lifecycle. Then, ResearchOps1

“provides the roles, tools and processes needed to support
frontiersin.org
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FIGURE 3

ResearchOps Community-separated resources for each of the topics. The link to community- made tools that support each aspect of these open
topics can be found in the footnote below.2
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researchers in delivering and scaling the impact of the craft

across an organization.”

The following topics (Figure 3) are important whenever

research is managed. Governance defines safe, ethical, and legal

research; Guidelines & Templates frame it formally. Tools are

necessary for doing research, its management, and operations.

Knowledge management deals with data and documentation

(which are part of Asset management) and provides resources

for Capability & Opportunity to develop career or capabilities

necessary for a particular research project. Research spaces have

to be maintained, and research staff and subjects must be

recruited (Recruitment). This all needs to be published,

promoted, presented, and advertised through the events within

Event management and communicated (Communication) via

various channels. All needs to be managed and maintained

within Budget management.

Considering scientific research’s disciplines, processes, and

requirements, we need to adapt existing ResearchOps or define

our operational process for the health-related data lifecycle.
2Available at: https://researchops.community/resources (Accessed

2022-06-08).
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2.1.2. FAIR principles
There is a plenitude of guidelines and principles available

that can be used to store, maintain, and disclose open

scientific data. However, the FAIR (an acronym for

Findable, Accessible, Interoperable, and Reusable) principles

(26) have become popular and widely accepted within

scientific communities. They make data for computational

systems easier to find, access, interoperate, and reuse,

without any or just with minimal human intervention. The

four intertwined categories describe how data, metadata,

and resources should be described, stored, and made

available to a broad audience.

The Findable principle declares that it should be easy to

find data and metadata by both humans and machines. It

can be achieved, for example, by assigning a globally unique

and persistent identifier to data, describing data with rich

metadata, and registering or indexing them in a searchable

source.

The Accessible principle deals with data access since

not all data have to be strictly open. If possible, metadata

should be accessible even when the data are no longer

available.

The Interoperable principle focuses on integrating data with

other kinds of information. It is generally achieved using

domain-wide agreed data formats, languages, and
frontiersin.org
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vocabularies. Also, qualified references to other metadata and

data are included.

The Reusable principle ensures that data are easy to reuse,

i.e., they can be well-replicated or combined into different

settings. In this regard, data should be richly described with

many accurate and relevant attributes and released with a

clear and accessible license.

The FAIR principles do not state how they should be

achieved; they represent recommendations that keep the data

open and independent of the application domain. Multiple

initiatives promote these principles across scientific fields, like

the FAIR Data & Services (IFDS3.) or the European Open

Science Cloud (EOSC4.).

2.1.3. Terminologies and ontologies
Terminologies and ontologies are popular for modeling

domain knowledge in many scientific disciplines. Roche (27)

explained that an ontology is not a terminology and a

terminology is not an ontology and that terminology relies on

two different semiotic systems (the linguistic one, which is

directly linked to the “Language for Special Purposes” and the

conceptual system that describes the domain knowledge),

whereas ontology does not take into account the linguistic

dimension of terminology. Zemmouchi-Ghomari and

Ghomari (28) state that building ontologies is considered

much time-consuming and costly than building terminologies

with regard to ontology complexity and formality, two major

differences between these types of resources. They also claim

that terminologies can be considered as preliminary attempts

to model particular domains by their respective experts. Then,

terminologies are intended for human users, while ontologies

are mainly developed for knowledge sharing between both

humans and artificial agents.

Gruber (29) formulated the definition of an ontology: “An

ontology is an explicit specification of a conceptualization.”

Borst (30) modified the definition as: “a formal specification of

shared conceptualization.” In other words, ontologies are

formalized vocabularies of terms. Le Franc et al. (31) defined

ontologies in an alternative way: “Ontologies are formal

models of knowledge in a particular domain and composed of

classes that represent concepts defining the field as well as the

logical relations that link these concepts together.” Designing

an ontology is a long process in which it is necessary to

understand the area and compile a list of used terms (and

creating terminology).
3Available at: https://www.go-fair.org/resources/internet-fair-data-

services/ (Accessed 2022-06-08).
4Available at: https://ec.europa.eu/research/openscience/index.cfm?

pg=open-science-cloud (Accessed 2022-06-08).
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The conceptualization of the real world can be also

translated as taking real existing things and creating standard

terms and their classes to categorize them into a hierarchical

structure. However, many questions need to be answered

before any description can be made.

The first question is how detailed or abstract the ontology

should be since varying degrees of details are desirable. A

detailed ontology can be overdefined when it describes and

tracks every available detail. It can cause uncertainties when

new changes are added to the ontology. On the other hand,

overabstracting (generalization) leads to uncertainty in the

definitions of the terms and their classes when many instances

fall into more classes. The next question deals with the

relations between the terms and their classes. The hierarchy

and number of relationships must be carefully defined;

otherwise, overdefinition or overabstracting can also occur.

Dynamic ontologies (10) add a layer for adjusting or

“evolving” the ontology according to the project’s needs over

time. The changes need to be accommodated once the project

grows, and the used terms and relations will need to be

expanded or adjusted to address these changing needs in the

already existing and published ontology. Examples of such

“actions” can include adding/deleting existing relations

between terms, adding a new property, changing the

ontologies hierarchy, and reusing certain aspects or portions

of other published ontologies.

Especially domain ontologies are popular since more

general ontologies are very difficult to define (suffer from

overabstracting). There are hundreds of biomedical ontologies

and millions of classes (uploaded to Bioportal). The list of

published ontologies steadily increases.

Popular languages for the implementation of ontologies

include, e.g., the Web Ontology Language (OWL) of the

Semantic web or dOWL, an extension to OWL, which consists

of a set of elements that can be used to model these

evolutionary changes in an ontology (32).

There are a lot of web-based systems to support ontology

reuse (e.g., Bioportal,5 OntoFox,6 Ontobee,7 Neuroscience

Information Framework,8 and Ontology Lookup Service9).

Although the popularity of terminologies and ontologies is

still high, the requirement for an analytical definition of the

part of the world is their limiting factor. It is a time-consuming

task requiring not only the definition and implementation of
5Available at: https://bioportal.bioontology.org/ (Accessed 2022-06-08).
6Available at: http://ontofox.hegroup.org/ (Accessed 2022-06-08).
7Available at: http://www.ontobee.org/ (Accessed 2022-06-08).
8Available at: https://neuinfo.org/ (Accessed 2022-06-08).
9Available at: https://www.ebi.ac.uk/ols/index (Accessed on 2022-06-

08).
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the terminology or even ontology itself but also its acceptance by

the wider community when the ontology should become a

standard formal description of a domain. This step is crucial;

hundreds of existing biomedical ontologies and systems that

use them illustrate this issue well. There is some hope for

expanding deep learning methods, which have lower

requirements for data organization and could significantly

alleviate problems with overdefined ontologies.

There are many broad terminologies defined in published

ontologies like the National Cancer Institute Thesaurus (NCIT)10

(33) describing set of terms and their relations. The main NCIT

focus was on providing a controlled vocabulary used by specialists

in the various subdomains of oncology. Across neuroscience, there

exist projects that include terms related to event-related potentials,

also containing MEG (magnetoencephalographic) or EEG

(electroencephalographic) terminology.

The NEMO project (Neural ElectroMagnetic Ontologies)

(34) provides an ontology that contains descriptions of classes

of event-related brain potentials together with their properties,

including spatial, temporal, and functional (cognitive/

behavioral) attributes.11

Minimal Information for Neural ElectroMagnetic Ontologies

(MINEMO) is the minimum set of experimental metadata

required for datasets that are used in the NEMO project (35).

MINEMO specifies the key information that should be provided

when an ERP experiment is uploaded to the NEMO database.

MINEMO terms are explicated in the NEMO ontology, a formal

semantic system created for the ERP domain. There were also

developed web applications (the NEMO portal) and a database

aligned with the MINEMO checklist and ontology. The

checklist, ontology, and database are intended to support the

first complete, cross-laboratorymeta-analysis for the ERP domain.

While creating new terminology (where the reuse of already

existing terms is much endorsed), reusing only its essential parts

may be easier than including the entire terminology. A

recommended set of guidelines MIREOT (Minimum

Information to Reference an External Ontology Term) (36)

was created. It describes the necessary minimum of

information that needs to be overtaken.

For ontologies, we have used recommendations by large and

long-running standardization bodies like The World Wide Web

Consortium (W3C) while including various most commonly

used or recommended practices across the ontology lifecycle.

It is the case with the iterative evolution, expansion, and

enhancement of dynamic ontologies.
10The NCIT ontology is available at https://bioportal.bioontology.org/

ontologies/NCIT?p=summary (Accessed 2022-06-08).
11The NEMO ontology is available at http://bioportal.bioontology.org/

ontologies/NEMO (Accessed 2022-06-08).
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2.1.4. Data formats
Storing and processing health-related data are difficult

because hardware devices and software drivers usually provide

data in proprietary formats. Specific neurophysiological data-

storing formats can severely hamper the collaboration between

the researchers, as there is a need to have the same (and

usually licensed) processing tools that support these data

formats (37).

The main goal of neurophysiology data standardization

initiatives (38) is to create a unified data model and storage

format and tools to convert existing data stored in the

proprietary data formats. These standardization efforts and

their results (data models/formats) can be found in the

following.

In this case, we have selected a list of the data formats

endorsed [Brain Imaging Data Structure (BIDS), Neuroscience

Information Exchange (NIX), Neurodata Without Borders:

Neurophysiology version 2.0 (NWB:N 2.0)] or submitted for

endorsement (Open Metadata Markup Language, odML) to

the INCF Standards and Best Practices Committee. The

endorsement process consists of an expert review against an

established set of criteria, a community review, and a final

committee review that considers comments received during

the expert and community reviews (39). As for the remaining

recommended format, JavaScript Object Notation for Linked

Data (JSON/LD) is one of the few data and metadata formats

used by large technological giants like Google.

2.1.4.1. Neuroscience Information Exchange format
The NIX data model (40) allows storing fully annotated

scientific datasets, i.e., the data together with rich metadata

and their relations in a consistent, comprehensive format.

Although developed initially for electrophysiology data,

neither the data model nor the metadata model are domain-

specific. Both models can be linked to predefined or custom

terminologies. It enables the user to give elements of the

models a domain-specific, semantic context. In contrast to

most other approaches, NIX achieves flexibility with a

minimum set of data model elements. The NIX project

includes native I/O libraries for C++ and Python, language

bindings for Java and MATLAB, and a viewer for NIX data

files, although the HDF5 (41) viewer can also be used.12

2.1.4.2. Open Metadata Markup Language
odML is a format for storing metadata in an organized human-

and machine-readable way (42, 43). It does not constrain the

metadata content while providing a common schema to
12More information is available at https://github.com/G-Node/nix/wiki/

Model-Definition (Accessed 2022-06-08).
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integrate metadata from various sources. odML facilitates and

encourages standardization by providing terminologies13 for

metadata.14 An example of the odML use when collecting and

exchanging metadata in an automated, computer-based

fashion is described in (44). Currently, the odML is included

in the NIX data model.

2.1.4.3. JavaScript Object Notation for Linked Data
JSON-LD (45) is a lightweight syntax to serialize Linked Data in

JSON. Its design allows existing JSON to be interpreted as

Linked Data with minimal changes. JSON-LD is primarily

intended to be a way to use Linked Data in Web-based

programming environments, build interoperable Web services,

and store Linked Data in JSON-based storage engines. Since

JSON-LD is 100% compatible with JSON, many JSON parsers

and libraries can be reused. In addition to all the features that

JSON provides, JSON-LD introduces, e.g., a universal

identifier mechanism for JSON objects via the use of

Internationalized Resource Identifiers (IRIs), disambiguation

of keys shared among different JSON documents, a

mechanism in which a value in a JSON object may refer to a

resource on a different Web site, or the ability to annotate

strings with their language.

2.1.4.4. Brain Imaging Data Structure
The BIDS is a standard endorsed by INCF prescribing a formal

way to name and organize MRI data and metadata in a file

system that simplifies communication and collaboration

between users. There also exists an extension onto the BIDS

format called EEG-BIDS, which is specifically designed to

store the electroencephalography data. If you would be

interested in learning more about the EEG-BIDS format, you

can find it in (46).

In both variants, it enables easier data validation and

software development by using consistent paths and naming

for data files. BIDS is strict regarding file organization,

naming, and metadata, but to support broad adoption, it

permits substantial flexibility in the details of how other

dataset metadata are described within the standard (47).

2.1.4.5. Neurodata Without Borders: Neurophysiology
version 2.0
NWB is a data standard enabling sharing, archiving, using, and

building analysis tools for neurophysiology data. NWB is

designed to store various neurophysiology data, including data
13More information about the odML terminologies can be found at

https://github.com/G-Node/odml-terminologies (Accessed 2022-06-

08).
14More information can be found at https://g-node.github.io/python-

odml/ (Accessed 2022-06-08).
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from intracellular and extracellular electrophysiology

experiments, data from optical physiology experiments, and

tracking and stimulus data (48). NWB:N 2.0 defines an

ecosystem for standardizing neurophysiology data.
2.2. Motivation

In this paper, we focus on the health-related data lifecycle. It

mainly includes data description for further processing, the

richness of data/metadata from the subject perspective,

correlation, and causality research. We aim to achieve that via

four pillars—ontologies (2.2.1), 360-degree overview (2.2.2) of

the research subject from data perspective, standardized

lifecycle (2.2.3) for health-related data, and research reliability

(2.2.4) through reproducibility and repeatability.

2.2.1. Using ontologies
First, let us start with what are the ontologies good for (49).

Their first and foremost advantage is to capture the used

terminology inside any application domain (or the research

subject) and map the definitions, attributes, and relations of

these terms to one another. Since many terms can have

multiple meanings, their precise definition helps even a

newcomer to the application domain better understand the

used terms and their relations; this extended vocabulary maps

relations between defined terms.

An additional benefit to ontologies is that they enable easy

understanding of multiple application domains and can be

reused easily. Their reuse helps reduce the redefinition of the

terms. When an ontology becomes widely available, it

increases its value. The ontology can be expanded and

corrected further down the line to a more detailed and

sufficiently defined result.

2.2.2. 360-degree overview
In most cases, we are talking about EEG/ERP data (50–53).

These types of data bring crucial information about the

measured subject, but we cannot forget to record also the data

related to the subject, outside environment, and the

experiment itself. These additional data provides a 360-degree

overview of the measured subject and give additional potential

to better understand the foundation during the analytical

process.

In some literature studies (54, 55) are such data neglected,

and the main focus is on neuroscientific data. It works well

for narrow field research for single-purpose data collection

during the experiment and making the conclusion published

through single paper. However, with the greater goal, we need

to collect as much data as we can, so it can be later used for

multiple research use cases.

We cannot consider our work to be frontier-bringing such

idea since some literature studies (56, 57) present collection of
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FIGURE 4

ResearchOps for health-related data.
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data, Metadata, and scenarios of experiments, but we would like

to define standards that can be adapted as is or with extensions

or adjustments.

2.2.3. Standardized lifecycle
Inspired by ResearchOps and DataOps (2.1.1), we derived

the subset of disciplines useful for health-related data

(Figure 4).

We kept in mind disciplines and processes necessary to

cover complete neuroinformatics data lifecycle from asset

management, subjects recruitment, guidelines and templates,

knowledge management, and data governance.

2.2.4. Research reliability
The main idea about the ontology-driven (2.2.1) system is

to provide a platform for reproducibility and repeatability

(58). These two major principles of scientific methods for

research supporting are very important to ensure research

reliability.

2.2.4.1. Replication crisis
In 2005, an essay was published in PLoS Medicine by Professor

John Ioannidis at the Stanford School of Medicine (59), who

argued that a large number, if not the majority, of published

medical research papers contain results that cannot be

replicated. This is practically the foundation for later-defined

term replication crisis, respective replicability, or

reproducibility crisis.

The crisis itself has longer roots, but it started to be

significantly used in the early 2010s (60) as part of growing

awareness of the problem (61, 62).

2.2.4.2. Reproducibility and repeatability
The meaning of reproducibility is to achieve the results of

the experiment again with a high degree of agreement

when the experiment is replicated with the same

methodology by the different researchers. When the

reproducibility is achieved once or several times, the

experiment can be considered a valid contribution to

scientific research.

The repeatability is defined as one (test-retest Reliability) of

the four general classes of reliability estimates (61) from the

theory of reliability (62) we know:

† Inter-rater or inter-observer reliability used to assess the

degree to which different raters/observers give consistent

estimates of the same phenomenon.

† Test-retest reliability used to assess the consistency of a

measure from one time to another.

† Parallel-forms reliability used to assess the consistency of the

results of two tests constructed in the same way from the

same content domain.

† Internal consistency reliability used to assess the consistency

of results across items within a test.
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2.2.4.3. Terms’ ambiguity
In the scientific research exists the ambiguity of reproducibility

and repeatability (62, 63). The usage of the recurrent terms

reproduce and replicate often means different things but

sometimes interchangeable.

As (62) claims, the terminology can be classified as, First,

make no distinction between the words reproduce and

replicate or, second, use them distinctly. This two-term direct

substitution leads to the weight issue that might be solved by

various attempts to invent the terminology across disciplines

and establishment of patterns that help us resolve the

contradictions.
2.3. Summary

In the following section, we mention some of the best

practices and pieces of advice that were recommended by the

wider scientific audience and used within the Body In

Numbers project:

† FAIR principles—It is the utilization of the FAIR principles

across all processes, making the collected data and metadata

easily accessible and shareable.

† Size and scope of the new ontology—It is necessary to

define who will and how to use the ontology. Examples of

questions that might be asked are as follows: How abstract

or detailed should the ontology be? or What subjects will

it cover?

† Learning from already existing ontologies—In case you

have not much experience with creating ontologies, it is

best to go through existing and published ontologies
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inside the same field of study when planning to create a

new ontology. In this case, it is necessary to focus on

how each used term is being defined and what

annotation attributes are used to devise rules for the

ontology creation process.

† Appropriate annotation properties—It is a good practice to

maximize the reuse from already published ontologies.

Relevant ontologies for this task can, for example, be the

Information Artifact Ontology (IAO). If there are no

adequate replacements, new ones can be created.

† Naming terms—Using plain English in the term names is

strongly advised. CamelCase or Under_Score notations

should be avoided. If the term has any notable synonyms

or shortcuts (e.g., acronyms), they are stated. If any

dedicated annotation properties are used, the rdfs:label can

be used instead.

† A unique identifier—In the case of overtaken terms, the

original unique identifier from the source ontology should

be retained; otherwise, a unique ID for each new term has

to be created. Organizations can generate a persistent URL

that enforces the uniqueness requirement for the primary

identifier, e.g., http://purl.obolibrary.org/obo/OBI˙0000185.

† Textual definition of each term—Textual definition needs

to best describe the meaning of the term under which it is

used inside the ontology.

† Reuse (import) of external terms—When any existing term

is overtaken, the attributes and ID should be identical to the

source ontology. Rules for the import of the term can be

further specified inside the source ontology under the

annotation property rdfs:comment.

† Ontology open to collaboration—Any collaboration with

the community can enhance the overall quality of the

ontology.

† Ontology license—The Creative Commons license in its

latest version is advised for most of the open source

ontologies. For monetized ontologies, when the ontology

can be used (under which circumstances), in which

projects or how to obtain access to the ontology needs to

be specified.

† Serialization of ontology—Common formats, e.g., OWL,

RDF/XML, or OBO, are defined for the publication of the

finalized ontology.

† Incremental expansion of ontology—Certain terms might

not have been properly defined as in the original plan.

Small incremental additions of new terms can make the

ontology overall more well-defined.

† Data formats—Suitable, possibly free, and widely accessible

data formats are used within the tools that can be used to

explore the collected data (e.g., for MRI, EEG, ERP, and more).

The methodology used in the Body in Numbers (“BiN” for

short) project is mainly based on the recommendations

mentioned above.
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A thesaurus of all related terms used inside the project was

created in the initial phase of the BiN project. The terms were

related to data collection or the subsequent data processing

phases. Each of these terms had the name and basic definition

stated in plain English.

As a next step, these terms were separated into categories

(classes of terms) and related notation properties, further used

to describe all remaining terms in the ontology. An example

of the annotation property is the author of the definition,

textual definition, synonyms and shortcuts, and name of the

term.

After this phase, it was necessary to maximize the reuse out

of any already existing and published ontological sources, so

that we would limit the amount of “reinventing the wheel” so

to say. At this step, ontological portals were of great help (like

BioPortal, OntoBee, and OBO Foundry).

In the next step, it was necessary to distinguish overtaken

terms from other ontologies and newly defined terms as each

needed to contain different annotation properties. In the case

of overtaken definitions, all attributes were overtaken into the

annotation properties equivalents of the devised ontology. For

the newly defined terms, it was necessary to define a bare

minimum of information that the term needed to contain

(like the synonyms, known shortcuts, and textual definition).

Once the process for the newly added terms was refined, a

dynamic ontology was created. The ontology was then used in

the next steps of the data flow.

However, the workflow for the health-related data lifecycle

goes behind the created ontology. Next to the ontology, we

also provide a 360-degree data overview (2.2.2). This includes

our proposal for standardized lifecycle (2.2.3) inspired by

DevOps, DataOps, and derived from ResearchOps. Then, we

included research reliability (2.2.4) consisting of two

principles—reproducibility and repeatability.
3. Results

In the following section, we will take a closer look onto both

the abstract and also on the implementation aspect of an

undertaken project from the University of West Bohemia

called “Body in Numbers.” We will also describe the entire

process on how the data were acquired, stored, processed,

successively analyzed, and published. The unique part about

this process is a specialized support module architecture

developed in tandem to help with each step of the data cycle.
3.1. Main overview (cube)

The implementation of neuroinformatics experiments is a

conceptually complex system that solves every aspect of the

data flow in races to a given category of interest within
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FIGURE 5

“Cube” overview: each cube part can be imagined as a box with
specific needs, which have to be accounted for and supported by
the underlying system.
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each of its functionalities. In this case, it is the age category of

the participants in the experiments. The analytical model of

the system is shown in Figure 5. This system determines

any way, for example, how the collected data from children

and adults are handled. Other variants of research

addendum agreements and questionnaires could be used to

measure children and adults. These templates are used to

change measurement procedures depending on whether a

child or an adult participates in the experiment. Later in

the same year, a new change needed to be implemented

related to the analysis, namely, our goal was to find a

statistical significance between the already collected data

and metadata.

When it comes to evaluation of the efficacy in the presented

lifecycle (in the form of the “Cube”), the chosen dimensions

separate the larger process into small tasks that can be at least

partially (based on the situation) automated outright, or it is

possible to create support processes that overall make the step

easier (or faster) across the data flow. For example, data

quality can be ensured during the data collection process by

filling out all mandatory fields and pairing included metadata.

Data duplication can be prevented (at least partially) in this

step. As for the mentioned support processes, the analysis

part of the data flow can automatically prepare overview

statistics about the collected data that help classify or further

analyze the data and metadata.

The chance of errors in the filled-out data and metadata is

dramatically decreased when steps eliminate the “human factor”

from highly repetitive or easy-to-automate tasks. Aside from

that, the time necessary to spend in each data flow step will

also decrease, with much of the validation steps being

eliminated from the equation.

Some of the proposed metrics for evaluating this lifecycle

were defined as follows:

† percentage of complete data entries inside the data collection

phase for the dataset,

† percentage of described data entries inside the annotation

phase for the dataset,

† number of newly required metadata definitions (number of

new terms) from the dataset, for inclusion into the ontology,

† time spent in each of the data flow phases, and

† age range histogram for all measured participants inside the

dataset.
3.1.1. Data flow
This dimension helps streamline and potentially automate

repeatable experiments, minimizing room for errors and

increasing overall efficiency. This part improves the

description of the experiment. Experimenters can make

quicker and smarter decisions. Researchers are empowered to

collaborate in a more productive and agile way.
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The data flow phases are shown in Figure 5. The collection

phase deals primarily with acquiring data from a BiN project

participant; the data are subsequently preprocessed (more

details are in Section 3.3).

The preprocessing consists of cleaning the data and

adjusting it for the next step by converting it into the format

expected in the analysis phase.

The analysis phase is currently aimed at determining

statistical significance between each segment of the measured

data, the values achieved by participants, and respective

questionnaire answers. The summary tables and graphs are

created and used for finding further subsequent research

activities.

During the interpretation phase, new hypotheses are

outlined and revised by scientists to refuse or confirm them.

In the last phase of the data cycle, anonymized data are

published utilizing raw data. The results obtained from the

initial analysis and the pilot experiment are included. The

data published in this way help the broader scientific

community answer further questions and hypotheses.

3.1.2. Application domains
There already exist conceptually close domains. The

Chronic Disease Prevention (4.2.2) domain is focused on

nutrition counseling. The food balance system is calculated to

reduce the user’s food consumption. This system can monitor

the users using smart bracelets (such as FitBit) when

information is sent to a mobile tracking application.
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The Cognitive Disease Prevention (4.2.2) domain works

with cognitive games that improve memory, attention, speed,

and problem-solving abilities.

Both domains are indirectly related to brain activity data

(e.g., EEG, ERP), which however can be used to further help

with either of the previously mentioned application domains.

3.1.3. Dimensions (age groups)
The project focuses on the age range from 11 to 60 years.

Beyond this age limit, the measured results are distorted by

specific errors related to either young or advanced age. In the

case of preschool children, there may be problems with the

numbers (color vision, number recognition) and hand

reaction times (the children might be unable to reach the

upper buttons on the table due to the minimum required

height). In older age, the problems may be responding quickly

to stimuli using legs (leg reaction times) or hands.

The monitored age categories are shown in Figure 5 (age

groups), namely, childhood, youth, young adulthood, middle

adulthood, and the elderly. Of course, the consent and

completion of the questionnaire for a young child will be

different and proceed differently than for adults (in the case

of young children, their legal representatives or parents must

approve the participation in the project and The General Data

Protection Regulation data processing).
15The BiN ontology can be found here: https://bioportal.bioontology.

org/ontologies/BIN/?p=summary (Accessed 2022-06-08).
3.2. Data flow dimension

3.2.1. Data flow semantics
The first step in data preprocessing is to identify the

individual parts of interest and categorize them so that the

data are transferable and shared between different working

groups. Creating the ontologies schematizing relations

between each part of the cube is necessary to make the data

more shareable. Therefore, the task was to develop a system

that would be able to preprocess the data and make it easier

to share with members of the scientific community. The

project aims to create a uniquely annotated collection of

heterogeneous health-related data available for further

analysis. The Body in Numbers system helps collect additional

metadata from questionnaires combined with the measured

health-related data (e.g., weight, height, and blood pressure)

and EEG data from brain–computer interface (BCI)

experiments.

The data collected are anonymized and published within

data articles. They are converted into one of the commonly

used RDF formats, and a backing ontology is created; it may

define additional properties.

The Body in Numbers terminology has included and used

the best practices presented in Section 2.3. The main set of

terms was defined (the definition under which it is used in the

BiN terminology) and compared against the existing definitions
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from relevant sources. If the term was already described inside

other ontologies, but the description did not match the

meaning utilized in the BiN project, a new definition of the

term was created. Otherwise, the existing definition was

overtaken, and a citation was attached appropriately.

The basic set of key terms are given in Figure 6.
3.2.2. Data flow detail
Considering the cube as a modular representation, we sliced

its particular layers with the following topics (Figure 7).

Body in Numbers (BiN) uses its specific terminology:

1. Tools—Devices and tools used during experiments (e.g.,

pressure gauge for measuring pressure and pulse, and

spirometer for measuring lung capacity)

2. Experiments—Participants examination (e.g. measuring

blood sugar requires a finger prick by taking blood on the

measuring strip and then evaluating the results with a

glucometer; the experiment’s output is blood sugar = 6.4

mmol/l).

3. Locations—A locally determined measurement that may

contain one or two more experiments.

4. Measurements—Definition of all sites, experiments, and

assigned aids.

5. Scheduling—Definition of what (e.g., glucose level, weight,

height), how (e.g., glucosemeter, scale, meter), and what

(specific type of the measuring instrument, i.e., specific

glucosemeter type) is used for measurements.

The created ontology15 contained 141 classes of terms, of which

56 classes of terms were overtaken from already existing

ontologies (with their original definition), and for the

remaining 85 terms, new definitions were created (the

definitions from existing published ontologies were insufficient

or the terms were not yet defined). The ontology also

contains 30 annotation properties where every single one was

overtaken from existing sources. An example of subclasses

visualizations is available in Figure 8.
3.2.2.1. Data collection
The following subflow is typical for the data collection process:

1. The experiment and its environment (Section 3.2.2.2) are

defined.

2. The experiment is introduced (64) to each participant; they

sign the consent agreement.

3. The participant is registered to the system [(64), more

information is available in Section 2.2].
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FIGURE 6

Body in Numbers terminology—examples of the root terms. Note that tree visualization only contains a few top degrees of the tree. For more details,
see the link to the terminology in Section 3.2.2.
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4. The participant fills in the questionnaire [(64), more

information is available in Section 2.3] related to a

particular measurement or multiple measurements.

5. The measurement is performed.
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6. The collected data are stored (Section 2.1.4) in a

standardized format together with their metadata collected

during the registration and questionnaire phases (Sections

3.3.2 and 3.3.4).
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FIGURE 7

Data flow–layer details.
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7. Data analysis is performed (Section 3.3.3).

8. The raw data are prepared for publishing (Section 3.3.5).

At the beginning of the experiment, the participant is

acquainted with the project’s goals and the necessary

conditions under which the data are used, and if they agree,

the questionnaire part of the investigation is filled in. After

completing these steps, the participant completes the selected

(or all available) measurement sites. The collected data are

then exported into a .csv or .xlsx file, further used during the

preprocessing and later in the statistical module. After the

unification and purification of preprocessed data, an analysis

follows. In this study, graphs of interest [age, body mass index

(BMI), and others] and chosen statistical parameters are used

to evaluate statistical dependencies and whether they are

essential. From the statistics compiled, signs of some

interesting dependencies can be found.

3.2.2.2. Environment
The measurements can occur in various environments with

limited control of outside disturbances. It affects possible (and

even substantial) modifications of the experiment. The typical

environments are as follows:
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† Hospital environment—The hospital operation’s

limitations and the participant’s health status are usually

significant; the experimental procedure needs to be

adjusted to these limitations.

† Laboratory environment—The laboratory environment is

generally highly controlled; only minor modifications of

the experimental procedure are usually required.

† Participant home environment—The most suitable

environment for the participant; usually minor to averaged

modifications of experimental procedure are required.

† Public environment—A high range and variety of

unwanted disruptions are present; these create unwanted

side effects—substantial and ad hoc modifications of the

experimental procedure are common.

The environment is defined within the Body in Numbers system

as a part of the measurement site.

3.2.2.3. Annotation
While recommendations and opinions on what a proper

ontology should contain are widespread, there is no unified

opinion on what each defined ontology term should contain

(in terms of granularity and detail).
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FIGURE 8

Body in Numbers ontology—the parent node “Device categories” contains links to its child and sibling nodes. Only the subclasses are visualized
(without any additional defined properties). The ontology was visualized with WebVOWL: Web-based Visualization of Ontologies, version 1.1.7,
available at http://vowl.visualdataweb.org/webvowl.html.
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The authors of ontologies generally do not use identical

defining terms, and ontologies often contain similar

definitions of synonyms even inside the same field of

expertise. Functionally identical terms, like a term

defining the author of a dataset, can be marked

differently in each ontology (e.g., author, original_author,

creator, and more).

Consequently, global organizations (such as OBO Foundry,

Open Semantic Framework, or W3C) bring recommendations

and standardization efforts. These standardization efforts

include, e.g., rules that help define importing procedures for

terms already defined in published ontologies, the necessity to

define nomenclature, and providing text definitions for each

contained term inside the ontology.
3.2.2.4. Analysis
In analysis, we created a combination of hypothesis testing and

basic data overview variables. The basic data overview consisted

of summation values like the number of artifacts within the EEG

dataset, averages of various kinds, e.g., box plots of BMI

separated by specific categories, reaction times of either upper

or lower limbs, and age intervals. Another part of this
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information also consisted of more EEG data-related variables,

mainly the P300 visibility, detection, and latency.

3.2.2.5. Interpretation
A statistically significant relationship was examined between

the metadata (questionnaire) and the measured data. For

example, if a participant answered that he/she enjoyed

physical activity, he/she was supposed to answer faster when

performing the reaction time experiment.

When performing statistics, we might find repeated

patterns in the measured data. If such patterns are

identified, it is worth studying what is causing them to

appear. A typical example of a searched pattern is the P300

component, which is prominent during visual stimulation

in most circumstances.

3.2.2.6. Publication
During data publication, an open and widely accepted data

format for data storage and the availability of tools to work

with the collected data are considered. For example, table-

like data are suitable to be published in CSV or Excel

Spreadsheets (rather than in RDF). EEG data are preferred
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to be published in an open format, like NIX, rather than in a

proprietary format.
3.3. Body in Numbers

We will now show a practical example how the project

Body in Numbers system was developed to satisfy the

previously defined abstract necessities (i.e., the “Cube”).

Initially, we needed to design a system for fast health-

related data collection. This can be partially remedied by an

individualized exercise and wellness program that integrates

basic knowledge domains: lifestyle, sports and fitness,

nutrition, and personal/environmental health. However,

collecting, managing, and analyzing data and metadata

related to these domains is demanding and time-consuming.

Moreover, the appropriate annotation of raw data is crucial

for their subsequent processing. A proposed software

infrastructure included the P300 module, a specialized

module for data collection of ERP data (3.3.1), a subsection

for data collection, a semantic module (3.3.2) for data
FIGURE 10

P300 module—The figure describes each of the steps that will be done autom

FIGURE 9

BiN lifecycle—For each of the data flow steps, module was developed tha
architecture.
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annotation, a statistical module (3.3.3) for data analysis, an

evaluation module (3.3.4) for data interpretation, and a

publishing module (3.3.5) for data publication. A part of

this infrastructure, namely, the P300 module, was developed

and tested outside laboratory conditions. This software

prototype allows experimenters to collect various

heterogeneous health-related data in a highly organized and

efficient way. Data are then evaluated, and users can view

relevant information related to their health and fitness (65).

The structure of these specialized modules is available in

Figure 9.
3.3.1. P300 module
The P300 module provides basic information and statistics

(like noise percentages from whole dataset and average values,

i.e., response time) related to the EEG signal. When the EEG

signal is cleaned and preprocessed, the P300 components

latency and amplitude are extracted, with plots of averaged

ERP components and blinking artifacts. The details can be

seen in Figure 10.
atically by the module, showing also the process inputs and outputs.

t assisted with their respective tasks independently of the remaining
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3.3.2. Semantic module
The semantic module ensures that the BiN ontology is

updated when needed. This is achieved by varying

approaches based on whether the newly encountered term

is already known.

The data are enriched based on the used ontology if the

term is known. For example, a list of measurement sites

with the used devices is created; when heart rate is

measured, both the units and device type are

automatically added.

If the term is not known, a curator has to decide

whether a definition for this new term already exists or

if a community poll approach needs to be initiated (for

the most useful and up-to-date definition). Both of these

approaches eventually define a new term for the BiN

ontology. This module description is available in

Figure 11.
FIGURE 12

Statistical module—the figure describes each of the steps that will be done
outputs.

FIGURE 11

Semantic module—the figure describes each of the steps that will be done
outputs.
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3.3.3. Statistical module
The statistical module looks for statistical significance

between the metadata (questionnaire) and the measured data.

The data are first preprocessed and split into sections (based

on the used questionnaire), which are then compared against

each category separately using a stepwise regression on a 5%

significance level. The statistical module is further described

in Figure 12.

For example, if there is a question about sport in the

questionnaire, the stepwise regression will show it as

statistically significant to participant’s reaction times (both

hands and legs), as the reaction times are shorter when the

participant is doing some form of a sport.

3.3.4. Evaluation module
The resulting graphs generally contain averaged or

summed statistic values, for example, top five fastest
automatically by the module, showing also the process inputs and

automatically by the module, showing also the process inputs and
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participants’ reaction times, average reaction time, number

of participating smokers vs. nonsmokers, etc. If the

researcher finds anything interesting they would like to

publish or further investigate, they can let the system

create an ID link to the dataset and, if necessary, convert

the measured data/metadata into a preferred format.

Details of this module are available in Figure 13.

3.3.5. Publishing module
The publishing module is mainly responsible for the

anonymization of data that are going to be published within a

journal and creates a LaTex template that is filled directly

with the measured data, attached to the template, or linked

with the generated ID from the evaluation module. A license
FIGURE 13

Evaluation module – The figure describes each of the steps that will be don
outputs.

FIGURE 14

Publishing module—the figure describes each of the steps that will be don
outputs.
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is stated (open or closed variant) within this template. The

output is then for the researcher to be further filled out. This

module is shown in Figure 14.
3.4. Dimensions

The 360-degree overview (Section 2.2.2) is beneficial for

further data processing and analysis. It gives context to

health-related data sources and allows researchers to work

with them from different perspectives, e.g., filter them to get a

significant subset or cluster them into different cohorts.

What kind of sets of data and metadata would be useful to

collect as part of the undertaken experiments have been
e automatically by the module, showing also the process inputs and

e automatically by the module, showing also the process inputs and
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discussed extensively. In our case, we have looked for useful sets

of metadata recommendations to collect in similarly undertaken

experiments.

This EEG experiment (66) was aimed mainly at motor

imagery BCI; additional metadata were collected to be used

for further analysis and dataset evaluation. Recommendations

about what metadata could be helpful as a part of an EEG

dataset were described by (67) back in 2000.

The above-mentioned literature considers the following

dimensions to be the most significant:

† age groups,

† gender,

† handedness,

† BMI,

† eye defects, and

† geolocation.

For example, brain neuroplasticity changes with age. Older

people are more likely to have problems with some of their

motor skills (and the reaction times of either hands/legs grow

as a result). Most of the collected data are more precisely

evaluated based on age groups instead of age.

Gender was chosen instead of the “easier-to-manage” sex.

Handedness (which hand is used by the participant in most

tasks) is more valuable than laterality (superior development

of one side of the body or brain).

BMI is valuable as it can be used partly to distinguish

between the more bodily challenged participants, as these

generally have a higher chance of being affected by chronic

diseases. Eye defects are essential since most of the

experiments relied on visual stimuli.

Participants feel more comfortable under different weather

and temperature conditions (hot, cold, humid, or dry

environment). Even the measurement’s geolocation affects the

data quality and the participant’s physical and mental

condition. The uncomfortable outside environment leads to

more artifacts in the measured data. The participant’s home

can positively affect his/her mood and concentration.
4. Discussion

This part discusses how the Body in Numbers system can be

used as a template to create an instance of the real system.

Further modules of the system are also described.
4.1. Validation use case

The Body in Numbers system was initially designed to

rapidly collect heterogeneous health-related data for

chronic disease prevention (obesity, diabetes). The original

idea was first published in 2017. However, as the project
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has grown, the system expanded from collecting pure data

to accommodating cognitive and chronic disease

prevention and started to relate to neurorehabilitation

and BCIs.

As the number of subjects has grown, the need to have well-

annotated data has arisen. It would allow for creating different

datasets based on the investigative needs (e.g., creating a study

covering the youth—a need to narrow down the dataset to

only people between 15 and 24 years). The earliest Body in

Numbers system has been expanded to accommodate other

data dimensions and has allowed researchers to collect and

analyze data in different environments.

A working example of such a system, accommodating a

wide range of functions, is shown.
4.1.1. Proof of concept
As the next step, we defined, collected, and annotated

human reaction times and relevant health-related data and

metadata for further human physical and cognitive

performance analysis. A collection of human reaction times

and supporting health-related data was obtained from two

groups comprising together 349 people of all ages—the

visitors of the Days of Science and Technology 2016 held on

the Pilsen central square and members of the Mensa Czech

Republic visiting the neuroinformatics lab at the University of

West Bohemia. Each provided dataset contains a complete or

partial set of data from the following measurements: hand

and leg reaction times, color vision, spirometry,

electrocardiography, blood pressure, blood glucose, body

proportions, and flexibility. It also provides a sufficient set of

metadata (age, gender, and summary of the participant’s

current lifestyle and health) to allow researchers to analyze

further.

A well-annotated collection of human reaction times and

health-related data suitable for further lifestyle analysis and

human cognitive and physical performance was provided.

This data collection was complemented with a

preliminarily statistical evaluation. A procedure for

efficiently acquiring human reaction times and supporting

health-related data in nonlaboratory and laboratory

conditions was also presented (64).

Thanks to the success and daily use of the system, new

requirements related to better security, Scalability, and

maintainability of its architecture have emerged. The next

work presented advances and changes in the architecture of

the Body In Numbers health strategy framework, mainly

focusing on a new definition of user roles, optimization of the

system deployment, and orchestration of the system

components. A Kubernetes cluster prototype was used as

proof of concept to demonstrate the improved architectural

solution (68).
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4.2. Application domains

Relations between the person’s daily life and predispositions

toward specific health-related issues have been proven (e.g., (69)

that covers health-related topics related to insomnia, (70) for the

noise sensitivity and its effect on health, and (71) for the

movement amount and its impact on health). Most well

known are the issues connected with jobs with minimal

movement or jobs that heavily impact a person’s body.

The question of prevention is, most of the time, a decisive

factor in evading any health-threatening problems that might

occur, based on the person’s daily lifestyle when aging. The

topic of prevention is vast; five notable topics were selected:

† Chronic disease prevention (4.2.1)—it is related to

recommended movement activities throughout the day

(generally concerns jobs with large amount of sitting).

† Cognitive disease prevention (4.2.2)—it is related to

maintaining healthy mind and cognitive abilities

† Neurorehabilitation (4.2.3)—when an accident happens

that hinders brain functions (and subsequently, e.g.,

speech and mobility), neurorehabilitation helps with the

person’s recovery.

† Overall wellbeing (4.2.4)—chatbots help reduce the overall

effect of depression symptoms.

† Neural engineering (4.2.5)—it is a discipline aimed at

creating Brain–computer interfaces to control machines by

using a person’s mind.

4.2.1. Chronic diseases prevention
Smoking, excessive drinking, overeating, and physical

inactivity are well-established risk factors that decrease human

physical performance and increase the incidence of chronic

diseases. Moreover, epidemiological work has identified

modifiable lifestyle factors, such as poor diet and physical and

cognitive inactivity, associated with the risk of reduced

cognitive performance (72). Chronic diseases present an

enormous burden to society by increasing medical costs and

human suffering. The Body in Numbers system aims to

influence such modifiable lifestyle risk factors in voluntarily

enrolled individuals, thus decreasing the incidence of chronic

diseases.

The Body in Numbers system enables the collection of large

amounts of heterogeneous data and related metadata in

relatively short periods, enabling repeated measurements of

participants, data processing, and evaluation. The system

output is a list of information for participants (recommended

exercises) and management (employees in various physical

“fitness” categories).

This service is provided to firms and institutions in a series

of steps:

† Participants are registered into the system.
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† The participant fills in the entry questionnaires containing

questions aimed at food consumption habits (dietary and

drinking habits), current lifestyle, significant health issues

(diseases), intensity of medical checkups, smoking habit,

and the intensity of smoking, whether or not the person is

currently under stress and subjectively quantifies it,

quantity and quality of sleep and more (filling out the

questionnaires takes about 3–5 min).

† The system organization allows to manage 16 participants at

once (they are eight measurement sites).

† The output from this system includes raw data (e.g.,

participants’ blood pressure, cholesterol levels, and BMI),

and the participants’ categories based on their willingness

to participate in exercises.

† The participants receive advice on which exercises are most

beneficial to them individually and a set of eating habit

adjustments (based on their favorite food instead of

replacing them with something different).

† Currently, all these properties and calculations were

evaluated based on the Czech Republic Healthcare System

using the standardized SI units and measurements.
4.2.2. Cognitive disease prevention
The Body in Numbers system also helps with cognitive

impairments by offering “brain games,” which motivate users

through various memory, attention, visuospatial perception,

language and speech, or problem-solving exercises. These

games are primarily intended for mobile devices, as the

exercises can be done almost anywhere with little effort and

setup time.

Brain games can be adjusted to the user’s experience and

needs. Some of these games can also be used with a special

neurogear (the NeuroSky Mobile headset).

In the “Dangerous path” game (one of the memory-oriented

exercises), the user has to memorize the location of “good” and

“bad” objects at the beginning of the game. After this initial

startup phase, the path is obfuscated by darkness, and the

user needs to find a way from start to finish while evading all

the “bad” objects.

The “Save the princess” game uses additional gear. The user

is equipped with the NeuroSky Mobile sensor, which measures

the levels of concentration and meditation. The goal of this

game is to save a captured princess somewhere on the mobile

screen while destroying “bad” objects through the usage of a

cannon that shoots in a straight line within a time limit. The

catch is that the shot from the cannon is only as strong as the

users’ concentration level. With low concentration, shooting

the “bad” objects might be necessary multiple times.

The primary goal of these games is to motivate users to

challenge their cognitive skills throughout short repeated

sessions, working as a preventive measure.
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4.2.3. Neurorehabilitation
In neurorehabilitation, it is necessary to adjust the exercise

to the needs of each user to motivate them for repeatable

sessions. This can be generally achieved by appealing to the

user’s hobbies and dynamically adjusting the rehabilitation

task’s difficulty level.

The “Smart Train” model was created in the Body in

Numbers project. This is a handcrafted railway model that

manipulates the train using the BCI. The user drives the train

using a NeuroSky Mindwave Mobile headset (similar to the

previous “Save the princess” game). The supported operations

are as follows:

† The speed of the train model is affected by the concentration

level achieved in the last 3 s (numeric average); this selects

one of the four defined speeds.

† Change of direction (achieved by blinking twice in

succession within 2 s).

† The train is stopped by achieving a meditation level of 100%.

† Lights on the train are turned on/off by blinking once.

† If 80% of concentration is achieved, the train starts to hoot.

† If the locomotive is kept stopped for 10 straight seconds, the

conductor starts whistling.

† When the headset signal is classified as good, the locomotive

starts up and starts to move based on the concentration

levels.

† If the headset signal is low (e.g., due to poor electrode

contact with skin), then the locomotive stops and turns off

the engine.

The “Smart Train” neuroexercise challenges include stopping

the train at a specific location (e.g., on the boarding platform)

or achieving the maximum speed for a certain number of

seconds. The rewarding motivational aspects of this exercise

(“locomotive hooting,” “conductors whistle,” and “locomotive

lights”) reward and inform the user about the current state of

the concentration levels and blinking. Also, the effort required

to achieve high concentration levels can be modified manually

inside the application, making these tasks easier or

demanding based on the user’s current needs.

Another example of a rehabilitation exercise is a ball being

moved using a controller and a NeuroSky Mindwave Mobile

headset. The direction of movement is set using the

controller, and the speed is controlled by the users’

concentration levels measured by the headset. In this case, the

goal is to navigate the ball through a modifiable labyrinth of

passages as fast as possible.

4.2.4. Overall wellbeing
In recent years, wellbeing has been an interesting topic for

scientific research. Wellbeing fits various applications, from

healthy eating to mindful living. Such services can be easily

provided by various applications that notify the user of

repetitive activities or maintain healthy habits. When the
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repetitive notifications become annoying, there is a chance to

increase adherence and attrition by using gamification or

psychology in natural language conversation.

The natural conversation can be scaled and automatized

through dialog systems called chatbots. For example, a food

tracking chatbot named Nombot (73) was developed. The

dialog systems Woebot (74), Wysa (75), and Youper (76)

serve as a treatment for people with symptoms of depression

and anxiety. Lark (77) was designed to promote weight loss

and other health behaviors related to diabetes prevention.

The approaches differ; Woebot utilizes gamification with

various motivation types like points collection or higher-level

unlocking. The remaining two are built on top of cognitive

behavioral therapy. It combines behavioral techniques with

cognitive psychology, the scientific study of mental processes,

such as perception, memory, reasoning, decision making, and

problem solving, to replace maladaptive behavior and faulty

cognition with thoughts and self-statements that promote

adaptive behavior (78).

Furthermore, although these dialog systems are far from the

perfection of full human intervention, they are simple to use

and available 24x7 with significant results, for instance, in the

reduction of depression symptoms with randomized

controlled trials (74).

In the Body in Numbers project, a wellbeing module is

under development. It is interconnected with various projects

mentioned above like “Smart Train” and investigated within

research activities (79).

4.2.5. Neural engineering
The created BCI ERP Experiment, the “Guess the Number,”

uses a visual stimulation where the participant picks one

number between 1 and 9 and focuses on it throughout the

experiment without telling the experimenters (e.g., this

number effectively becomes the target stimulus). In this case,

the experimenters must correctly guess the number the

participant thought.

Throughout the experiment, the participant is exposed to

single pictures of each number between 1 and 9 (shown in

random order) on the screen while the EEG signal and

stimuli markers are recorded. Concurrently, experimenters

observe average ERP waveforms for each number, search for

the P300 component, and try to guess the number thought.

During this time, the same “guessing” is done with a software

component, which automatically identifies the number

thought. The guess is verified at the end of the experiment

when the participant is asked to reveal the number thought

(80, 81).

A variation of this experiment was also done with a picture

of nine tasks (e.g., opening a window, eating, calling the nurse),

where instead of the numbers, one of the tasks was being used

as the target stimulus. This variation was initially created to

demonstrate the use of BCI to the public while also serving
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users with limited mobility (e.g., people who cannot move their

bodies freely and cannot talk) to communicate or accomplish

some basic tasks.
4.3. Experience with the implementation
of best practices

The devised Body in Numbers ontology was successfully

overtaken and used within the components of the Body in

Numbers project while maximizing the reusability of existing

ontologies. The same was applied to the overtaken terms and

the annotation properties, where all the properties were

reused from existing ontologies. The resulting ontology was

published on the Bioportal for community reuse and in

various data formats: OWL, CSV, and RDF/XML.16

So far, the current use of the ontology is limited to the team

of Body in Numbers, which accounts for only tens of people at a

time. The community feedback is severely limited, even though

the incremental processes for expanding the existing ontology

are in place.
4.4. Future work

The following works are planned:

† Extension of terminology and ontology used in other

application domains (cognitive disease prevention,

neurorehabilitation, overall wellbeing, and neural

engineering).

† Completion of individual application domains (like

neurorehabilitation, overall wellbeing and neural

engineering), data collection, and involvement of machine

learning in the evaluation of results.

† Expansion of the used terms based on community feedback.

† Increase in the number of indexers on which the ontology is

available.

It is clear to us that this paper touches on the current absence of

best practices in the health-related data lifecycle and presents, in

particular, technical and methodological solutions that

contribute to the sharing of annotated data from different

providers. However, we have not practically touched on the

nontechnical issues that accompany the possible use of these

best practices.

In general, using best practices that contribute to

reproducible data collection, annotation, analysis,
16The BiN ontology can be found here: https://bioportal.bioontology.

org/ontologies/BIN/?p=summary (Accessed 2022-06-08).
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interpretation, and publication is a laborious process that

requires extensive knowledge and community involvement

from all stakeholders. The resulting rewards (i.e., any

additional benefits from providing well-described and

reproducible data and results) are often perceived as remote

and uncertain. Such a process is then necessarily more

compromised in its implementation. Thus, the acquisition of

clean or well-annotated data (there is no substitute for clean

data), the use of shared terminologies, ontologies, and data

formats (sharing them contributes to mutual understanding;

AI methods better handle extensive data collections), or

software and data engineering practices (they contribute to

reducing technical debt) are goals that can only be gradually

achieved if the environment supports and rewards such

efforts. Providing best practice methods, resources, and tools

for the health-related data lifecycle presented in this paper is

one support in this effort. Another important support may be

a gradual culture change regarding reproducibility and

openness of health-related data and results and the valuing

and demanding of this culture by scientific journals (which is

already happening today), coupled with the provision of

additional means of technical and methodological support

[e.g., repositories for long-term preservation of data such as

(82) or repositories of community-contributed protocols used

in data acquisition process such as (83)].

Another, but probably limited, solution is to rely on

artificial intelligence methods that can extract some relevant

information even from large amounts of raw, noisy data.
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