
TYPE Original Research
PUBLISHED 05 December 2022| DOI 10.3389/fdgth.2022.1027647
EDITED BY

Giovanni Ferrara,

University of Alberta, Canada

REVIEWED BY

Martin Ferguson-Pell,

University of Alberta, Canada

Alan Jenks,

Capilano University, Canada

*CORRESPONDENCE

Steen Harsted

sharsted@health.sdu.dk

SPECIALTY SECTION

This article was submitted to Health

Technology Implementation, a section of the

journal Frontiers in Digital Health

RECEIVED 25 August 2022

ACCEPTED 17 November 2022

PUBLISHED 05 December 2022

CITATION

Harsted S, Holsgaard-Larsen A, Hestbæk L,

Andreasen DL and Lauridsen HH (2022) Test-

retest reliability and agreement of lower-

extremity kinematics captured in squatting and

jumping preschool children using markerless

motion capture technology.

Front. Digit. Health 4:1027647.

doi: 10.3389/fdgth.2022.1027647

COPYRIGHT

© 2022 Harsted, Holsgaard-Larsen, Hestbaek,
Andreasen and Lauridsen. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.
Frontiers in Digital Health
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agreement of lower-extremity
kinematics captured in squatting
and jumping preschool children
using markerless motion capture
technology
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The clinimetric properties of new technology should be evaluated in relevant
populations before its implementation in research or clinical practice.
Markerless motion capture is a new digital technology that allows for data
collection in young children without some drawbacks commonly
encountered with traditional systems. However, important properties, such
as test-retest reliability, of this new technology have so far not been
investigated. We recorded 63 preschool children using markerless motion
capture (The Captury GmbH, Saarbrüken, Germany) while they performed
squats and standing broad jumps. A retest session was conducted after 1
week. Recordings from the test session were processed twice to estimate
the software-driven instrumental variability. Recordings from the first and
second test sessions were compared to evaluate the week-to-week test-
retest reliability. Statistical tests included 95% limits of agreement and
intraclass correlations of absolute agreement (ICC). Jump length
performance and four kinematic variables demonstrated acceptable
instrumental variability (ICC > 0.76). The week-to-week reliability was
excellent for jump length performance (ICC = 0.90) but poor to moderate
(ICC < 0.55) for the kinematic variables. Our results indicate that preschool
children exhibit considerable intra-individual kinematic variation from week-
to-week during jump landings and squats. Consequently, we suggest that
future work should explore individuals with persistent extreme kinematics
over multiple test-sessions.
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Introduction

Lower extremity musculoskeletal pain may start early in life

(1) and can impact later-in-life health, health behaviors, and

career choices (2). Therefore, early detection of children at

risk of musculoskeletal pain is of primary concern to reduce

the overwhelming worldwide burden of musculoskeletal

disorders (3).

Some lower-extremity frontal plane movement patterns in

adults and adolescents may be associated with an increased

risk of injury or the development of certain pain syndromes

(4–6). However, it is unknown if similar movement patterns

play a role in developing lower extremity musculoskeletal pain

early in life. Investigating a potential association between

early-in-life movement patterns and future injury risk requires

objective and reliable kinematic measures and an

establishment of normative data in relevant age bands. Until

now, the practical feasibility of obtaining the necessary

kinematic measures has been low, as this has required the use

of costly laboratory-based 3D optoelectronic marker-based

systems with long participant preparation times. Furthermore,

the value of kinematic measures from these systems is likely

reduced in young children, as the practice of attaching

markers introduces the risk of interfering with the natural

movement patterns of the investigated subject (7). However, it

is now possible to obtain kinematic measures using portable

markerless motion capture systems that require little or no

participant preparation time and reduces interference with

natural movement (7).

The choice of appropriate technical equipment and

algorithms for accurate markerless motion capture is critical

(8). One such system measuring preschool children has

recently shown valid results for selected kinematics and gross

motor performance measures (9). Therefore, quantifying early-

in-life movement patterns and gross motor performance may

now be feasible using markerless motion capture technology.

Besides validity, the clinimetric properties of the new

technology, such as test-retest reliability, should also be

evaluated in preschool children before its implementation in

research or clinical practice. The main components of error in

assessing test-retest reliability are (a) systematic bias and (b)

random error due to biological and instrumental variability

(10, 11). Markerless systems increasingly utilize deep-learning

algorithms to identify the skeletal structure and posture of the

investigated subjects (7, 12). If these algorithms contain

stochastic processes, any measurement affected by the

algorithms will add some random error and thereby increase

the overall instrumental variability of the markerless system.

The magnitude of this random error is of particular interest

when the systems are used to measure preschool children

since the algorithms are typically trained using datasets that

mostly contain adults, e.g., the widely used MPII dataset (13).
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Therefore, exploring the software-driven random error

associated with markerless measurements in young children is

relevant before investigating the clinimetric properties and the

clinical relevance of these measurements.

Hence, the research aims of this study were (a) to estimate

and evaluate the software-driven instrumental variability

associated with objective measures of gross motor function,

obtained using a novel markerless motion capture system in

preschool children performing squats and jumps, and (b) to

estimate the week-to-week test-retest reliability of any variable

found to have acceptable software-driven instrumental variability.
Methods

Participants and facilities

The research program Motor skills in Pre-school (MiPS)

follow a cohort of 865 children with yearly test sessions (14).

One of the aims of this cohort is to establish population-

based reference data on motor skills in 3–6-year-olds.

Seventy-seven children (38 male; 39 female), already included

in the MiPS study and attending four different kindergartens,

were invited to participate in a retest session scheduled 1

week after their yearly test. We aimed to include at least 50

subjects with complete data as recommended as a minimum

sample size to obtain acceptable confidence intervals around

estimated reliability parameters (15).

The project was approved by The Regional Committee on

Health Research Ethics for Southern Denmark (project ID:

S-20150178).
Physical tests

The present study reports specifically on kinematic and

spatial measurements captured using markerless motion

capture technology while the children performed squats and

standing broad jumps as a part of the overall MiPS testing

protocol (14). Both the standing broad jump and the squat

test are frequently used in test batteries to assess movement

quality with the aim of preventing injury (16). We chose the

standing broad jump test as it is a simple, functional test that

captures physical performance naturally occurring in human

locomotion (17). Furthermore, landings from jumps with a

horizontal component produce higher strain on tendons (18)

and more extreme kinematics than landings from other types

of jumps (18, 19). Such kinematic measurements may have

value in future investigations into the potential association

between movement patterns and musculoskeletal health (18–

20). The squat test was chosen because the movements in the

descending phase are similar to those in the landing phase of
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the standing broad jump and because children, regardless of

their level of motor skill, would be able to perform the test.

In both test sessions, the same clinician instructed the

children to perform two deep squats and two standing broad

jumps using pre-rehearsed and standardized instructions. The

children performed the movements barefooted on a 2 cm

thick foam mat and practiced all activities at least once before

each test session. The children performed the standing broad

jumps by placing their feet on two stars marked on the foam

mat and jumping as far forward as possible with both feet

and without touching the mat with their hands. The children

were not required to stand still after landing. The children

performed the squats by following visual and oral instructions

given by the instructor, who squatted to approximately 110

degrees of knee flexion with the arms stretched out in front of

the body. There were no restrictions on foot positions, foot

direction, or stance width as the children initiated the squat.
Equipment, calibration, and post-
processing

In both test sessions, the children were recorded using a

CapturyLive (The Captury GmbH, Saarbrüken, Germany)

(21) markerless motion capture system. This passive vision

system (7) scales a subject-specific 3D body model by fitting a

template skeleton onto multiple image silhouettes generated

via a background subtraction procedure (22). The human

body is modeled via estimates of joint center positions using

local optimization procedures and a “sums of spatial

Gaussians” approach (22). A best-fit pose for each frame is

obtained using generative fitting (7) and forms the basis of

the subsequent tracking. Both the scaling and tracking

features are based on a proprietary method that uses deep-

learning (12) techniques to identify and describe the posture

of a human subject within a given frame, similar to the

OpenPose library (23). The template skeleton contains, among

others, joint-centers of big toes, ankles, knees, and hips. The

positions of these joint-centers can be exported using

standard export procedures in the software (24).

The validity of the Captury system has been examined

against a Vicon optoelectrical motion capturing system using

the standard Plug-in-Gait marker model in our laboratory in

a convenience sample of 14 preschool children performing

standing broad jumps and squats (9). The markerless system

was found to measure jump length, knee-to-hip separation

ratio (25) (KHR), ankle-to-hip separation ratio (25) (AHR),

and knee-to-ankle separation ratio (26) (KASR) with

acceptable concurrent validity, while measurements of knee-

flexion should be interpreted with care (9, 27). For knee-

flexion, the between system reliability and precision estimates

ranged from “Excellent” to “Moderate”, and “Good” to

“Invalid”, respectively. This span reflects that the precision of
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the knee flexion measurements dropped to unacceptable levels

when the knees were nearly extended (i.e., upright standing) (9).

The current setup of the markerless motion capture system

consisted of eight tripod-mounted Blackfly 808 × 608 50 fps

digital cameras connected via ethernet to a consumer-grade PC

with an NVIDIA GeForce GTX 1070 GPU. The calibration

followed the documentation manual and was only accepted if

the reprojection error of the calibration target was below 2 mm.

The eight cameras were placed following a standardized setup

ensuring optimal viewpoints from multiple angles.

Post-processing of the recordings in the form of rescaling

and retracking (24) was done using CapturyLive version

1.0.163 (21), with the settings “very high” and “multipass” for

the squats and “very high” and “simple backward pass” for

the standing broad jumps.
Included variables

We exported measures of knee flexion and 3D joint-center

positions from the Captury system and calculated jump length

and three frontal plane variables (Figure 1) using custom

code available on GitHub in the “mocapr” R-package (28).

The frontal plane was defined as the plane between the two

hip-joint centers perpendicular to the ground plane.

Knee-to-Hip separation Ratio (KHR) (25, 29) is calculated

in the frontal plane as the distance between the knee joint

centers divided by the distance between the hip joint centers.

KHR has also been referred to as the normalized knee

separation distance (25, 29) and the normalized knee

separation ratio (6).

Ankle-to-Hip separation Ratio (AHR) (25, 29) is calculated

in the frontal plane as the distance between the ankle joint

centers divided by the distance between the hip joint centers.

Knee-to-Ankle Separation Ratio (KASR) (26) is calculated

in the frontal plane as the distance between the knee joint

centers divided by the distance between the ankle joint

centers. KASR has been suggested as an improved approach

to KHR and AHR (26) and has demonstrated a strong

relationship with 3D measures of knee abduction angle when

measured at the initial contact of a drop-vertical-jump

landing (30).

Jump length was calculated using the 3D global coordinate

positions of the ankle joints at take-off and impact.

Sample data and custom R code to calculate frontal plane

kinematics, jump length, and extracting point-values is available

in the R-package “mocapr” (28), downloadable from GitHub.
Data reduction

We reduced the data for both movements to only reflect the

functional points of interest. The squats were reduced to only
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FIGURE 1

Frontal plane kinematic variables. All three figures display the same exaggerated valgus position of the lower extremities. AHR, ankle-to-hip
separation ratio; KHR, knee-to-hip separation ratio; KASR, knee-to-ankle separation ratio.
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contain the descending phase and the deepest position, and the

jumps were reduced to only include the impact, the descending

phase, and the deepest position of the landings.

For each variable, maximum and minimum peak values

were extracted. Additionally, two event-specific point values

were also extracted from each of the movements. For the

squats, the two selected events were the frame where the

subject was in the mid-descent position (i.e., halfway down)

and the frame in which the subject was in the deepest

position. For the jumps, the two selected events were the

frame marked with impact and the frame where the subject

was in the deepest position of the landing.

A priori, we defined the following criteria for selecting trials

for subsequent analysis: The longest jump from each test session

would be used, and the squat trial from each test session with a

peak knee flexion closest to 110 degrees (according to the

instructions) would be used. All analyses of unilateral

kinematic variables used the left lower extremity.
Instrumental variability and week-to-
week test-retest reliability

To assess the software-driven instrumental variability, we

exported the processed data from the first test session.

Subsequently, all scaling and tracking from the first test

session were removed, and the raw recordings were processed

again with identical settings. We then estimated the software-

driven instrumental variability by comparing measurements

from the two exports.

The week-to-week test-retest reliability was estimated by

comparing the original exports from the first test session with

exports from the retest session.
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Data analysis

Data were analyzed using R version 3.6.1 (31), and the

“tidyverse” (32) and “psych” (33) R-packages. To avoid

misleading reliability coefficients driven by outliers, a

conservative approach to describe outliers as more than three

standard deviations (SD) away from the mean was chosen (34),

and outliers were subsequently removed from further analysis.

All compared values were explored for heteroscedasticity using

Bland-Altman plots, and the assumption of normality of the

differences was examined using QQ-plots. The analysis of

reliability was done using intraclass correlation coefficients of

absolute agreement [ICC(2,1)A] that we interpreted as being

poor (<0.5), moderate (<0.75), good (<0.9), or excellent (>0.9),

as suggested by Koo and Li (35). The analysis of agreement

was carried out using 95% limits of agreement (LOA)

calculated as the mean difference ±1.96 x SD of the difference

(36), and the smallest detectable change at the 95% confidence

level (SDC) calculated as the SD of the difference x 1.96 (37).

The instrumental variability of the kinematic variables was

considered as acceptable if the ICC estimates were good or

excellent and the LOAs were between −10° and +10° for knee

flexion, between −0.25 and 0.25 for the variables KASR, KHR,

AHR, and between −5 and +5 cm for jump length. These

limits were based on subjective clinical judgment and

knowledge of joint range of motion.

This study follows the GRASS guidelines for reporting

reliability and agreement studies (38).
Results

Of the 77 invited children, one child was not present on the

retest day, while 13 children were present at both test days but
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FIGURE 2

Flowchart of eligible subjects and measurements.
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did not have two squats and two jumps recorded on both test

days, leaving 33 girls and 30 boys for analyses (Figure 2). The

children had a mean age of 5.15 years (SD: 0.79), a mean

weight of 19.9 kg (SD: 3.42), and a mean height of 111.23 cm

(SD: 11.69).

Of the 8,152 measurements, 96 were identified as outliers

and omitted from further analysis. Generally, the included

variables were homoscedastic, and the error distribution was

normal. Consequently, no variables were transformed.

In the examination of the software-driven instrumental

variability, the estimated ICC(2,1)A for jump performance

was excellent, the mean difference was 0.17 cm, and the LOA

were between −1.69 and 2.04 cm (see Supplementary

Table S1). In general, all ICC(2.1)A estimates of software-

driven instrumental variability for the kinematic variables

were excellent. However, ICC(2.1)A estimates of knee flexion,

measured during the start of the squat movements (peak min.

and mid-descent), only reached good levels (0.76 and 0.79).

The estimated LOA’s for all four kinematic variables were

found to be acceptable according to our predefined criteria

(see Supplementary Table S1). The week-to-week test-retest

ICC(2.1)A coefficient for jump length was excellent (0.9). The

mean difference was 0.86 cm, while the LOA were somewhat

wide (−15.36 to 17.07 cm) (Table 1). We found large week-
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to-week variations in both the squat and the jump-landing

kinematics. Test-retest differences in gross-motor patterns are

exemplified in Figure 3, showing two subjects with similar

jump length performance (≤5 cm) but markedly different

gross-motor landing strategies between the two test sessions.

ICC(2.1)A coefficients of week-to-week test-retest reliability

were mostly poor (<0.5), with some estimates of KHR and

KASR being moderate (between 0.52 and 0.54) (Table 1 and

Figure 4). The difference between the ICC(2.1)A estimates of

the software-driven instrumental variability and the week-to-

week test-retest reliability are visible in Figure 4. The

estimated SDC’s were large, and the spans of the LOA’s were

wide for all kinematic variables examined in the analysis of

test-retest reliability (Table 1).
Discussion

This study utilized novel markerless motion capture

technology and is, to our knowledge, the first to report on the

week-to-week test-retest reliability of jump-landing and squat

kinematics captured in young children. The software-driven

instrumental variability of our data-collection method was

acceptable for the measures of jump length and for the
frontiersin.org
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TABLE 1 Week-to-week test-retest reliability and agreement of 4 kinematic variables and jump length measured in 63 preschool children using
markerless motion capture equipment.

Variable (unit) Measure Session mean (SD) Between session reliability and agreement

First Second ICC (2.1)A [95% CI] MD LLOA ULOA SDC

AHR (ratio) Jump Deepest position 1.39 (0.47) 1.33 (0.39) 0.17 [−0.08 to 0.40] 0.05 −1.04 1.15 1.10
Impact 1.41 (0.46) 1.31 (0.36) 0.23 [−0.01 to 0.46] 0.10 −0.90 1.09 1.00
Peak max. 1.42 (0.48) 1.34 (0.42) 0.20 [−0.07 to 0.44] 0.07 −1.05 1.19 1.12
Peak min. 1.37 (0.49) 1.31 (0.40) 0.15 [−0.12 to 0.40] 0.06 −1.09 1.21 1.15

Squat Deepest position 1.19 (0.38) 1.02 (0.38) 0.19 [−0.04 to 0.41] 0.17 −0.77 1.11 0.94
Mid-descent 1.06 (0.34) 0.94 (0.35) 0.22 [−0.02 to 0.44] 0.12 −0.73 0.97 0.85
Peak max. 1.31 (0.33) 1.13 (0.34) 0.19 [−0.04 to 0.41] 0.18 −0.65 1.00 0.83
Peak min. 0.92 (0.32) 0.80 (0.37) 0.33 [0.10 to 0.54] 0.12 −0.64 0.89 0.77

KASR (ratio) Jump Deepest position 1.01 (0.34) 0.96 (0.26) 0.47 [0.25 to 0.64] 0.05 −0.57 0.67 0.62
Impact 0.90 (0.19) 0.90 (0.18) 0.39 [0.16 to 0.59] 0.00 −0.40 0.40 0.40
Peak max. 1.03 (0.31) 0.99 (0.25) 0.54 [0.32 to 0.70] 0.04 −0.49 0.58 0.53
Peak min. 0.92 (0.22) 0.91 (0.20) 0.55 [0.33 to 0.71] 0.00 −0.39 0.40 0.40

Squat Deepest position 1.55 (0.58) 1.54 (0.61) 0.36 [0.12 to 0.56] 0.01 −1.32 1.34 1.33
Mid-descent 1.32 (0.45) 1.18 (0.32) 0.34 [0.10 to 0.54] 0.14 −0.74 1.02 0.88
Peak max. 1.87 (0.71) 1.92 (0.77) 0.48 [0.26 to 0.65] −0.05 −1.54 1.44 1.49
Peak min. 0.87 (0.19) 0.85 (0.16) 0.20 [−0.05 to 0.42] 0.01 −0.41 0.44 0.43

KHR (ratio) Jump Deepest position 1.35 (0.38) 1.25 (0.42) 0.22 [−0.03 to 0.44] 0.09 −0.89 1.08 0.98
Impact 1.25 (0.31) 1.19 (0.29) 0.26 [0.01 to 0.47] 0.07 −0.65 0.78 0.71
Peak max. 1.37 (0.37) 1.28 (0.41) 0.22 [−0.04 to 0.45] 0.10 −0.86 1.05 0.96
Peak min. 1.23 (0.33) 1.19 (0.32) 0.32 [0.06 to 0.54] 0.04 −0.70 0.78 0.74

Squat Deepest position 1.78 (0.59) 1.54 (0.60) 0.52 [0.29 to 0.69] 0.24 −0.85 1.33 1.09
Mid-descent 1.36 (0.56) 1.09 (0.46) 0.47 [0.20 to 0.66] 0.27 −0.71 1.24 0.98
Peak max. 1.99 (0.76) 1.75 (0.62) 0.52 [0.30 to 0.68] 0.24 −1.06 1.53 1.29
Peak min. 0.91 (0.14) 0.78 (0.21) 0.27 [0.02 to 0.49] 0.12 −0.27 0.52 0.40

Knee flexion (°) Jump Deepest position 85.65 (28.54) 81.65 (18.01) 0.43 [0.20 to 0.61] 4.01 −46.07 54.08 50.07
Impact 53.41 (11.79) 53.21 (10.69) 0.33 [0.08 to 0.53] 0.20 −25.54 25.93 25.73
Peak max. 85.15 (27.01) 81.10 (19.58) 0.34 [0.09 to 0.55] 4.06 −48.93 57.04 52.98
Peak min. 66.81 (12.57) 65.59 (10.09) 0.43 [0.20 to 0.62] 1.23 −22.62 25.08 23.85

Squat Deepest position 154.70 (10.17) 144.72 (7.95) 0.25 [−0.06 to 0.51] 9.98 −9.63 29.58 19.61
Mid-descent 99.67 (6.45) 94.66 (9.18) 0.25 [0.01 to 0.46] 5.02 −13.44 23.47 18.46
Peak max. 155.01 (9.61) 144.78 (8.23) 0.18 [−0.06 to 0.42] 10.24 −10.47 30.95 20.71
Peak min. 5.40 (3.89) 4.51 (3.66) 0.11 [−0.14 to 0.35] 0.90 −8.96 10.75 9.86

Jump length (cm) 92.88 (20.27) 92.02 (17.47) 0.90 [0.85 to 0.94] 0.86 −15.36 17.07 16.22

SD, standard deviation; ICC(2.1)A, intraclass correlation of absolute agreement; 95% CI, 95% confidence interval; MD, mean difference; LLOA, lower limit of

agreement; ULOA, upper limit of agreement; SDC, smallest detectable change; AHR, ankle-to-hip separation ratio; KASR, knee-to-ankle separation ratio; KHR,

knee-to-hip separation ratio.
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kinematic variables. The measures of jump length were similar

between the two test sessions with narrow LOA’s, negligible

mean differences, and good to excellent ICC(2.1)A estimates.

In contrast, the test-retest reliability of all examined kinematic

variables was low, indicating that high levels of intra-

individual variation in the landing and squatting kinematics

are normal in preschool children.

The kinematic variables examined in this study were found

to have low levels of within-session software-driven

instrumental variability, although the software utilizes

stochastic processes. Indicating that the observed large

kinematic differences between the two test sessions reflect

actual/biological differences in the kinematic motor patterns

of the children.

The week-to-week test-retest reliability of standing broad

jump performance has previously been examined by Román

et al. in a sample of 90 3-6-year-old children (39). Similar to

this study, they estimated the ICC to be 0.913 (ICC type not
Frontiers in Digital Health 06
specified). However, the span of their reported LOA was from

−21.4 to 25.4 cm (39), which is 14.3 cm or 44% wider than

ours. Since our results are comparable to previous research,

we believe that the children in our study were exhibiting

normal levels of intraindividual between-session variability in

their jump length performance.

All kinematic variables were found to have poor or low-end

moderate week-to-week test-retest ICC(2,1)A estimates, the

SDC’s were large, and the span of the LOA’s wide. When

determining the between-session test-retest reliability, the two

sources of variability, instrumental variability, and biological

variability, are unavoidably combined (11). This fact calls for

careful consideration in the interpretation of our results. We

tested the week-to-week test-retest reliability of five variables.

The five variables have demonstrated acceptable validity in

our previous work (9) and acceptable within-session software-

driven instrumental variability in the current study. Of the

five variables, measures of jump length were found to have
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FIGURE 3

Two representative subjects (A and B) demonstrating sizeable week-to-week kinematic landing variability between the two test sessions, despite
similar jump lengths.
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excellent week-to-week test-retest reliability. However, the

week-to-week test-retest reliability of the kinematic variables

was poor. Together, these results indicate that the poor week-

to-week test-retest scores for the kinematic variables reflect

high intra-individual biological variation in the movement

patterns of squats and jump-landings in preschool children.

Our results therefore indicate that typically developing

children exhibit considerable variation in their kinematic

movement patterns when jumping and squatting.

Consequently, we find that single kinematic measures obtained

from these movements are unlikely to hold clinical value.

It is unknown to what extent pathology can alter the

movement variability of preschool children, but several studies

have noted that pathology can reduce the magnitudes of
Frontiers in Digital Health 07
movement variability in a range of other populations (40–43).

Therefore, we suggest that future work into the possible

relationship between early-in-life motor patterns and later-in-

life musculoskeletal health should explore individuals with

persistent extreme kinematics over repeated test sessions.
Limitations

This study examined the natural movement patterns of the

children, and thus we only gave minimal instructions to the

children on how to perform the movements. Stricter criteria

and more elaborate instructions may improve the between-
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FIGURE 4

Week-to-week test-retest reliability of performance and kinematic variables captured in 63 preschool children performing squats and jumps. The
horizontal lines depict 95% confidence interval. Range values used to group the intraclass correlations as either “poor” (<0.5), “moderate” (0.5–
0.75), “good” (0.75–0.9), or “excellent” (>0.9) are marked by the background colors (red, yellow, light-green, and dark-green). SqD, squat depth;
JL, jump length; KHR, knee-to-hip separation ratio; KF, knee-flexion; KASR, knee-to-ankle separation ratio; AHR, ankle-to-hip separation ratio.
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session test-retest reliability, but could also alter the natural

movement patterns of the children.

We assessed the software-driven instrumental variability

of the motion capture equipment by re-analyzing the same

recordings twice. This approach allowed us to assess the

variability associated with the software, which we believe is

the most error-prone part of the CapturyLive system and

for markerless motion capture systems in general.

Nevertheless, other sources of instrumental variation could

also have affected our data, e.g., the illumination of the

recording area was difficult to standardize as some of the

gym halls had windows that could not be screened for

sunlight.

We used 8 digital cameras in the markerless motion capture

setup for the current study. This number of cameras was

recommended in early research that found the use of setups
Frontiers in Digital Health 08
with less than 8 cameras for accurately capturing human

movement to be questionable (44). Given the rapid

development of markerless motion capture, it may be that

simpler and more feasible systems with fewer cameras have

the same acceptable levels of software-driven instrumental

variability today as the 8 camera setup we evaluated in this

experiment. This, however, should be evaluated independently

in future studies.

The children in the present sample were enrolled in the

MiPS study. In the MiPS study, all children attending public

preschools in the Municipality of Svendborg, Denmark, were

invited to participate (14). Consequently, we expect most of

these children to be typically developing healthy children.

However, our sample may include children with pathologies if

these pathologies would not prevent the children from

attending a public preschool in Denmark.
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Conclusion

Estimates of jump length, KHR, AHR, KASR, and knee

flexion can be measured in young children with acceptable

software-driven instrumental variability using commercially

available markerless motion capture technology. Jump length

can be measured using the same system with excellent week-

to-week test-retest reliability.

The children in the present representative sample of

preschool children exhibited considerable intra-individual

biological variation in their kinematic movement patterns

when they landed from jumps and performed squats.

Therefore, any single kinematic measure from these

movements in this population is unlikely to be of clinical

value. Consequently, we suggest that future work into the

possible relationship between early-in-life motor patterns and

later-in-life musculoskeletal health should explore individuals

with persistent extreme kinematics over repeated test-sessions.
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