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Subtypes of relapsing-remitting
multiple sclerosis identified by
network analysis
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We used network analysis to identify subtypes of relapsing-remitting multiple
sclerosis subjects based on their cumulative signs and symptoms. The
electronic medical records of 113 subjects with relapsing-remitting multiple
sclerosis were reviewed, signs and symptoms were mapped to classes in a
neuro-ontology, and classes were collapsed into sixteen superclasses by
subsumption. After normalization and vectorization of the data, bipartite
(subject-feature) and unipartite (subject-subject) network graphs were created
using NetworkX and visualized in Gephi. Degree and weighted degree were
calculated for each node. Graphs were partitioned into communities using the
modularity score. Feature maps visualized differences in features by community.
Network analysis of the unipartite graph yielded a higher modularity score
(0.49) than the bipartite graph (0.25). The bipartite network was partitioned into
five communities which were named fatigue, behavioral, hypertonia/weakness,
abnormal gait/sphincter, and sensory, based on feature characteristics. The
unipartite network was partitioned into five communities which were named
fatigue, pain, cognitive, sensory, and gait/weakness/hypertonia based on
features. Although we did not identify pure subtypes (e.g., pure motor, pure
sensory, etc.) in this cohort of multiple sclerosis subjects, we demonstrated that
network analysis could partition these subjects into different subtype
communities. Larger datasets and additional partitioning algorithms are needed
to confirm these findings and elucidate their significance. This study
contributes to the literature investigating subtypes of multiple sclerosis by
combining feature reduction by subsumption with network analysis.
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Introduction

Multiple sclerosis (MS) is one of several immune-mediated demyelinating diseases of the

central nervous system that includes transverse myelitis, optic neuritis, neuromyelitis optical,

acute disseminated encephalomyelitis, and acute hemorrhagic leukoencephalopathy (1). MS

has traditionally been divided into four clinical course phenotypes that include relapsing-

remitting multiple sclerosis (RRMS), primary progressive multiple sclerosis (PPMS),

secondary progressive multiple sclerosis (SPMS), and relapsing progressive multiple sclerosis
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(RPMS) (2). In 2013, the criteria for MS phenotypes were revised to

remove RPMS (3–6). More recently, MS has been additionally

classified by activity (active or inactive) or phase (relapsing or

progressive) (4, 5, 7, 8). Another way of subtyping neurologic

diseases is by deep phenotyping where signs and symptoms are

recorded in detail and are mapped to a restricted terminology (9–

13). Patients can then be subtyped according to patterns of signs

and symptoms.

MS may have a variable onset with the diverse symptoms of

optic neuritis, facial pain, hemifacial spasm, Lhermitte’s sign,

transverse myelitis, limb weakness, limb numbness, urinary

retention, dysmetria, intention tremor, incoordination,

dysarthria, hearing loss, color blindness, gait disturbance, and

diplopia (14). MS variably involves the optic nerve (painful

loss of vision), the spinal cord (sphincter dysfunction,

monoparesis, hemiparesis, hypoesthesia, paresthesia), the

brainstem and cerebellum (diplopia, oscillopsia, vertigo, ataxia,

tremor, facial weakness), or the cerebral hemispheres

(hemiparesis, hemihypoesthesia) (8). Subtypes of multiple

sclerosis based on clinical presentation (signs and symptoms)

are recognized (15–18) including tremor (19), ataxia (20),

visual disturbances (21, 22), sensory symptoms (numbness

and paresthesias) (23–26), pyramidal tract findings (weakness,

hyperreflexia, spasticity, and hypertonia) (27–29), or spinal

cord findings (paraparesis, sphincter dysfunction, and sensory

levels) (30, 31). Other MS subjects show cognitive impairment

(32, 33), dysarthria (34), dysautonomia (35), depression (36),

imbalance (37), paroxysmal symtoms (38), or fatigue (39, 40).

The Kurtzke Functional System Score (FSS) (41) is useful in

rating sensory, visual, sphincter, mental, pyramidal, cerebellar,

and brainstem dysfunction in MS. However, there is a limited

ability to categorize MS subjects based on their predominant

clinical presentation. A network analysis of subjects with MS

based on their signs and symptoms could assist in identifying

clinically significant subtypes of MS.

This paper is organized as follows. We first review prior work

on finding subtypes of multiple sclerosis based on signs and

symptoms. We then describe our proposed approach to finding

subtypes of multiple sclerosis based on deep phenotyping,

subsumption of phenotype classes into superclasses, and network

analysis. In the Methods section, we describe how deep

phenotyping was performed, how the features were collapsed into

superclasses, and how the networks were created and partitioned.

In the Results section, we report the partitioning of the networks

into five communities of MS subjects. In the Discussion section,

we discuss the identified communities as possible clinical subtypes

of MS. Finally, we discuss the limitations of network analysis as a

method of finding MS subtypes.

Prior work

Although network analysis has not been used to identify

clinical subtypes of MS, other work is relevant to this
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undertaking (Table 1). Depression and anxiety have been

reported in MS in about 27% of patients, but no specific

phenotype has been described (42, 43, 62). Zhang et al. (63)

examined 13 common symptoms of MS in 1985 MS subjects

and found that depression, pain, and walking difficulties were

the strongest predictors of impaired quality of life. Cognitive

impairment is frequent in MS, possibly affecting 40–80% of

subjects (33, 45–50). Pure cognitive subtypes (cognitive

impairment without other major neurological signs) have

been described in a small minority of MS patients (47, 50). In

their review of functional connectivity based on functional

MRI, Tahedl et al. (64) suggested that cognitive impairment

in MS was associated with disruptions of the default-mode

network of the brain, whereas sensory-motor deficits were

associated with disruptions of the sensory-motor networks of

the brain. Although fatigue is frequent in MS, specific

subtypes have not been described (51).

Although uncommon, spinal MS (leg weakness, sphincter

dysfunction, sensory levels, spasticity, and hyperreflexia), as

well as opticospinal MS (combining spinal MS with optic

nerve involvement), are recognized forms of MS (65–67).

Opticospinal MS must be differentiated from neuromyelitis

optica, a similar but etiologically different disease from MS.

Cree et al. (60) have suggested that spinal MS and

opticospinal MS may be more common in Blacks than

Whites. Nociti et al. (30) reported spinal MS in 2.3% of their

cohort of subjects.

Cerebellar and brainstem phenotypes of MS have been

reported (44) with prominent ataxia and cranial nerve deficits.

Naismith et al. (17) compared 79 Black subjects with MS to

80 White subjects (17) and found more tremor, ataxia, and

need for assistive walking devices in the Black MS subjects.

They speculated that the optico-spinal, cognitive, and ataxic-

spastic phenotypes are more common in Black than White

subjects. In a small study, Ayache et al. (19) found tremor in

56% of their cohort of MS subjects but did not identify a

specific phenotype.

Sensory symptoms are common in MS, including pain,

hypesthesias hyperesthesias, band-like sensations, and

paresthesias (26, 56); however, no specific sensory phenotype

has been described. Optic neuritis is common in MS but

generally recovers fully or partially. Gerbis et al. (61) describe

5 subjects from a cohort of 550 MS who had severe unilateral

optic neuritis without recovery, and suggest that these cases

may represent a subtype of MS subjects.

Functional Systems Scores (FSS) are a good candidate for

identifying clinical subtypes of MS. It is widely used in MS

clinical trials and is divided into seven domains (pyramidal,

cerebellar, brainstem, sensory, bowel and bladder, visual, and

cerebral) (68). An asymmetric distribution of scores in these

domains could identify subtypes of MS. Yang et al. (69) used

a combination of a convolutional neural network and a rule-

based natural language algorithm to accurately predict
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TABLE 1 Summarization of prior work relevant to subtyping multiple sclerosis by phenotypic feature.

Author Domain N Cite Findings Limitations

Donnchadha Behavioral 33 (42) 27% had anxiety Small N, no correlations with
other features

Koch Behavior 1,376 (43) 27% depressed, stable over time No correlation with EDSS

Ganesvaran Brainstem or
cerebellum

20 (44) 80% of 20 MS patients with psoriasis 80% had brainstem or cerebellar
lesions

Small N

Naismith Cerebellar and gait 166 (17) Compared to Whites, Blacks had more gait and cerebellar deficits Small N

Rocca Cognitive 227 (45) Loss of connectivity predicts memory and attention deficits Correlation with cognitive
impairment

Hancock Cognitive 1,281 (46) Cognitive domain impairment: 48% intact, 22% 1-domain, 24% 2-
domain, 15% multi-domain cognitive deficits

Only examined cognitive
impairment

De Meo Cognitive 1,212 (33) 5 cognitive subtypes identified Only 19.5% completely normal Only examined cognitive
impairment

Staff Cognitive 23 (47) Mayo Clinic reported 23 MS patients with isolated cognitive
impairment

Population not reported

Leavitt Cognitive 128 (48) 43.7% cognitively impaired Memory, Processing speed, or both Convenience sample

Cabeça Cognitive 35 (49) Discriminant analysis found reaction time best discriminator Study did not identify cognitive
subtypes

Zurawski Cognitive 2,302 (50) 2.6% had pure cognitive phenotype Only examined cognition

Beckerman Fatigue 264 (51) 88 with low and 174 with high fatigue physical from mental fatigue
correlated

Did not correlate fatigue with
other features

Bove FSSa 1,028 (52) Median and range FSS provided No classification by subtype

Kalincik FSSa 14,969 (53) Increased disability with relapse on on pyramidal, cerebellar, sphincter
FSS

Not classified by phenotype

Stewart FSSa 19,504 (54) Pyramidal, cerebellar, sphincter add to disability with relapse Not classified by phenotype

Scott FSSa 1,173 (55) On followup, most worsening on pyramidal, sensory, cerebellar, and
sphincter FSS scales

Not classified by phenotype

Revil Pain 112 (56) 40 pain free with normal sensation 44 central pain with
hyposensitivity

Only examined pain

Tsantes Relapse phenotype 199 (57) 47% of relapses recurred at initial optic, spinal, brainstem-cerebellum
sites

Small N

Mowry Relapse phenotype 195 (58) Relapse more likely to recur at optic nerve spinal cord, or brainstem-
cerebellum

Small N

Deen Relapse phenotype 190 (59) Relapse recurred at optic nerve brainstem-cerebellum, spinal cord Small N

Nociti Spinal cord 563 (30) 13/563 had spinal MS (2.3%) Retrospective study

Sanders Sensory 127 (26) 84% had paresthesias Small N

Cree Spinal cord 1490 (60) Compared to White, Black MS subjects more corticospinal and
transverse myelitis

Ayache Tremor 32 (19) 56% with tremor Not population-based

Gerbis Vision 550 (61) 5 of 550 patients had severe optic neuritis that never recovered Only examined optic neuritis

Author is the first author, N is the number of subjects in the study, cite is the reference number. Studies are sorted by domain.
aFunctional system score.

Howlett-Prieto et al. 10.3389/fdgth.2022.1063264
Kurtzke Functional System Scores (FSS) from the EHR notes of

4906 multiple sclerosis subjects. SUMMIT (Serially Unified

Multicenter Multiple Sclerosis Investigation) is an

international effort to create a repository of deeply
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phenotyped MS subjects utilizing standardized neurological

examinations and the Kurtzke FSS (12). However, no subtypes

based on FSS have been reported. Similarly, Dahlke et al. (70)

examined the clinical course in 34,987 MS patients who had
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entered into clinical trials (31,863 with relapsing-remitting MS,

1873 with secondarily progressive MS, and 986 with primary

progressive MS) but did not characterize MS subjects further

as to clinical phenotype. Other ongoing longitudinal studies

have been undertaken to characterize MS clinical phenotypes

(16, 71) but they have not yet yielded new subtypes.

The increment in neurological deficits after MS relapses has

been investigated (53–55, 57–59). Increasing disability in some

subjects has been linked to the accumulation of pyramidal,

sensory, cerebellar, and sphincter abnormalities (53–55).

Furthermore, in some subjects relapses tend to occur at the

same anatomical site as previous attack, and this is especially

so for the optic nerve, spinal cord, brainstem, and cerebellum

sites (57–59), suggesting that neurological signs and

symptoms could accumulate at those affected areas. If relapses

recur at sites of the previous attacks, this could foster

subtypes of MS based on repeated relapses at the same

anatomic site.

A network (also called a graph) is an assembly of nodes that

are interconnected by edges (52). When all connected nodes

come from the same class, the graph is unipartite. When each

node is connected to a node of a second class, the graph is

bipartite (72). Networks can be partitioned into communities

of like nodes (also called clusters) (73, 74). Barabási (75)

defines a community as “a locally dense connected subgraph

in a network (page 325),” and that “…we expect nodes that

belong to a community to have a higher probability of linking

to other members of that community than to nodes that do

not belong to the same community….” Some of the

partitioning algorithms depend upon the maximization of

modularity which measures how well each community is

separated from other communities.

Network analysis has proven useful in visualizing complex

relationships between the phenotypes, genes, proteins, and

metabolic pathways that underlie human diseases (76–81).

Network analysis has provided important insights in into

brain connectivity, and neuroimaging (82, 83). Network

analysis has identified potential genetic causes of autism (84)

and has clustered autism subjects by phenotype (85, 86).

Network analysis has been used to identify genes that govern

MS susceptibility (87–89), proteins implicated in the etiology

of MS (90), as well as brain areas that undergo disconnection

in MS (45, 91–93).
Proposed approach

The review of prior work suggested that there is a gap in

identifying subtypes of MS based on signs and symptoms.

Our goal was to identify clinical subtypes of RRMS using

network analysis after feature reduction. We found 244

unique neurologic signs and symptoms in a cohort of 113

subjects with relapsing-remitting MS, mapped them to classes
Frontiers in Digital Health 04
in a neuro-ontology, and then collapsed the classes into

sixteen superclasses (Figures 1A,B). For each subject, the

count of signs and symptoms in each superclass was

normalized. A bipartite graph was created using NetworkX,

with each subject node connected to one of sixteen superclass

nodes by an edge proportional to the normalized count of

signs and symptoms. Distances between subjects were

calculated by the cosine similarity of their signs and

symptoms. A unipartite graph was created in NetworkX

where the nodes were subjects, and the edges were inter-

subject distances. The unipartite and bipartite graphs were

visualized in Gephi and partitioned into communities based

on the Louvain algorithm (94). Modularity scores were used

to evaluate the quality of the partitions. We used feature maps

to characterize the communities. This approach could lead to

classifying MS patients by clinical phenotype and supplement

the phenotyping of MS subjects by disease course.
Methods

Subjects

One hundred and twenty MS subjects followed at the

University of Illinois-Neuroscience Center were enrolled in

the University of Illinois at Chicago (UIC) Neuroimmunology

Biobank between August 2018 and March 2020 (mean age

42:7+ 12:8 years, 73% female, 27% male, 58% Black, 42%

White). The Biobank is approved by the Institutional Review

Board (IRB) of the University of Illinois College of Medicine.

All subjects provided informed written consent at enrollment.

Subjects were between 18-80 years old and had a diagnosis of

RRMS based on the 2017 McDonald criteria (95). Subjects

had been recruited for a study of blood biomarkers in MS

where RRMS was an inclusion criterion and progressive MS

was an exclusion criterion. Seven subjects with normal

neurological examinations were excluded from the analysis

leaving a final study sample of 113 subjects.
Neuro-phenotyping

The neurological progress notes from the electronic health

record of all subjects were reviewed, and neurological signs

and symptoms were recorded (11). The cumulative signs and

symptoms (both active and resolved) of each subject were

recorded and mapped to concepts in a neuro-ontology with

1,600 possible concepts (96). Subjects had 13:2+ 9:2 signs

and symptoms (mean + standard deviation). The 113

subjects had 1,453 total signs and symptoms (244 unique

signs and symptoms). Subsumption (97) was used to collapse

the signs and symptoms (Figure 1A) into 16 superclasses

(Figure 1B) that included behavior, cognitive, cranial nerve,
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FIGURE 1

(A) Word cloud representing the frequency of signs and symptoms in the entire MS cohort before subsumption. Word size is proportional to
frequency. There were 244 unique signs and symptoms. The most frequent signs and symptoms were leg weakness, impaired balance, fatigue,
and paresthesias. Supporting files available on the project’s GitHub site. (B) Word cloud representing the frequency of signs and symptoms in the
entire MS cohort after subsumption into 16 superclasses. Word size is proportional to frequency. The largest superclasses are sensory, weakness,
hyperreflexia, and incoordination. Supporting files available on the project GitHub site.
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eye movement, fatigue, gait, hyperreflexia, hypertonia,

incoordination, pain, sensory, speech, sphincter, tremor, vision,

and weakness. The largest superclasses were weakness,

sensory, incoordination, and hyperreflexia. Each subject was

represented as a 17-dimension vector where the first element

of the vector was the case identification label, and the

subsequent sixteen elements were the count for each of the

sixteen superclasses (Figure 2A). Counts were normalized

over the interval [0, 1] using the continuize widget in Orange

3.32.0 (98) (Figure 2B). We chose to normalize counts
Frontiers in Digital Health 05
because counts varied significantly between superclasses. For

supporting data, see the project GitHub site.
Network analysis, distance metrics,
feature maps

Network analyses were performed on normalized 113� 17

data arrays (89, 98, 99). NetworkX (100) converted the data

arrays to GraphML files compatible with Gephi. Bipartite
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FIGURE 2

(A) Feature map of the entire cohort of MS patients before normalization. Rows are subjects, and columns are superclasses. Normalized feature
counts in the columns range between 0 to 13 and the color scale is centered on 3 features. Rows and columns are clustered hierarchically with
Ward linkage. Column distances by Pearson correlation coefficient; row distances are Euclidean. (B) Feature map of the entire cohort of MS
patients after normalization. Rows are subjects, and columns are superclasses. Normalized feature counts in the columns range between 0 to 1
and the color scale is centered on 0.3 features. Rows and columns are clustered hierarchically with Ward linkage. Column distances by Pearson
correlation coefficient; row distances are Euclidean.
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networks were visualized in Gephi 0.9.7 using a variety of

layouts, with the final analysis using the Force Atlas layout

with a repulsion force of 10,000. Visual inspection showed

Force Atlas to have the optimal spacing of nodes and clarity

of visualization. The bipartite network contained nodes of

subjects and features (signs and symptoms) as nodes with a

magnitude of the edges connecting subjects to features equal
Frontiers in Digital Health 06
to the normalized feature score for each subject. In the

bipartite networks, there were no direct subject-subject or

feature-feature edges. Node sizes were proportional to the

average weighted degree of each node. Communities were

named based on their predominant features. Nodes were

colored by their community membership, and colors were

used consistently across graphs based on feature
frontiersin.org
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FIGURE 3

(A) Bipartite graph of normalized features. Labeled nodes are
features; unlabeled nodes are subjects. Weighted connections
(edges) are between features and subjects. (B) Feature map of the
five communities identified by partitioning the bipartite graph with
unnormalized features. Modularity analysis of the bipartite graph of
normalized data showed five communities. Community 1 was
predominantly fatigue, Community 2 was predominantly

Howlett-Prieto et al. 10.3389/fdgth.2022.1063264
predominance. Edge widths were proportional to edge weight

for the bipartite graphs. The unipartite networks were based

on distances between subjects derived from the feature vectors

for each subject. Distances were calculated in Orange using

the distances widget for Pearson, Euclidean, and cosine

distances. Visual inspection of the network graphs showed

that the cosine-based graphs were superior to those based on

the Pearson or Euclidean distances. Only the cosine distances

were retained for further analysis (101). For the unipartite

graphs, all nodes were subjects, and the edges were subject

similarity based on the cosine distances. Node size was

proportional to the degree (number of edges for each node).

The edge width was fixed. Gephi was used to partition the

unipartite and bipartite networks into communities based on

the Louvain algorithm (94). The Louvain algorithm

maximizes modularity (a measure of community separation).

Modularity rises from 0:0 as the number of intra-community

edges increases relative to inter-community edges. Larger

values of modularity reflect a more robust separation of the

communities. The degree, average degree, and modularity

class for each node were calculated by Gephi. Modularity

resolution was set to 1.0 for the unipartite graph and 1.15 for

the bipartite graph. For the unipartite graph, two subjects

were excluded from the final analysis as they formed

communities with only one node. For the normalized

unipartite graph, a cosine distance threshold of 0.4 was used

to exclude weak edges. Feature means for each community

were calculated by SPSS 28 (IBM, Chicago, IL). Differences

between community feature means were tested by one-way

ANOVA (SPSS). Feature maps were created with the heat

map widget from Orange. The word cloud was created with

the word cloud widget from Orange. The concordance for set

membership between communities was measured by the

Jaccard Index (102) where J is the Jaccard Index, and A and

B are the set memberships of two communities:

J ¼ A> B
A< B

:

behavioral, Community 3 was weakness and hypertonia,
Community 4 was gait and sphincter, and Community 5 was
predominantly sensory features indicating features that differed
significantly by the community (One-way ANOVA, p , 0:05, df ¼ 4).
Results

The largest superclasses of signs and symptoms in this

cohort of MS subjects were sensory, weakness, incoordination,

and hyperreflexia (Figure 1B). To prevent the superclasses of

weakness and sensory from dominating the network analysis,

the signs and symptoms were normalized on the interval

[0, 1] before network analysis and partitioning. Visual

inspection of the feature map of the MS cohort suggested

some clustering of subjects on signs and symptoms

(Figures 2A,B) and that a network analysis to identify

distinct communities would be fruitful.
Frontiers in Digital Health 07
The bipartite graph was partitioned into five communities

(Figure 3A) with a modularity score of 0.25. Communities

were named and color-coded by the one or two features with

the highest community means as fatigue (n ¼ 23), behavior

(n ¼ 10), hypertonia/weakness (n ¼ 33), gait/sphincter

(n ¼ 22), and sensory (n ¼ 25) (Figure 3B). ANOVA showed

significant differences between communities for behavior

(p , :001), cranial nerve (p ¼ :008), eye movements

(p , :001), fatigue (p , :001), gait (p ¼ :029), hyperreflexia
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FIGURE 4

(A) Unipartite graph based on normalized features. Nodes are
subjects, and node size is proportional to the number of edges.
The largest communities are gait/weakness/hypertonia (red,
n ¼ 38) and fatigue (orange, n ¼ 32). Note the small cognitive
community (pink, n ¼ 3). (B) Feature map of the five communities
identified by partitioning the unipartite network graph based on
normalized features. Asterisks indicate features that differed
significantly by the community (One-way ANOVA, p , 0:05, df ¼ 4).
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(p ¼ :031), hypertonia (p , :001), incoordination (p ¼ :002),

sensory (p ¼ :018), sphincter (p ¼ :021), tremor (p ¼ :006),

and weakness (p ¼ :001).

The unipartite graph was partitioned into five communities

(Figure 4A) with a modularity score of 0.49. Communities were

named by their predominant features: pain, fatigue, cognitive,

sensory, and weakness/gait/hypertonia (Figure 4B). ANOVA

analysis showed significant differences between communities

for behavior (p ¼ :033), cognitive (p , :001), eye movements
Frontiers in Digital Health 08
(p ¼ :047), fatigue (p , :001), gait (p , :001), hyperreflexia

(p ¼ :014), hypertonia (p , :001), incoordination (p , :001),

pain (p , :001), sensory (p , :001), and weakness (p ¼ :037).

Although partitioning the bipartite and unipartite graphs

produced somewhat different communities, similarities between

community membership and graphs were notable. We used the

Jaccard Index (a set similarity measure) to assess the similarity

between communities. Membership for the fatigue (J ¼ 0:72)

and sensory (J ¼ 0:56) communities was similar for the

unipartite and bipartite graphs. The unipartite graph

community gait/weakness/hypertonia showed similarity to the

bipartite graph communities hypertonia/weakness (J ¼ 0:36)

and gait/sphincter (J ¼ 0:36). A complete table of Jaccard

Index values is available on the project’s GitHub site.
Discussion

Multiple sclerosis can present as sensory loss, weakness,

incoordination, sphincter disturbance, diplopia, visual loss,

cognitive impairment, fatigue, or even pain. We have used

network analysis to identify distinct clinical subtypes of multiple

sclerosis based on signs and symptoms. We first mapped the

signs and symptoms of a cohort of multiple sclerosis subjects to

concepts from neuro-ontology. We then created a bipartite

graph, where subjects and their signs and symptoms were nodes

in a graph (Figure 3A). In a bipartite graph, subjects are

connected to signs and symptoms and not to other subjects.

When the signs and symptoms of a subject are converted to

vectors, distances between subjects can be calculated so that

subject nodes can be connected to other subjects to form a

unipartite graph (Figure 4A). Network analysis allowed us to

identify communities of multiple sclerosis subjects who shared

signs and symptoms in common. Partitioning of the unipartite

and bipartite graphs based on modularity score identified

communities with strong fatigue and sensory feature

predominance. Both partitions had communities characterized

by weakness combined with hypertonia or gait findings.

Partitioning of the bipartite graph produced a small community

with behavioral changes (depression, anxiety, etc.) and a gait/

sphincter community. Partitioning of the unipartite graph

produced a small community with cognitive findings and a

medium-sized community with pain (Figure 4B).

Partitions of the unipartite graph yielded higher modularity

scores than the bipartite graph, suggesting that the partitioning of

the unipartite graph was more robust. The named communities

for Figure 4B (pain, fatigue, cognitive, sensory, and gait/

weakness/hypertonia) deserve special consideration as potentially

identifiable multiple sclerosis subtypes. We found a strong

overlap between the fatigue and sensory communities across both

graphs as measured by the Jaccard Index. Significant overlap

between the gait/weakness/hypertonia community from the

unipartite graph with the gait/sphincter and hypertonia/
frontiersin.org

https://doi.org/10.3389/fdgth.2022.1063264
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Howlett-Prieto et al. 10.3389/fdgth.2022.1063264
weakness communities from the bipartite graph was noted.

Although the partitioning of networks based on features suggests

that identifiable MS subtypes may exist, variability across

partitions does not permit a definitive characterization of subtypes.

Although we did not correlate community features with MRI

findings, the communities detected may reflect the anatomic

location of MS lesions (103, 104). Of particular interest is the

tendency for relapses to occur at the sites of previous MS attacks

(57–59). Recurring relapses at the same anatomic site could lead

to increased symptoms in certain domains (e.g., weakness,

incoordination, sphincter, visual, etc.) and make subtypes of MS

more discernible. On the other hand, “pure” subtypes of MS (i.e.,

pure motor, pure sensory, pure cognitive) are uncommon; nearly

all MS patients in our cohort have signs and symptoms in

multiple symptomatic domains (see, for example, Figures 2A,B).

Two strengths of this study should be mentioned. First,

community detection was done by network analysis which

offers an alternative to unsupervised machine learning

algorithms based on cluster analysis (105, 106). Second, we

used subsumption and the hierarchical organization of signs

and symptoms in an ontology to reduce the number of

features used in the analysis (97). The current study

demonstrates that subsumption can successfully group signs

and symptoms of MS subjects into superclasses (Figures 1A,

B). These superclasses can be used to characterize the clinical

features of communities identified by network analysis.

The current study has several limitations. The sample size

was small (N ¼ 113). The small sample size could cause a

selection bias that influenced the communities found by

network analysis. Network analysis of larger sample sizes may

detect more robust communities with a different profile of

predominant features. In particular, we did not identify

communities of MS subjects with predominant vision, cranial

nerve, or incoordination signs and symptoms, although such

communities likely exist (15, 20–22). Another limitation was

that we evaluated only one partitioning algorithm (Louvain).

A limitation of the Louvain algorithm is that it does not

exhaustively examine all possible partitions, so partitioning is

non-deterministic, and partitions may change with each run

(73, 107, 108). Other partitioning algorithms are available and

might yield different results. We used subsumption to reduce

the number of clinical features from 244 to sixteen. Different

subsumption strategies would likely yield different results. We

calculated distances between subjects using the cosine distance

metric; other distance metrics are available and may have

resulted in different results. Although the modularity scores of

the partitions are comparable to those obtained on standard

datasets like the Karate Club (73, 108), they are still modest

(0.25–0.49). Another limitation was that subjects in the study

were diagnosed with the RRMS phenotype. Without further

analysis, our data cannot be extrapolated to other disease

course phenotypes. Our analysis did not consider the race or

sex of the subjects, which could influence clinical subtype (60,
Frontiers in Digital Health 09
109, 110). Finally, we partitioned MS subjects based on their

accumulated signs and symptoms. Examining networks based

on signs and symptoms at a single time would be instructive.
Conclusions

MS phenotypes based on the clinical course are well-

established. Clinical subtypes of MS based on clinical

presentation are increasingly recognized. After mapping the

signs and symptoms of a cohort of MS patients to classes in

neuro-ontology and then collapsing these classes into sixteen

superclasses, we used network analysis to identify clinical

subtypes of MS based on signs and symptoms. Feature maps

(Figures 3B, 4B) suggest that identifiable subtypes of MS with

predominant signs and symptoms related to weakness,

sensation, behavior, cognition, pain, and fatigue deserve

further investigation. The clinical subtyping of MS subjects

could supplement phenotyping by disease course. Additional

studies may reveal that MS subtypes correlate with epigenetic,

radiological, immunologic, or protein biomarkers.
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