
TYPE Brief Research Report
PUBLISHED 08 December 2022| DOI 10.3389/fdgth.2022.1065581
EDITED BY

Harry Hochheiser,

University of Pittsburgh, United States

REVIEWED BY

Terri Elizabeth Workman,

George Washington University, United States,

Md Adnanul Islam,

Monash University, Australia

*CORRESPONDENCE

Sima Azizi

azizi.sima.67@gmail.com

SPECIALTY SECTION

This article was submitted to Health

Informatics, a section of the journal Frontiers in

Digital Health

RECEIVED 09 October 2022

ACCEPTED 21 November 2022

PUBLISHED 08 December 2022

CITATION

Azizi S, Hier DB and Wunsch II DC (2022)

Enhanced neurologic concept recognition

using a named entity recognition model based

on transformers.

Front. Digit. Health 4:1065581.

doi: 10.3389/fdgth.2022.1065581

COPYRIGHT

© 2022 Azizi, Hier and Wunsch II. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.
Frontiers in Digital Health
Enhanced neurologic concept
recognition using a named entity
recognition model based on
transformers
Sima Azizi1*, Daniel B. Hier1,2 and Donald C. Wunsch II1,3

1

Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering,
Missouri University of Science & Technology, Rolla, MO, United States,

2

Department of Neurology and
Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States,

3

National Science
Foundation, ECCS Division, Arlington, VA, United States

Although deep learning has been applied to the recognition of diseases and
drugs in electronic health records and the biomedical literature, relatively little
study has been devoted to the utility of deep learning for the recognition of
signs and symptoms. The recognition of signs and symptoms is critical to the
success of deep phenotyping and precision medicine. We have developed a
named entity recognition model that uses deep learning to identify text spans
containing neurological signs and symptoms and then maps these text spans
to the clinical concepts of a neuro-ontology. We compared a model based
on convolutional neural networks to one based on bidirectional encoder
representation from transformers. Models were evaluated for accuracy of text
span identification on three text corpora: physician notes from an electronic
health record, case histories from neurologic textbooks, and clinical synopses
from an online database of genetic diseases. Both models performed best on
the professionally-written clinical synopses and worst on the physician-
written clinical notes. Both models performed better when signs and
symptoms were represented as shorter text spans. Consistent with prior
studies that examined the recognition of diseases and drugs, the model
based on bidirectional encoder representations from transformers
outperformed the model based on convolutional neural networks for
recognizing signs and symptoms. Recall for signs and symptoms ranged from
59.5% to 82.0% and precision ranged from 61.7% to 80.4%. With further
advances in NLP, fully automated recognition of signs and symptoms in
electronic health records and the medical literature should be feasible.

KEYWORDS

named entity recognition, clinical concepts, concept extraction, phenotype,

transformers, natural language processing, annotation

I. Introduction

Several factors have accelerated interest in the automated recognition of clinical

concepts in unstructured text held in electronic health records and electronic

publications (1). First, most paper medical records have been converted to electronic

health records (EHRs) (2) with as much as 80% of the data held as unstructured text
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(3). Second, most medical journals are available electronically

(4). Third, the deep phenotyping and precision medicine

initiatives have made the detailed description of patient signs

and symptoms a key piece of data (5,6). Fourth, automated

clinical concept recognition is an important area of natural

language processing (NLP) research. Automated concept

recognition is closely related to the NLP problems of text

mining and named entity recognition. Other important NLP

research areas include machine translation, text classification,

text clustering, speech recognition, question answering, text

summarization, sentiment analysis, picture captioning, and

natural language understanding (7–14).

Krauthammer and Nenadic (1) have divided concept

recognition (variously called term identification, concept

extraction, and information extraction) into three steps: term

recognition (identification of the text span corresponding to

the clinical concept), term classification (identification of the

class membership of the term, i.e., drug, disease, sign,

symptom, etc.), and term mapping (linking of the term to an

entry in a standard vocabulary with an identification code

which is also known as “concept normalization” (15)).

Clinical concept recognition is closely related to the NLP

problem of named entity recognition (NER) in which text

spans referring to named entities (people, places,

organizations, etc.) are tagged and mapped to dictionaries,

gazetteers, or other registries (16).

Text spans that encode clinical concepts (diseases, drugs,

signs, symptoms, etc.) can be mapped (normalized) to

hierarchical ontologies that include SNOMED CT with

352,000 concepts, the Human Phenotype Ontology (HPO)

with 20,000 concepts, the Online Mendelian Inheritance in

Man ontology (OMIM) with 97,000 concepts, or the UMLS

Metathesaurus with 4.6 million concepts (17–20). The NLM

UMLS Metathesaurus maintains interchangeable machine-

readable codes for SNOMED CT, UMLS, HPO, and the OMIM.

Initial NER systems for clinical concept recognition were

either dictionary-based, or rule-based (1,21,22). Some second-

generation NER systems were based on machine learning

algorithms such as conditional random fields, support vector

machines, and hidden Markov models (23,24). Other second-

generation NER systems developed as an outgrowth of

advances in semantic and syntactic analysis (25,26). MetaMap

utilizes linguistic analysis and statistical algorithms to identify

clinical concepts in unstructured text and maps them to

machine-readable codes in the UMLS (27,28). The UMLS has

grown from 900,000 concepts, and 2 million names in 2004

(29) to 4.6 million concepts and 17 million names in 2022

(20). MetaMap tokenizes text input, finds sentence

boundaries, and uses lexical and syntactic analysis to identify

candidate phrases for mapping to concepts in the UMLS.

Candidate phrases are compared to target strings in the

UMLS, lists of potential clinical concepts are generated, and

scored by statistical algorithms. MetaMap can recognize
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abbreviations, acronyms, and negation, can generate word

variants, and can perform word sense disambiguation (27). In

a preliminary study, we found that MetaMap can identify

signs and symptoms in neurological case histories with an

accuracy of 55–84% (30). Most MetaMap errors were false

negatives due to a failure to recognize neurological concepts

that had been expressed as descriptions (e.g., reflexes were

absent) as opposed to those expressed as discrete lexical items

(e.g., hyporeflexia). In their 2017 literature review of

automated information extraction, Wang et al. (31) reviewed

263 information extraction studies and found most centered

on identifying diseases or drugs. The most common systems

used were MetaMap, MedLEE, and cTAKES (32–36) followed

by traditional machine learning algorithms (conditional

random fields, support vector machines, random forests,

decision trees, and naive Bayes).

Third-generation systems for NER are built on deep

learning (37–40). Lample et al. suggested a model for named

entity recognition based on an RNN (recurrent neural

network) with bidirectional LSTM (long short term memory)

and conditional random fields (CRFs). Vani et al. (41)

proposed a “grounded” RNN to predict medical diagnoses

based on text from patient discharge summaries. Liu et al.

(42) found that on a task to label protected health

information in medical records that RNNs based on

bidirectional LSTM outperformed those that used CRFs. An

LSTM NER model with conditional random fields (CRFs) has

been used to identify five classes of chemicals, species, genes/

proteins, cell lines, and diseases (43). Hybrid methods that

combine rule-based and machine learning-based methods

have been proposed to identify protected health information

(PHI) in clinical discharge summaries (44). Liu et al. (42)

developed a hybrid system to identify clinical information by

ensemble learning that combined the instances predicted from

a bidirectional LSTM, a CRF model, and a rule-based system

(45,46). Gehrmann et al. (47) used a convolutional neural

network (CNN) for ten phenotyping tasks and compared it

with other common NLP models. Arbabi et al. (48) have

created a neural concept recognizer (NCR) that uses CNNs

and word embedding to recognize clinical concepts in

unstructured text. The NCR uses an encoder to convert input

phrases to word vectors and word embedding to convert

entries in the target ontology into word vectors. The similarity

between the input phrases and concepts in the target ontology

is calculated by the dot product. For concept recognition in

PubMed abstracts or clinical notes, the NCR outperformed

the NCBO Annotator and BioLark (49). RNNs and variants

can handle long-term dependency in text, but only for a

limited span length. The deep learning architecture

transformers can process longer text spans and has shown

improved performance on NLP tasks (50). Bidirectional

encoder representations from transformers (BERT) have

outperformed other neural network architectures on named
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entity recognition (51,50). For clinical concept recognition,

BERT models that are pre-trained on the medical literature

(BioBERT) or clinical notes (ClinicalBERT) outperform BERT

models pre-trained on general corpora by at least 1% (52–55).
A. Proposed approach

Although considerable work has been done on automated

concept identification of drugs and diseases, less work has

been done on the automated identification of signs and

symptoms (52). Identifying signs and symptoms is critical to

precision medicine and deep phenotyping (56). To make the

problem tractable, we limited the signs and symptoms to the

specialty of neurology and restricted the target ontology to a

neuro-ontology with 1,600 concepts (57). Automating the

recognition of signs and symptoms is more challenging than

automating the recognition of diseases or drugs for three

reasons. First, many neurological signs and symptoms have

multiple synonyms; something that is not typical with diseases

or drugs. For example, an expressionless face may be

described as a “masked face,” or “hypomimia.” Second,

physicians variably choose to record signs and symptoms as

descriptions or as names. For example, a patient with diplopia

can be described as “seeing double” or a patient with nausea

can be described as “sick to their stomach.” In contrast,

physicians uniformly identify drugs and diseases by name and

not by description. Third, the meaning of a term may depend

on context. For example, to a neurologist ptosis is a droopy

eyelid, but to a gynecologist, ptosis is a prolapsed uterus.

We propose to identify and normalize the neurological signs

and symptoms found in the unstructured text in two steps: first,

we have trained a neural network-based named entity

recognition model to identify text spans that contain clinical

concepts (signs and symptoms). Second, we have normalized

identified text spans by mapping them to clinical concepts in

a neuro-ontology using a look-up table and similarity metric

(Figure 1).
FIGURE 1

Overview of the pipeline that recognizes text spans that are clinical concept
notes, and Clinical synopses in the OMIM. Text spans are normalized by map
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Since neurologic signs and symptoms can be extracted from

both the medical literature and electronic health records, we

have tested the concept identification pipeline on three

corpora: case histories from neurological textbooks,

neurological clinical synopses from the Online Mendelian

Inheritance of Man (OMIM), and physician neurological

notes from an electronic health record. With this work, we

propose to address four questions:

1. Does writing style differ by corpus?

2. Does the accuracy of concept recognition differ by corpus?

3. Is the accuracy of clinical concept recognition reduced with

longer text spans?

4. Does concept recognition based on BERT outperforms

concept recognition based on CNNs?

Although the superiority of BERT over other neural networks

for concept identification is well-established, the contribution

of this work is to demonstrate that the accuracy of concept

identification depends upon text span length and corpus

writing style.

II. Methods

A. Corpora

We identified signs and symptoms (clinical concept

identification) in three corpora: neurological case histories

from five neurological textbooks (referred to as Textbook

Corpus (58–62), clinical synopses of neurological disease from

the Online Mendelian Inheritance of Man (referred to as

OMIM Corpus) (18), and neurology physician notes from the

electronic health record of the University of Illinois at

Chicago (referred to as EHR Corpus). The use of de-identified

physician notes was approved by the Institutional Review

Board of the University of Illinois at Chicago. Corpora were

converted to plain text files and pre-processed using python.

Email addresses, URLs, HTML, special characters, and

unnecessary punctuation were removed using regular

expressions in python. Contractions were replaced with the

expanded form. Misspelled words, separated words, and
s in three corpora: Textbook neurology case histories, EHR physician
ping to clinical concepts in a neuro-ontology.
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hyphenated words were corrected manually using the spelling

correction tool in Microsoft Word. Abbreviations were not

edited. The pre-processed files were manually inspected for

errors and converted to JSONL files.
B. Text annotation

Signs and symptoms in JSONL files were annotated by a

neurologist using the Prodigy annotation tool (63,64). An inter-

rater reliability study with two other raters based on fifteen

neurology notes showed an unadjusted agreement rate for text

span annotation of 89% and a kappa statistic of 0.85 (65).

Each sign or symptom was tagged as a unigram, bigram,

trigram, tetragram, extended, compound, or tabular concept.

Unigrams were signs and symptoms of length one-word such

as alexia, hyperreflexia, or bradykinesia. Bigrams were signs

and symptoms of length two-words such as double vision,

facial weakness, and poor balance. Trigrams were signs of

symptoms of length three-words such as absent ankle reflex,

impaired hand dexterity, or weak ankle dorsiflexors.

Tetragrams were four-word signs and symptoms such as

relative afferent pupil defect and Hoffman sign was present.

Text spans were tagged as extended when signs and symptoms

were more than four words, such as hand grip was very weak

and barely able to lift his legs off the bed. Text spans were

tagged as compound when more than one sign or symptom

was combined in a single text span such as decreased

vibratory sensation, joint position, and pinprick below the

knees. Tabular concepts with separate columns for the right

and left sides of the body were found only in the EHR notes.

Examples of concepts in table form included biceps weakness

represented as [biceps strength 3 3] (meaning that biceps

strength was 3/5 on both right and left sides) or knee

hyperreflexia represented as [knee reflexes 4+ 4+] (meaning

that the knee reflex was 4+ on both right and left sides). Text

span annotations were stored in an SQLite database and

exported in JSONL format for further processing in the spaCy

(Explosion, Berlin, Germany) python programming

environment.
TABLE I. Performance of CNN and BERT neural networks on concept
extraction task.

Corpus NN F Precision Recall

EHR CNN 57.5 65.6 51.2

BERT 61.7 64.0 59.5

Textbook CNN 69.0 70.1 67.9

BERT 73.0 73.6 72.3

OMIM CNN 76.2 78.8 73.7

BERT 80.4 79.0 82.0
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C. NN model training and evaluation

Two neural network models were trained to recognize text

spans that encoded clinical concepts in text corpora. Both

models were based on NER pipelines. NER pipelines identify a

named entity in a text span and assign the named entity to a

predefined category. Each NN model assigned text spans to one

of the seven defined categories of clinical concepts (unigram,

bigram, trigram, tetragram, extended, compound, and tabular).

For each corpus, 80% of the instances were used for training

and 20% for evaluation. The baseline NN was the default spaCy

named entity recognition model based on a four-layer

convolutional neural network (CNN) that looks at four words

on either side of each token using the NER pipeline and tok2vec

with an initial learning rate 1� 10�3. The standard word

vectors included with spaCy were used for word embedding.

The second named entity recognition model was based on

BERT (51). The BERT base model was implemented in

spaCY (66) and consisted of 12 layers of transformer encoder,

12 attention heads, 786 hidden size, and 100 M parameters.

The BERT model was pre-trained with publicly available

weights and fine-tuned using our training set. We used the

Adam optimizer with a learning rate of 5� 10�5, b1 ¼ 0:9,

b2 ¼ 0:99, a learning rate warm-up over the first 500 steps,

and a linear decay learning rate. The dynamic batch size was

set according to the longest sequence in the batch. The

training was conducted over 20,000 steps. The mini-batch size

dynamically changed according to the longest sequence in the

batch. The largest padded size for batch sequences was 2,000,

and the buffer was 256. A GELU activation function was

used. For each corpus and each model, the F score, precision,

and recall were computed (Table I).
D. Mapping text spans to concepts in the
neuro-ontology (normalization)

Candidate text spans identified by the CNN and BERT

models were mapped to neurological concepts in the target

neuro-ontology. The neuro-ontology (57) is a hierarchical

ontology with 1,600 concepts constructed with the Protégé

ontology editor (67). All concepts map to terms and CUIs

(unique concept identifiers) from the UMLS (20). The highest

levels of neuro-ontology correspond to the main elements of

the neurological examination: mental status, cranial nerves,

motor, sensory, reflexes, and symptoms. The neuro-ontology

is available for download in CSV or OWL format at the

National Center for Biomedical Ontologies BioPortal (https://

bioportal.bioontology.org/ontologies/NEO).

We manually created a look-up table by mapping 3,500

potential target phrases to concepts in the neuro-ontology.

Similarities between the candidate text spans (from either the
frontiersin.org
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CNN or BERT models) and target phrases in the lookup table

were calculated using the doc.similarity method from spaCy

(66). Both the candidate text span and the target phrase were

converted to doc objects using the spaCy NLP pipeline (https://

spacy.io/api/doc/#similarity), which converts each token in the

phrase into a word vector. The similarity is the cosine distance

between the word vectors from the two phrases and ranges

between 0.0 (least similar) and 1.0 (most similar). We mapped

the candidate text span to its most similar target text span in

the look-up table and retrieved the corresponding concept

name and UMLS CUI from the neuro-ontology (57).
III. Results

A. Writing style and accuracy varied by
corpus

The OMIM corpus used more unigrams and digrams to

encode signs and symptoms and had shorter spans of text

annotations than the EHR corpus or the Textbook corpus

(Figure 2). The length of annotations (histogram insets,

Figure 2) was longer for the EHR corpus. Extended

annotations were more frequent in the EHR corpus and

Textbook corpus. Only the EHR corpus had tabular

annotation (clinical concepts expressed in table format).

Performance on the concept identification task differed by

corpus; F, precision, and recall were highest for the OMIM

corpus and lowest for the EHR corpus (Table 1).
FIGURE 2

Text spans that identified clinical concepts were longer in the EHR
corpus and shortest in the OMIM corpus (see blue inset
histograms). Proportionately, the OMIM corpus used the most
unigrams and bigrams as compared to the EHR corpus and the
Textbook corpus (see red bar charts).
B. Performance of NER model decreased
with the increasing text span length

For all three corpora, the recognition of clinical concepts as

measured by F scores was better for shorter text spans

(Figures 3A,B). This applied to both the CNN and the BERT

models for concept identification (Table 1). F was highest for

unigrams (one-word concepts like ataxia, diplopia, aphasia) for

all three corpora. In general, performance on bigrams was better

than trigrams, and performance on trigrams was better than

tetragrams. Performance tended to be worse for text spans greater

than four words (extended), or text spans with compound

constructions such as weakness of the biceps, triceps, and deltoids.
C. Performance varied by neural network
model

For all three corpora, BERT outperformed the CNN neural

network for the recall of clinical concepts. Precision in clinical

concept identification was about the same for all three corpora

when BERT was compared to the CNN model (Table 1).
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IV. Discussion

Named entity recognition models based on deep learning can

recognize neurologic signs and symptoms in the biomedical

literature and electronic health records (Table 1). Previous

work has shown that BERT outperforms CNNs on recognizing

drugs and diseases in annotated test corpora (52,55). We
frontiersin.org
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FIGURE 3

(A) F values for the BERT NER model sorted by text span label type. The BERT NER model performs similarly on the three corpora for unigrams and
bigrams, but F values lag for the EHR corpora for the tetragrams, extended text spans, and compound text spans. Note that the BERT NER model
performs significantly worse on the EHR corpus for tetragrams, extended text spans, and compound text spans when compared to the Textbook or
OMIM corpus. (B) F values for the BERT NER model sorted by corpus. All three corpora show the same pattern with declining F values with the
increasing length of the text span.
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extend these observations to demonstrate the superiority of BERT

over CNNs for recognizing neurological signs and symptoms in

electronic health records and biomedical literature.

A significant finding was that the accuracy of recognition of

signs and symptoms fell with increasing text span length

(Figures 3A,B). Increased variability in longer text spans likely

poses greater difficulty for NER pipelines, regardless of whether

they are based on linguistic/symbolic methods like MetaMap or

deep learning like BERT or CNNs. Longer text spans are more

likely to be descriptions of named entities (e.g., “the patient fell

to the left when standing with eyes closed” rather than more

concise named entities themselves (e.g., “Romberg sign

positive”). Normalization of longer text spans (mapping to

suitable concepts in the ontology) may pose additional

challenges. The successful mapping (normalization) of “wavering

with eyes closed” to “Romberg sign positive” may require

vectorization (word embedding) of terms in an ontology, as well

as the synonyms and definitions of these terms (48,55).

Another significant observation was that recall of neurologic

signs and symptoms was lower in the EHR corpus than in the

OMIM corpus or Textbook corpus. The Textbook and the

OMIM corpus were written by professional writers and had

undergone careful editing and correction. The EHR corpus

was written by physicians who were not professional writers.

The EHR corpus was marred by irregular spelling, irregular

abbreviations, typographical errors, grammatical errors, and

other irregularities absent from the OMIM corpus and the

Textbook corpus. Others have noted the high frequency of
Frontiers in Digital Health 06
irregular abbreviations, spelling, grammatical, and other

writing errors in the clinical notes created by physicians (68–

72) The general approach of the writers of the OMIM corpus

was brevity. OMIM writers tended to use lists of clinical

concepts such as “the patient had optic disk pallor, miosis,

anisocoria, and a relative afferent pupil defect.” The general

approach of the writers of the Textbook corpus was didactic

and explanatory so that a relative afferent pupil defect might be

described as “the swinging flashlight test was abnormal and the

pupil dilated when the light was placed over the abnormal

pupil and the pupil constricted when the light was moved to

the normal pupil.” The EHR corpus was characterized by

brevity but irregular spellings, abbreviations, and syntax so that

the same patient might be described as “RAPD present on R.”

The lower accuracy for recognition of signs and symptoms

in the EHR corpus (physician notes) deserves further comment.

One way to improve automated recognition of signs and

symptoms in physician notes is to encourage them to use

structured rather than unstructured documentation (73).

However, given physician burnout associated with clinical

documentation (74), and physician distaste for structured

documentation (75), it seems unlikely that physicians will

adopt structured documentation for recording signs and

symptoms. Furthermore, given that by training, physicians are

often asked to describe findings rather than name findings, it

seems unlikely that physicians can be converted to using short

names instead of lengthy descriptions of signs and symptoms.

Rather, improvements in NLP are needed to identify better
frontiersin.org
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clinical concepts held as lengthier texts spans or represented as

descriptions of named entities rather than as the named entity

itself.

NLP models that extract clinical concepts from free text

must recognize negation successfully. The sentence “the

patient has ataxia” has a clinical concept whereas the sentence

“ataxia is absent” denies ataxia (76–78). Negation makes it

difficult to determine if a sign or symptom is present and

suggests that strategies based on regular expressions (REGEX)

will fail. The patient who complains of tremor, who is

tremulous, or is observed to have a tremor must be

distinguished from the patient who denies tremor, is not

tremulous, or has no tremor. MetaMap uses the NEGEX

algorithm to recognize negation (27). We relied on examples

to train the neural networks to recognize negated concepts for

our BERT and CNN models. Further work is needed on

handling negated concepts accurately and efficiently (77).

Another challenge is word disambiguation (79). The sentence

the “patient has had a fall” may contain a valid neurological

concept, whereas the sentence “the patient was seen in the

Fall” does not. Word disambiguation is another area of

continuing research in NLP (79).

This study has several limitations. The study was limited to

the domain of neurology (neurological signs and symptoms).

Furthermore, the text span annotations were done by a single

annotator. We have planned an inter-rater agreement study

(65). We limited the target ontology to 1,600 neurological

concepts. Whether our methods can be generalized to more

complex domains and larger ontologies is uncertain. Although

we achieved a recall of 80% to 90% with shorter text span

lengths, the recall was lower for longer text span lengths. To

make automated high throughput neuro-phenotyping practical,

we estimate that a recall of at least 90% is needed depending

on the application (i.e., research versus patient care).

Identifying clinical concepts in complex grammatical structures

remains challenging for even the best NLP algorithms. For

example, identifying the concepts biceps weakness, triceps

weakness, and hand weakness in the sentence the patient had

3+/5 strength in the biceps, 2+/5 strength in the triceps, and

1/5 hand grip strength remains problematic. Efficient NLP

algorithms that simplify grammar and syntax are an area of

evolving research (80,81). Another limitation of the study is

the small corpus used for training. Our NER models would

likely have improved with more training annotations.

In conclusion, given the burden of physician documentation

(74), patient signs and symptoms will likely continue in

electronic health records as unstructured text. The automated

identification of these signs and symptoms is critical to the

success of deep phenotyping, and precision medicine

initiatives (5,6). Advances in NLP based on word embedding

and deep learning make the automated identification of signs

and symptoms in unstructured text increasingly feasible.
Frontiers in Digital Health 07
Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author/s.
Ethics statement

The studies involving human participants were reviewed

and approved by Institutional Review Board of the University

of Illinois at Chicago. The patients/participants provided their

written informed consent to participate in this study.
Author’s contributions

Concept and design by SA and DBH. Model parameters and

computations by SA. Data interpretation, drafting, revising, and

final approval by SA, DBH, and DCW II.All authors

contributed to the article and approved the submitted version.
Funding

The research was partially sponsored by the Mary K. Finley

Missouri Endowment, the Missouri S&T Intelligent Systems

Center, the National Science Foundation, and the Leonard

Wood Institute in cooperation with the U.S. Army Research

Laboratory. It was accomplished under Cooperative

Agreement Number W911NF-14-2-0034. The views, opinions,

findings, recommendations, or conclusions contained in this

document are those of the authors. They should not be

interpreted as representing the views or official policies

expressed or implied by the Leonard Wood Institute, the

Army Research Laboratory, the National Science Foundation,

or the U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation hereon.
Acknowledgments

The authors thank Dr. Michael D. Carrithers for providing
the physician EHR notes.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fdgth.2022.1065581
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Azizi et al. 10.3389/fdgth.2022.1065581
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their
Frontiers in Digital Health 08
affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in this

article, or claim that may be made by its manufacturer, is not

guaranteed or endorsed by the publisher.
References
1. Krauthammer M, Nenadic G. Term identification in the biomedical literature.
J Biomed Inform. (2004) 37:512–26. doi: 10.1016/j.jbi.2004.08.004

2. Office of the National Coordinator for Health Information Technology.
Adoption of electronic health records by hospital service type 2019–2021,
Health IT Quick Stat #60 (2022). Available from: https://www.healthit.gov/data/
quickstats/adoption-electronic-health-records-hospital-service-type-2019-2021.

3. Banda JM, Seneviratne M, Hernandez-Boussard T, Shah NH. Advances in
electronic phenotyping: from rule-based definitions to machine learning models.
Annu Rev Biomed Data Sci. (2018) 1:53. doi: 10.1146/annurev-biodatasci-
080917-013315

4. Tenopir C, Grayson M, Zhang Y, Ebuen M, King DW, Boyce PB. Patterns of
journal use by scientists through three evolutionary phases. D-Lib (2003) 9:1–15.
doi: 10.1045/may2003-king

5. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med.
(2015) 372:793–5. doi: 10.1056/NEJMp1500523

6. Robinson PN. Deep phenotyping for precision medicine. Hum Mutat. (2012)
33:777–80. doi: 10.1002/humu.22080

7. Fu S, Chen D, He H, Liu S, Moon S, Peterson KJ, et al. Clinical concept
extraction: a methodology review. J Biomed Inform. (2020) 109:103526. doi: 10.
1016/j.jbi.2020.103526

8. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al.
A guide to deep learning in healthcare. Nat Med. (2019) 25:24–9. doi: 10.1038/
s41591-018-0316-z

9. Chowdhary K. Natural language processing. Fundam Artif Intell.
(2020):603–49.

10. Hirschberg J, Manning CD. Advances in natural language processing.
Science. (2015) 349:261–6. doi: 10.1126/science.aaa8685

11. Islam MA, Anik MSH, Islam ABMAA. Towards achieving a delicate
blending between rule-based translator, neural machine translator. Neural
Comput Appl. (2021) 33:12141–67. doi: 10.1007/s00521-021-05895-x

12. Islam MA, Mukta MSH, Olivier P, Rahman MM. Comprehensive guidelines
for emotion annotation. Proceedings of the 22nd ACM International Conference on
Intelligent Virtual Agents, 2022 Sep. New York, NY, USA: Association for
Computing Machinery (2022). p. 1–8.

13. Mohammad S. A practical guide to sentiment annotation: challenges,
solutions. Proceedings of the 7th Workshop on Computational Approaches to
Subjectivity, Sentiment, Social MEDIA Analysis, 2016 Jun. San Diego, California:
Association for Computational Linguistics (2016). p. 174–9.

14. Hasan HM, Islam MA, Hasan MT, Hasan MA, Rumman SI, Shakib MN.
A spell-checker integrated machine learning based solution for speech to text
conversion. 2020 Third International Conference on Smart Systems and
Inventive Technology (ICSSIT) (2020). p. 1124–30.

15. Gonzalez-Hernandez G, Sarker A, O’Connor K, Savova G. Capturing the
patient’s perspective: a review of advances in natural language processing of
health-related text. Yearb Med Inform. (2017) 26:214–27. doi: 10.15265/IY-
2017-029

16. Bird S, Klein E, Loper E. Natural language processing with python.
Sebastopol, CA: O’Reilly Media (2009). Available from: https://www.nltk.org/
book/.

17. SNOMED CT. NCBO BioPortal (2022). Available from: https://bioportal.
bioontology.org/ontologies/SNOMEDCT/ (Accessed October 5, 2022).

18. Online Mendelian Inheritance in Man.NCBO BioPortal (2022). Available from:
https://bioportal.bioontology.org/ontologies/OMIM (Accessed October 5, 2022).

19. Human Phenotype Ontology. NCBO BioPortal (2022). Available from:
https://bioportal.bioontology.org/ontologies/HP (Accessed October 5, 2022).

20. UMLS Metathesaurus Browser. National Library of Medicine (2022).
Available from: https://uts.nlm.nih.gov/uts/umls/home (Accessed October 5,
2021).
21. Eltyeb S, Salim N. Chemical named entities recognition: a review on
approaches, applications. J Cheminform. (2014) 6:1–12. doi: 10.1186/1758-2946-6-17

22. Quimbaya AP, Múnera AS, Rivera RAG, Rodríguez JCD, Velandia OMM,
Peña AAG, et al. Named entity recognition over electronic health records
through a combined dictionary-based approach. Procedia Comput Sci. (2016)
100:55–61. doi: 10.1016/j.procs.2016.09.123

23. Hirschman L, Morgan AA, Yeh AS. Rutabaga by any other name: extracting
biological names. J Biomed Inform. (2002) 35:247–59. doi: 10.1016/S1532-0464
(03)00014-5

24. Uzuner Ö, South BR, Shen S, DuVall SL. 2010 i2b2/VA challenge on
concepts, assertions,, relations in clinical text. J Am Med Inform Assoc. (2011)
18:552–6. doi: 10.1136/amiajnl-2011-000203

25. Funk C, Baumgartner W, Garcia B, Roeder C, Bada M, Cohen KB, et al.
Large-scale biomedical concept recognition: an evaluation of current automatic
annotators and their parameters. BMC Bioinf. (2014) 15:1–29. doi: 10.1186/
1471-2105-15-59

26. Shah NH, Bhatia N, Jonquet C, Rubin D, Chiang AP, Musen MA.
Comparison of concept recognizers for building the open biomedical annotator.
BMC Bioinf. (2009) 10:1–9. doi: 10.1186/1471-2105-10-S2-S1

27. Aronson AR, Lang FM. An overview of MetaMap: historical perspective and
recent advances. J Am Med Inform Assoc. (2010) 17:229–36. doi: 10.1136/jamia.
2009.002733

28. Lindberg DA, Humphreys BL, McCray AT. The unified medical language
system. Yearb Med Inform. (1993) 2:41–51. doi: 10.1055/s-0038-1637976

29. Bodenreider O. The unified medical language system (UMLS): integrating
biomedical terminology. Nucleic Acids Res. (2004) 32:D267–70. doi: 10.1093/
nar/gkh061

30. Hier DB, Yelugam R, Azizi S, Carrithers MD, Wunsch II DC. High
throughput neurological phenotyping with MetaMap. Eur Sci J. (2022)
18:37–49. doi: 10.19044/esj.2022.v18n4p37

31. Wang Y, Wang L, Rastegar-Mojarad M, Moon S, Shen F, Afzal N, et al.
Clinical information extraction applications: a literature review. J Biomed
Inform. (2018) 77:34–49. doi: 10.1016/j.jbi.2017.11.011

32. Sevenster M, Van Ommering R, Qian Y. Automatically correlating clinical
findings and body locations in radiology reports using MedLEE. J Digit
Imaging. (2012) 25:240–9. doi: 10.1007/s10278-011-9411-0

33. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al.
Mayo clinical text analysis and knowledge extraction system (cTAKES):
architecture, component evaluation and applications. J Am Med Inform Assoc.
(2010) 17:507–13. doi: 10.1136/jamia.2009.001560

34. Friedman C, Shagina L, Lussier Y, Hripcsak G. Automated encoding of
clinical documents based on natural language processing. J Am Med Inform
Assoc. (2004) 11:392–402. doi: 10.1197/jamia.M1552

35. Friedman C, Shagina L, Socratous SA, Zeng X. A web-based version of
MedLEE: a medical language extraction and encoding system. Proceedings of the
AMIA Annual Fall Symposium. American Medical Informatics Association
(1996). p. 938.

36. Friedman C. A broad-coverage natural language processing system.
Proceedings of the AMIA Symposium. American Medical Informatics
Association. (2000). p. 270–4.

37. Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence
tagging [Preprint] (2015). Available at: http://arxiv.org/1508.01991.

38. Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C. Neural
architectures for named entity recognition [Preprint] (2016). Available at:
http://arxiv.org/1603.01360.

39. Chiu JP, Nichols E. Named entity recognition with bidirectional
LSTM-CNNs. Trans Assoc Comput Linguist. (2016) 4:357–70. doi: 10.1162/tacl_
a_00104
frontiersin.org

https://doi.org/10.1016/j.jbi.2004.08.004
https://www.healthit.gov/data/quickstats/adoption-electronic-health-records-hospital-service-type-2019-2021
https://www.healthit.gov/data/quickstats/adoption-electronic-health-records-hospital-service-type-2019-2021
https://doi.org/10.1146/annurev-biodatasci-080917-013315
https://doi.org/10.1146/annurev-biodatasci-080917-013315
https://doi.org/10.1045/may2003-king
https://doi.org/10.1056/NEJMp1500523
https://doi.org/10.1002/humu.22080
https://doi.org/10.1016/j.jbi.2020.103526
https://doi.org/10.1016/j.jbi.2020.103526
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.1126/science.aaa8685
https://doi.org/10.1007/s00521-021-05895-x
https://doi.org/10.15265/IY-2017-029
https://doi.org/10.15265/IY-2017-029
https://www.nltk.org/book/
https://www.nltk.org/book/
https://bioportal.bioontology.org/ontologies/SNOMEDCT/
https://bioportal.bioontology.org/ontologies/SNOMEDCT/
https://bioportal.bioontology.org/ontologies/OMIM
https://bioportal.bioontology.org/ontologies/HP
https://uts.nlm.nih.gov/uts/umls/home
https://doi.org/10.1186/1758-2946-6-17
https://doi.org/10.1016/j.procs.2016.09.123
https://doi.org/10.1016/S1532-0464(03)00014-5
https://doi.org/10.1016/S1532-0464(03)00014-5
https://doi.org/10.1136/amiajnl-2011-000203
https://doi.org/10.1186/1471-2105-15-59
https://doi.org/10.1186/1471-2105-15-59
https://doi.org/10.1186/1471-2105-10-S2-S1
https://doi.org/10.1136/jamia.2009.002733
https://doi.org/10.1136/jamia.2009.002733
https://doi.org/10.1055/s-0038-1637976
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.19044/esj.2022.v18n4p37
https://doi.org/10.1016/j.jbi.2017.11.011
https://doi.org/10.1007/s10278-011-9411-0
https://doi.org/10.1136/jamia.2009.001560
https://doi.org/10.1197/jamia.M1552
http://arxiv.org/1508.01991
http://arxiv.org/1603.01360
https://doi.org/10.1162/tacl&lowbar;a&lowbar;00104
https://doi.org/10.1162/tacl&lowbar;a&lowbar;00104
https://doi.org/10.3389/fdgth.2022.1065581
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Azizi et al. 10.3389/fdgth.2022.1065581
40. Peters ME, Ammar W, Bhagavatula C, Power R. Semi-supervised sequence
tagging with bidirectional language models [Preprint] (2017). Available at: http://
arxiv.org/1705.00108.

41. Vani A, Jernite Y, Sontag D. Grounded recurrent neural networks [Preprint]
(2017). Available at: http://arxiv.org/1705.08557.

42. Liu Z, Tang B, Wang X, Chen Q. De-identification of clinical notes via
recurrent neural network and conditional random field. J Biomed Inform.
(2017) 75:S34–S42. doi: 10.1016/j.jbi.2017.05.023

43. Habibi M, Weber L, Neves M, Wiegandt DL, Leser U. Deep learning with
word embeddings improves biomedical named entity recognition.
Bioinformatics. (2017) 33:i37–i48. doi: 10.1093/bioinformatics/btx228

44. Dehghan A, Kovacevic A, Karystianis G, Keane JA, Nenadic G. Combining
knowledge-and data-driven methods for de-identification of clinical narratives.
J Biomed Inform. (2015) 58:S53–9. doi: 10.1016/j.jbi.2015.06.029

45. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.
(1997) 9:1735–80. doi: 10.1162/neco.1997.9.8.1735

46. Lafferty J, McCallum A, Pereira FC. Conditional random fields: probabilistic
models for segmenting and labeling sequence data. Proceedings of the 18th
International Conference on Machine Learning 2001. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc. (2001).

47. Gehrmann S, Dernoncourt F, Li Y, Carlson ET, Wu JT, Welt J, et al.
Comparing deep learning and concept extraction based methods for patient
phenotyping from clinical narratives. PLoS ONE. (2018) 13:e0192360. doi: 10.
1371/journal.pone.0192360

48. Arbabi A, Adams DR, Fidler S, Brudno M, et al. Identifying clinical terms in
medical text using ontology-guided machine learning. JMIR Med Inform. (2019) 7:
e12596. doi: 10.2196/12596

49. Groza T, Köhler S, Doelken S, Collier N, Oellrich A, Smedley D, et al.
Automatic concept recognition using the human phenotype ontology reference
and test suite corpora. Database. (2015) 2015:1–13. doi: 10.1093/database/bav005

50. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.
Attention is all you need. Adv Neural Inf Process Syst. (2017) 30:5998–6008.

51. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep
bidirectional transformers for language understanding [Preprint] (2018).
Available at: http://arxiv.org/1810.04805.

52. Zhu R, Tu X, Huang JX. Utilizing BERT for biomedical, clinical text mining.
Data Analytics in Biomedical Engineering, Healthcare. Elsevier (2021). p. 73–103.
Available from: https://doi.org/10.1016/B978-0-12-819314-3.00005-7

53. Yu X, Hu W, Lu S, Sun X, Yuan Z. Biobert based named entity recognition
in electronic medical record. 2019 10th international conference on information
technology in medicine and education (ITME). New York NY: IEEE (2019).
p. 49–52.

54. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al. Biobert: a pre-trained
biomedical language representation model for biomedical text mining.
Bioinformatics. (2020) 36:1234–40.

55. Ji Z, Wei Q, Xu H. Bert-based ranking for biomedical entity normalization.
AMIA Summits Transl Sci Proc. (2020) 2020:269.

56. Weng C, Shah NH, Hripcsak G. Deep phenotyping: embracing complexity
and temporality-towards scalability, portability, and interoperability. J Biomed
Inform. (2020) 105:103433. doi: 10.1016/j.jbi.2020.103433

57. Hier DB, Brint SU. A neuro-ontology for the neurological examination.
BMC Med Inform Decis Mak. (2020) 20:1–9. doi: 10.1186/s12911-020-1066-7

58. Gondolo T. Neurology study guide: oral board examination review. Cham
Switzerland: Springer Nature (2005).

59. Ubogu EE. Neurology oral boards review. New York NY: Humana Press
(2005).

60. Alpert JN. The neurologic diagnosis: a practical bedside approach. Cham
Switzerland: Springer (2018).
Frontiers in Digital Health 09
61. Kung D, Nguyen T. Absolute case-based neurology review. Oxford UK:
Springer (2019).

62. Macleod M, Pal S, Simpson M. Neurology clinical cases uncovered. San
Francisco CA: Wiley-Blackwell (2011).

63. Neves M, Ševa J. An extensive review of tools for manual annotation of
documents. Brief Bioinformatics. (2021) 22:146–63. doi: 10.1093/bib/bbz130

64. Montani I, Honnibal M. Prodigy: a new annotation tool for radically efficient
machine teaching. Artif Intell. (2018). Available from: https://explosion.ai/blog/
prodigy-annotation-tool-active-learning.

65. Oommen C, Howlett-Prieto Q, Carrithers MD, Hier DB. Inter-Rater
Agreement for the Annotation of Neurologic Concepts in Electronic Health
Records. medRxiv (2022). Available from: http://doi.org/10.1101/2022.11.16.
22282384.

66. Vasiliev Y. Natural language processing with Python and Spacy. San
Francisco CA: No Starch Press (2020).

67. Noy NF, McGuinness DL. Ontology development 101: a guide to creating
your first ontology. Stanford Knowledge Systems Laboratory Technical Report
KSL-01-05 (2001).

68. Assale M, Dui LG, Cina A, Seveso A, Cabitza F. The revival of the notes field:
leveraging the unstructured content in electronic health records. Front Med.
(2019) 6:66. doi: 10.3389/fmed.2019.00066

69. Shilo G, Shilo L. Writing style of young physicians in the computer and
internet era. Int J Med Educ. (2014) 5:82. doi: 10.5116/ijme.534a.a3e2

70. Pagano MP, Mair D. Writing medical records. J Tech Writ Commun. (1986)
16:331–41. doi: 10.2190/WY9T-634E-V2JT-JDVQ

71. Zisowitz ML. Teaching medical students and physicians to write. Acad Med.
(1964) 39:481–4.

72. Hamiel U, Hecht I, Nemet A, Pe’er L, Man V, Hilely A, et al. Frequency,
comprehension and attitudes of physicians towards abbreviations in the
medical record. Postgrad Med J. (2018) 94:254–8. doi: 10.1136/postgradmedj-
2017-135515

73. Rosenbloom ST, Denny JC, Xu H, Lorenzi N, Stead WW, Johnson KB. Data
from clinical notes: a perspective on the tension between structure and flexible
documentation. J Am Med Inform Assoc. (2011) 18:181–6. doi: 10.1136/jamia.
2010.007237

74. Thomas Craig KJ, Willis VC, Gruen D, Rhee K, Jackson GP. The burden of
the digital environment: a systematic review on organization-directed workplace
interventions to mitigate physician burnout. J Am Med Inform Assoc. (2021)
28:985–97. doi: 10.1093/jamia/ocaa301

75. Han H, Lopp L. Writing and reading in the electronic health record: an
entirely new world. Med Educ Online. (2013) 18:18634. doi: 10.3402/meo.v18i0.
18634

76. Shivade C, de Marneffe MC, Fosler-Lussier E, Lai AM. Extending negex with
kernel methods for negation detection in clinical text. Proceedings of the Second
Workshop on Extra-Propositional Aspects of Meaning in Computational
Semantics (ExProM 2015) (2015). p. 41–46.

77. Wu S, Miller T, Masanz J, Coarr M, Halgrim S, Carrell D, et al. Negation’s
not solved: generalizability versus optimizability in clinical natural language
processing. PLoS ONE. (2014) 9:e112774. doi: 10.1371/journal.pone.0112774

78. Elkin PL, Brown SH, Bauer BA, Husser CS, Carruth W, Bergstrom LR, et al.
A controlled trial of automated classification of negation from clinical notes. BMC
Med Inform Decis Mak. (2005) 5:1–7. doi: 10.1186/1472-6947-5-13

79. Navigli R. Word sense disambiguation: a survey. ACM Comput Surv. (2009)
41:1–69. doi: 10.1145/1459352.1459355

80. Shardlow M. A survey of automated text simplification. Int J Adv Comput Sci
Appl. (2014) 4:58–70.

81. Al-Thanyyan SS, Azmi AM. Automated text simplification: a survey. ACM
Comput Surv. (2021) 54:1–36. doi: 10.1145/3442695
frontiersin.org

http://arxiv.org/1705.00108
http://arxiv.org/1705.00108
http://arxiv.org/1705.08557
https://doi.org/10.1016/j.jbi.2017.05.023
https://doi.org/10.1093/bioinformatics/btx228
https://doi.org/10.1016/j.jbi.2015.06.029
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1371/journal.pone.0192360
https://doi.org/10.1371/journal.pone.0192360
https://doi.org/10.2196/12596
https://doi.org/10.1093/database/bav005
http://arxiv.org/1810.04805
https://doi.org/10.1016/B978-0-12-819314-3.00005-7
https://doi.org/10.1016/j.jbi.2020.103433
https://doi.org/10.1186/s12911-020-1066-7
https://doi.org/10.1093/bib/bbz130
https://explosion.ai/blog/prodigy-annotation-tool-active-learning
https://explosion.ai/blog/prodigy-annotation-tool-active-learning
http://doi.org/10.1101/2022.11.16.22282384
http://doi.org/10.1101/2022.11.16.22282384
https://doi.org/10.3389/fmed.2019.00066
https://doi.org/10.5116/ijme.534a.a3e2
https://doi.org/10.2190/WY9T-634E-V2JT-JDVQ
https://doi.org/10.1136/postgradmedj-2017-135515
https://doi.org/10.1136/postgradmedj-2017-135515
https://doi.org/10.1136/jamia.2010.007237
https://doi.org/10.1136/jamia.2010.007237
https://doi.org/10.1093/jamia/ocaa301
https://doi.org/10.3402/meo.v18i0.18634
https://doi.org/10.3402/meo.v18i0.18634
https://doi.org/10.1371/journal.pone.0112774
https://doi.org/10.1186/1472-6947-5-13
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1145/3442695
https://doi.org/10.3389/fdgth.2022.1065581
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

	Enhanced neurologic concept recognition using a named entity recognition model based on transformers
	Introduction
	Proposed approach

	Methods
	Corpora
	Text annotation
	NN model training and evaluation
	Mapping text spans to concepts in the neuro-ontology (normalization)

	Results
	Writing style and accuracy varied by corpus
	Performance of NER model decreased with the increasing text span length
	Performance varied by neural network model

	Discussion
	Data availability statement
	Ethics statement
	Author’s contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


