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Introduction: To self-monitor asthma symptoms, existing methods (e.g. peak flow

metre, smart spirometer) require special equipment and are not always used by the

patients. Voice recording has the potential to generate surrogate measures of lung

function and this study aims to apply machine learning approaches to predict lung

function and severity of abnormal lung function from recorded voice for asthma patients.

Methods: A threshold-based mechanism was designed to separate speech and

breathing from 323 recordings. Features extracted from these were combined with

biological factors to predict lung function. Three predictive models were developed using

Random Forest (RF), Support Vector Machine (SVM), and linear regression algorithms:

(a) regression models to predict lung function, (b) multi-class classification models to

predict severity of lung function abnormality, and (c) binary classificationmodels to predict

lung function abnormality. Training and test samples were separated (70%:30%, using

balanced portioning), features were normalised, 10-fold cross-validation was used and

model performances were evaluated on the test samples.

Results: The RF-based regression model performed better with the lowest root mean

square error of 10·86. To predict severity of lung function impairment, the SVM-based

model performed best in multi-class classification (accuracy = 73.20%), whereas the

RF-based model performed best in binary classification models for predicting abnormal

lung function (accuracy = 85%).
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Conclusion: Our machine learning approaches can predict lung function, from recorded

voice files, better than published approaches. This technique could be used to develop

future telehealth solutions including smartphone-based applications which have potential

to aid decision making and self-monitoring in asthma.

Keywords: pulmonary function, FEV1, speech, breathe, machine learning, human voice, asthma

INTRODUCTION

Asthma is a common respiratory condition that affects 235
million people worldwide (1). Around 5.4 million people in
the UK are currently receiving treatment for asthma, ∼1 in 11
children and 1 in 12 adults (2). Every 10 s, at least one person
is facing a potentially life-threatening asthma attack in the UK,
and on an average, three people die from it daily, regardless the
effective treatments developed in recent years (3). Appropriate,
effective management and treatment for asthma is therefore of
vital importance.

Many different techniques can monitor the complex nature
of asthma, including subjective symptom assessments, lung
function testing, and measurement of biomarkers. Regular
monitoring of asthma can help patients receive appropriate
treatment in time, which can help to reduce symptoms,
frequency of exacerbation, and risks of hospitalisation.
The ability to monitor asthma and modify treatment
appropriately could help to reduce both disease morbidity
and the economic cost of treatment. Identifying symptoms
via questionnaire and lung function measurement via
spirometry identifying of biomarkers (e.g. exhaled nitric
oxide or sputum eosinophils) can all be used in regular
monitoring of asthma (4). In practise, however, the combination
of these is impractical in community-based care due to expense
and/or complexity.

Self-monitoring of asthma has the potential to play an
important role in empowering the patient and maintaining
disease control; such monitoring needs to be simple, convenient,
and accurate. Equipment such as smart spirometers and,
accompanying smartphone apps used to record peak expiratory
flow rates (PEFR) and provide reminders tomanage asthmamore
efficiently are currently available to simplify self-monitoring (5).
However, smart spirometers are still expensive for personal use.
As more people use smartphones, an application measuring
lung function that could alert patients to modify their treatment
without the need for a spirometer would be a convenient and
inexpensive way to monitor asthma, particularly in Lower- and
Middle-Income Country (LIMC) settings.

At present, assessment of the ability to speak and the sounds
associated with breathing are a recognised part of an assessment
of asthma severity, such as: “speaking full sentences” to “unable
to speak at all” together with wheeze on auscultation (6–8).
Although no standardised assessment or quantitative measures
of these features have been developed, the effects on speech and
breathing patterns and sounds due to increased airway resistance
are noticeable in acute asthma (9). Thus, pitch from speech
and quality of the breathing sound can potentially be utilised as

surrogate measures of symptoms and/or to predict lung function,
which can then be used to monitor asthma.

Three kinds of sounds have been analysed to predict lung
function using machine learning techniques: (1) lung and
breathing sounds from the chest, (2) symptom-based sounds
(such as a cough sound), and (3) voice sounds. Quantitative
breath sound measurements, such as Vibration Response
Imaging (VRI), have been used to predict postoperative lung
function (10, 11). Cough and wheeze sound-based analyses
have been shown to have potential in predicting spirometer
readings (12–14).

In parallel to symptom-based sounds (such as a cough sound),
there are a number of studies, which involve voice sounds only.
A recent review identified 20 studies to date. It confirmed the
idea of respiratory function correlating significantly to phonation
sound. Some of these studies showed that voice evaluation might
allow recognition of asthma contributing to voice dysfunction
subjected to lung function (15). However, most of these studies
required the use of specialised instruments and software to
quantify specialised phonetic sounds. Using machine learning
techniques, one of these studies showed that sustained phonation
of the vowel sound demonstrated potential utility in the diagnosis
and classification of severity of asthma (16).

Assessing the quality of sound produced by an asthma
patient, primarily via speech, is a common way to assess
acute asthma. We have previously demonstrated that recorded
speech correlates well with lung function during induced
bronchoconstriction (17). To date, only two studies have utilised
machine learning techniques to predict lung function from the
recorded voice. Saleheen et al. proposed a convenient mobile-
based approach that utilises a monosyllabic voice segment called
“A-vowel” sound or “Aaaa...” sound from voice to estimate
lung function (18). Chun et al. proposed two algorithms for
passive assessment of pulmonary conditions: one for detection
of obstructive pulmonary disease and the other for estimation
of the pulmonary function in terms of ratio of forced expiratory
volume in 1 s (FEV1) and forced vital capacity (FVC) also denoted
as FEV1/FVC and percentage predicted FEV1 (FEV1%) (19).
However, these studies showed moderate performance and did
include comparison with previous studies.

This study proposes a new methodology to predict lung
function from recorded speech using machine learning
techniques to monitor asthma. Bronchoprovocation tests were
given to participants to help diagnose asthma, and their voices
were recorded for 1min while the subjects read standard texts
with lung function measured. This study aims to identify features
from recorded speech files that correlate with measured lung
function. We subsequently use those features to predict lung

Frontiers in Digital Health | www.frontiersin.org 2 February 2022 | Volume 4 | Article 750226

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Alam et al. Predicting Lung Function From Voice Recordings

function, potentially enabling identification of deterioration of
asthma control via a smartphone application in the future.

MATERIALS AND METHODS

Dataset
Twenty-six non-smoking, clinically stable subjects, with
physician-diagnosed mild atopic asthma, were recruited on
step one of treatment according to 2012 GINA guidelines (20).
The study was approved by the local ethics committee (number
12/EE/0545), by the Medicines and Healthcare Products
Regulation Agency (MHRA) (MHRA number 11709/0246/001-
0001) (21). The study was performed in compliance with
the protocol and additional methodologic details provided in
the Supplementary Material. All participants underwent a
standardised inhaled methacholine challenge (21) and after each
challenge dose, the participant read a standardised text for 30 s
into a digital recorder fitted with an external microphone set
at 10 cm from the mouth (Olympus DM450 Speech Recorder
with Olympus ME34 Microphone, Tokyo, Japan). After each
dose of the bronchial challenge, the voice of each subject was
recorded, and lung function was measured as FEV1% predicted.
Spirometry was performed with a dry bellows spirometer
(Vitalograph, UK) and the best of at least three successive
readings within 100ml of each other was recorded as the FEV1

in accordance with established guidelines (22). In total 323 voice
recorded sound files with their associated FEV1% were recorded
for these 26 subjects. Details of the method is shown in the
Supplementary Methods section. Additionally, an overview of
the basic biological attributes (i.e., sex, height and weight) of
these samples is reported in Supplementary Table 1.

Separation of Breathing and Speech
Segments From Sound Files
An exploratory analysis was carried out on a segment of
speech and breathing separately in the frequency domain and
considerable differences were noticed in the spectrograms
generated by librosa (23) (Supplementary Figure 1). The
parts of the sound file containing breathing and speech
were separated from five randomly selected sound files
using Audacity software (24). Features (including roll-off
at 85/95%, spectral fitness, root mean square energy, zero
crossing rate, spectral centroid, spectral bandwidth, spectral
contrast, spectral flatness, mean amplitude, and mean breath
cycle duration) (described in Supplementary Methods) were
extracted for individual breathing and speech segments, using
the librosa tool. These features were analysed to explore
differences between breathing and speech segments and
determine the appropriate thresholds to separate breathing and
speech segments.

Feature Extraction
After analysing the values for individual speech and breathe
segments, only five features (Spectral contrast, Roll-off at 95%,
Root mean squared energy, Spectral bandwidth, and Mean
amplitude) showed substantial differences between breathing
and speech segments (Supplementary Figure 2). Based on the

observed information, using a threshold, these 5 features were
defined (Supplementary Table 2), which separate the breathing
and speech segments from all available sound files.

All extracted features were Min-max normalised. As there was
a low number of features, it was impossible to utilise a feature
engineering method to identify informative features. The use of
Pearson correlation coefficient calculated the correlation between
the features and FEV1%.

Predictive Model Development
Training and testing samples were separated randomly at a ratio
of 70%:30%, respectively (i.e., the training dataset contained 70%
of the samples, whereas the testing dataset kept the remaining
30% of the samples). This defined the following three types of
predictive models:

Model1: A regression model to predict FEV1% predicted
based on the features extracted from recorded sound data. The
techniques and the feature set for which this model performs best
were applied for the other following models. The performances
of these models are reported in terms of Root Mean Square Error
(RMSE) and mean absolute error (MAE).

Model2: A multi-class classification model to predict
the severity of abnormality of lung function according to
American Thoracic Society (ATS) grades (as defined in
Supplementary Table 3) (25).

Model3: A binary classification model to predict FEV1%
classified either as normal or abnormal based on the ATS
definition of abnormal lung function (Supplementary Table 3),
where lung function is normal if FEV1% > 80%, otherwise lung
function is abnormal.

Three machine learning algorithms following other studies
(19, 26, 27) available in this contextual domain and/or in other
similar domains, i.e., Random Forest (RF), Support Vector
Machine (SVM) (using Radial Basis Function kernel), and
Linear Regression/Logistic Regression (for the binary task),
were implemented to develop the predictive models. Training
the models was undertaken on the “training set,” and 10-
fold cross-validation was used to measure the models training
performances. Themodels use default values of hyperparameters,
and tuning did not show any improvements over default
parameters. Finally, the models were run on the testing samples
to assess the final performances.

Further basic biological factors, including sex, height and
weight of the subjects were added as features in addition to the
features extracted from the sound file as mentioned above to
develop three additional models (denoted as Model1P, Model2P,
and Model3P, respectively for Model1, Model2, and Model3).

Initially, we investigated the effect of features extracted from
speech and breathing parts both individually and combined
on lung function using Model1. We also explored the issue
of imbalances of distribution of lung function in random
partitioning and performed balanced partitioning of training and
test samples as follows:

1. Using intervals of 5% on the FEV1% values 15 groups
were prepared. For example, groups are 51–55%, 56–60%,
61–65% etc.
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FIGURE 1 | Impact of speech and breathing features individually and combined on model development. (A) Shows the performances of the models in terms of mean

absolute error (MAE) and (B) presents the performances of the models in terms of root mean squared error (RMSE). Here, LR, Linear Regression; RF, Random Forest;

SVR, Support Vector Regression.

2. Based on the groups sample distribution was prepared.
3. Based on the sample distribution in each group balanced

training and test sets were prepared, such that training and
test sets followed the same distribution.

RESULTS

Supplementary Table 4 shows the severity of abnormal lung
function among 323 data samples. It is evident that 72.14% of
samples exhibited normal lung function during corresponding
recording and the rest (27.86%) exhibited abnormal
lung function.

Feature Extraction From Recorded Voice
Files
Fourteen breathing segments and nine speech segments
were retrospectively extracted from the sound files
(Supplementary Table 5). The results show no correlation
between the features and FEV1% (Supplementary Figure 3).

Lung Function Prediction in Terms of
FEV1% (Model1)
Effect of Speech and Breathing Features on

Prediction
Initially, we explored the ability to predict lung function from
extracted features of speech and breath both individually and in
combination. Regression models developed using the combined
features from speech and breathing to predict FEV1%, showed
lower mean absolute error (MAE) than that of models developed
from features from speech and breathing separately (Figure 1A).

The RF model [Model1(RF)] performed better in comparison to
all other algorithms (the lowest Root Mean Square Error, RMSE
= 12·59) (Figure 1B).

Effect of Balanced Partitioning of the Training and the

Testing Sets
The samples were not uniformly distributed amongst the ranges
of FEV1% (Supplementary Figure 4). The frequency of the
samples is the highest around 100 of the FEV1% values and no
sample was found with the FEV1% ≤ 50. As a result, samples
were not uniformly distributed among the ranges of FEV1%
values. Therefore, when the training and test samples were
divided randomly, the pattern in the training dataset may not
follow the pattern in the test dataset (Supplementary Figure 5A).
The balanced separation of training and test samples shows a
similar pattern of the samples among each range of FEV1%
(Supplementary Figure 5B).

Balanced partitioning of the training and the test sets led to
improved performance compared to random partitioning. This
is evident for all regression models, where balanced partitioning
shows lower RMSE and MAE scores in comparison to the
random partition model (Supplementary Figure 6). Again, the
RF based model [Model1(RF),] performed better than other
models (RMSE= 12·51 and MAE= 9·83).

Effects of the Phenotypes on the Predictive Models
The performance of the models when biological factors were
added are shown in Figure 2. The RF based algorithm performed
better with MAE (%) score of 10.86 and RMSE score of 11·47 in
comparison to other algorithms. Supplementary Table 6 shows
the comparison of Model1(RF), and Model1P(RF) for predicting
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FIGURE 2 | The performance of the regression models. Model1P used extracted features from speech and breath parts with sex, height and weight to predict lung

function in terms of FEV1%. Here, LR = Linear Regression, RF = Random Forest, and SVR = Support Vector Regression.

TABLE 1 | Comparison of the performances of Model2 and Model2P in predicting

the severity of abnormality of lung function.

Algorithms Model2 Model2P

Linear Regression 0.64 0.66

Random Forest 0.68 0.71

Support Vector Classifier 0.71 0.73

Model2 used only features extracted from breath and speech parts and Model2P included

biological factors (sex, weight, and height) with the features in multi-class classification

models. Predictedmulti-classification was defined based on severity of abnormality of lung

function graded by American Thoracic Society (ATS). Here, performance is represented

in terms of accuracy.

FEV1%. Model1P(RF) showed better predictive performance than
that of Model1(RF).

Severity of Abnormality of Lung Function
Prediction (Model2)
The performance of Model2 and Model2P in predicting lung
function severity from the sound files, is shown in Table 1.
Model2(SVC) predicted abnormal lung function with 71%
accuracy, while Model2P(SVC) predicted this with 73.2% accuracy.

Normal vs. Abnormal Lung Function
Prediction (Model3)
The performance of the models (without and with biological
factors) in predicting normal vs. abnormal lung function are
shown in detailed in Supplementary Tables 7, 8. The best
performance (without adding biological factors) was observed for
the RF model, Model3(RF), with 80% accuracy and 79% F1-score.

The RF based model clearly performs better (AUC = 0.84) than
the other models (Supplementary Tables 7, 8; Figure 3A).

This held true when adding physical attributes, with
the RF-based model again showing the best performance
(accuracy = 85%, F1-score = 84%, and AUC = 88% AUC
(Supplementary Tables 9, 10, Figure 3B).

DISCUSSION

This study focused on predicting lung function from recorded
voice sounds in three ways and has developed a predictive model
(for FEV1%), which can be utilised in real-time applications for
asthmamanagement. Amodel to predict the severity of abnormal
lung function as defined by the ATS (22) was also developed, as
well as a model to predict normal vs. abnormal lung function (i.e.,
FEV1% ≤ 80). By detecting abnormal lung function, this can be
used to prompt the patient to take appropriate action to manage
their condition.

A threshold-based mechanism was defined to separate the
breathing and speech features from the recorded sound files and
23 features extracted to develop the predictive models. Using
both breathing and speech features in combination improved the
performance of the predictive models. This is consistent with
standard clinical practise to identify acute asthma by listening to
both speech and breathing patterns.

Handling partitioning of the training and the testing
dataset is an important factor in developing the prediction
model. Considering the American Thoracic Society Grades
for the severity of a Pulmonary Function Test Abnormality
(28), this study utilised a balanced partitioning technique for
predicting FEV1% for asthma patients and, consequently, the
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FIGURE 3 | Receiver operating characteristic curve plots of Model3 and Model3P. Model3 used only features extracted from breath and speech parts and Model3P
included biological factors (sex, weight, and height) with the features in binary class classification models. Predicted binary classification was defined based on FEV1%

classified either as normal (FEV1% < 80%) or abnormal (FEV1% ≥ 80%) based on the ATS definition of abnormal lung function. These plots show the area under

Receiver Operating Characteristic curve of model’s showing performance for predicting normal vs. abnormal lung function. (A) showing the ROC curve for Model3 and

(B) showing the ROC curve for Model3p.

model’s performance was improved in comparison to random
partitioning given the imbalance in the available data set.

Initially, the RF based predictive models showed better
performance in comparison to other models except for the
prediction of severity of abnormality of lung function. The RF
based models predicted FEV1% with lower RMSE and MAE, and
abnormality in lung function with high accuracy. In contrast,
SVM predicted severity of lung function with higher accuracy
compared with that of RF and LR based models. Given the
feature space in this study is not highly dimensional (with only
26 features in total), these results are consistent with previous
studies that have reported better performance of RF basedmodels
when working with a limited number of features (14, 19).
Generally, SVM is applied to highly dimensional space for best
results. In addition, the correlational matrix showed no strong
correlation of any feature with FEV1%, and RF performs better
with non-linear problems.

Furthermore, due to their nature, RF models are less likely
to overfit. While most of the scores of the RF-based models
are quite reasonable, the sensitivity of the RF based classifier to
predict abnormality of lung function was not high (sensitivity
= 44%). This could be due to the imbalanced distribution of
the available samples to normal vs. abnormal lung function
(∼3:1). Although RF basedmodels (Model1 andModel3) showed
better performance, the SVM based model performed well on
predicting severity of lung function (Model2). This is possibly
due to grouping samples (i.e., grouping of FEV1%) based on the
severity of abnormality of the lung function and heterogeneous
distribution of the samples into these groups (e.g., the samples
with normal and with moderate to severely abnormal lung
functions are 72.14% and 2.79% respectively in the dataset).

Adding biological factors (sex, height and weight), to the
model, along with the features extracted from speech and
breathing, improved the performances of the models. This
improvement was observed for all three methods (RF, SVM and
LR) used in this study.

Breathing becomes more difficult for people with obstructive
pulmonary disease due to increased airway resistance. As their
pulmonary symptoms worsen, they frequently notice increased
breathlessness and may have higher respiratory rates (29).
Previous predictive models for respiratory disease severity have
used many pulmonary features, such as Mean Breath Cycle
Duration and Breath Number, that relate to airway resistance in
patients with pulmonary disease (e.g. asthma). For example, an
earlier study reported a higher rate of increase in the intensity of
the sound for equal increments in flow rate in chronic bronchitis
and asthma than in healthy subjects (30). The pulmonary features
extracted in this study that predict lung function are in line with
these previous observations. However, the inclusion of additional
features in the prediction models such as Roll off 95%, Mean
Amplitude, Spectral Bandwidth etc., are also important in the
prediction performance of our models.

Only two recent studies have used voice sounds to predict lung
function. Saleheen et al. extracted the “A-vowel” segments from
the voice sound and then extracted features from the ‘A-vowel’
sounds and predicted lung function in terms of the FEV1/FVC
ratio (18). Due to the unavailability of FVC values in this study, it
is not possible to directly compare results. Chun et al. developed
models to predict lung function in terms of the FEV1/FVC ratio
and FEV1% (19). Their reported prediction efficiency in terms
of MAE (%) score is 20.6%, which is significantly large for any
regression problem. The RF based regression model reported in
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this study achieved a MAE (%) score of 10.86%, a significant
improvement over that of Chun et al.

This pilot study has limitations, including the limited sample
size of matched audio and lung function measurements and the
range of machine learning algorithms utilised to develop the
predictive models. To overcome this, the balanced partitioning
technique was applied. The performance of the predictive
regression model in estimating FEV1% values was reasonable,
and better than previous studies found in the literature, in
addition to being able to predict normal vs. abnormal lung
function and the severity of abnormality of lung function. To
avoid overfitting and increase the likelihood of the model being
generalizable, 10-fold cross validation was used during training
of the model. Furthermore, no feature selection method was
applied to identify important features among the 23 features.
However, due to the limited number of features, this study did
not consider feature engineering. Future work utilising a large
set of samples, together with an independent validation sample
will allow the predictive model to be better generalised and
allow validation. A recent study includedMel Frequency Cepstral
Coefficient (MFCC) value as a feature to predict COVID-19
subjects from a forced-cough cell-phone recording (31). In
contrast, our study has used 23 features excluding MFCC due to
the nature (breathing and speech) of pattern-finding for acute
asthma prediction from sound files. MFCC represents a full
signal at a time in the signal processing. On the other hand, 23
features extracted here present themicro-information of different
parts of a signal (e.g., breathing chunks and speech chunks of
a voice sound file). However, the application of MFCC along
with these features may have the potential to further improve
the predictions.

This study used the sound recordings available from a
previous study (17). While comparing the performances between
recorded speech between external microphone and smartphone
will be helpful to understand the future use of this method using
smartphone, this was beyond the scope of this study. As we
wanted to establish the proof of concept that lung function can
be predicted from voice recordings, a future work is warranted to
predict lung function using recorded voice from the smartphone.
Asthma puts pressure on health services due to the associated
cost and workforce required to treat and care for the people
with the condition. Therefore, regular monitoring and early
intervention can help control the disease, reducing hospital
admissions and economic and social burden to the patient
and healthcare system. The predictive models developed in this
study can be implemented in smartphone applications offering
a convenient and straightforward way to predict lung function.
Embedding the algorithm in an app for self-monitoring asthma
will potentially enable patients to achieve improved symptom
control, via early treatment of exacerbations. The demonstration
that it is possible to use machine learning as a surrogate

measure for underlying lung function has the potential to lead
to the development of telemedicine solutions to improve early
diagnosis, reduce unplanned hospital admissions and mortality
for respiratory disease through supporting clinical decision
making and patient self-monitoring. Further development of
this AI speech/breathing technology will allow assessment of
lung function in a cross-cultural, language-independent manner
in order to assist in the remote monitoring of patients with a
range of chronic lung conditions, including asthma, COPD, and
pulmonary fibrosis.
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