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INTRODUCTION

Personalized medicine has the potential to drive practice-changing medicine for indications
ranging from oncology to transplantation and beyond. Conventionally, the field of medicine has
been harnessing population-based approaches to address the broad spectrum of intervention and
diagnosis and domains that span drug development to drug dose recommendations (1, 2). For
example, drug development traditionally follows an established workflow from drug discovery
to clinical trials followed by approvals and subsequent commercialization (3, 4) which can be
time-consuming and costly. Of note, therapeutics resulting from successful trials are usually
administered in a population-based and one-size-fits-all fashion, as regimen administration
guidelines are determined via dose expansion or maximum tolerated dose (MTD) (5–7).
Population-determined protocols can generally pinpoint suitable treatments/interventions for
individuals, but the emergence of artificial intelligence (AI) and digital medicine offers the potential
to truly optimize patient outcomes (8). Optimization, in this context, is also a longitudinal
process that accounts for dynamically variable outcomes whereas population-based guidelines
conventionally do not account for inter- and intra-patient variability (9). Therefore, personalized
medicine/N-of-1 treatment approaches using a patient’s own data may be deployed to identify the
most suitable interventions on a patient-specific level in order to enhance and sustain treatment
with truly optimized outcomes (5, 9–12). However, challenges and questions still need be addressed
before integrating personalized medicine into current clinical/treatment guidelines.

THREE GRAND CHALLENGES IN PERSONALIZED MEDICINE

Personalized Medicine Using Only a Patient’s Own Data
Truly personalized medicine differs from traditional medicine, which relies on population-derived
guidelines. While personalized medicine can be defined differently depending on factors that
include but are not limited to clinical indications, or intervention and diagnostic employed, among
others, we will define personalized medicine as N-of-1 medicine, or the use of only a patient’s
own clinical data to pinpoint and identify suitable interventions only for that specific patient to
both identify individualized regimens and sustain optimized dosing using longitudinal diagnostic
platforms. On an individual level, personalized medicine strategies utilize a wide array of clinical
information to achieve the optimal clinical outcomes. Current personalized strategies mostly
acquire clinical data in two different categories: genomic and phenotypic data. For example, using
genomic profiling, clinicians and scientists can determine which drugs the patient may benefit from
and ones that may cause severe side effects (13). Moreover, some phenotypic-driven approaches can
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even realize the optimal treatment strategies using a patient’s
own phenotypic data, such as reliable biomarker measures
corresponding to a quantifiable intervention (e.g., drugs) (5, 12,
14). In a case report, Pantuck et al. harnessed CURATE.AI,
an AI-driven optimization platform that used a metastatic
prostate cancer patient’s prostate-specific antigen (PSA) data
to dynamically optimize combination therapy to achieve low
PSA values (5). In a similar study, Zarrinpar et al. utilized
a phenotypic personalized medicine platform that used only
patient-specific data to continuously optimize liver transplant
immunosuppression (15). Whether via genetic or phenotypic
approaches, N-of-1 medicine in these cases only rely on patient-
specific data to optimally dose suitable interventions, instead
of population-based medicine that relies on averages across a
given population.

Furthermore, cell lines have always been the golden standard
in in vitro studies for early stage drug development. However, the
homogeneity of cell lines may result in a lack of differentiated
cell types that represent clinical conditions (16). Thus, cell
lines have limited the ability of personalized medicine to
identify suitable interventions. The emergence of patient-derived
models has overcome some of the limitations of traditional in
vitro/vivo work (16). Notably, patient-derived xenografts (PDX),
which are derived from patient cells/tissues and implanted
into immunodeficient/humanized mouse models, have enabled
the monitoring and evaluation of various interventions and
corresponding responses that more closely represent the original
patient’s disease condition compared to generalized, cell line-
based models (17–19). For example, a patient-derived organoid
(PDO) model can utilize patient-specific stem cells to grow
organoids that resemble the dynamic behavior of original organs
and thus, enable personalized interventions in clinically-relevant
contexts (20–22).

How the Data Is Acquired vs. How Much

Data Is Acquired
Realizing truly individualized healthcare will rely on more than
technology and the amount of patient data acquired. Putting N-
of-1 medicine into practice will also rely heavily on how the
data is acquired and the clinical workflows needed to bridge
technology ideation with data usage and deployment of next
generation personalized medicine platforms.

The spectrum of clinical platforms available for building
comprehensive databases include molecular profiling to guide
regimen selection (23, 24). These approaches may predict a
patient’s response to certain treatments and provide personalized
regimens. Moreover, PDX samples are often obtained from
surgically removed tumors or via biopsies, which are both
invasive (25). PDO samples require adult stem cells obtained
invasively from blood circulations or bone marrow (26, 27).
These strategies have seen increasing prevalence in clinically-
relevant settings to actionably identify potential treatment
strategies that are targeted to each patient. Importantly, drug
dosing and its strong correlation with the composition of drug
regimens can be harnessed to even further improve how data
pertaining to molecular alteration-driven drug selection can be

leveraged to personalize treatment. More specifically, additional
data pertaining to dose optimization can be acquired to sustain
the practice of N-of-1 medicine in a longitudinal manner.

In multiple prospective clinical studies, CURATE.AI platform
was harnessed to dynamically optimize combination therapy
for patients using their own clinical data. For instance,
an 82-year-old metastatic castration-resistant prostate cancer
patient whose treatment was guided by CURATE.AI had
blood draw weekly to determine blood serum PSA, which
was used to continuously pinpoint drug dosages (5). The
platform only required a small number of PSA measurements
from corresponding combinations of dosages to initiate the
optimization process. Subsequent PSA values were collected
to update the optimization platform and to account for
the intra-patient variability, or the dynamic changes of
the patient’s response to treatments (5). Additionally, the
quadratic phenotypic optimization platform (QPOP), an AI-
driven platform that only requires a minimum amount of
experimentally-derived drug combination information, was
employed to optimize drug combinations against multiple
myeloma (MM) from a pool of 114 drug candidates (28).Without
relying on the drugs’ mechanism of action, QPOP successfully
identified the globally optimal combinations and the respective
dosages and subsequently, optimized drug combinations for PDX
models and ex vivo patient samples to design patient-specific
drug combinations against MM (28).

In sum, the frequency and approach for data collection
depend on the personalized strategy utilized. However, the
approach to access data should carefully consider a patient’s
quality of life and when possible, non-invasive or minimally-
invasive approaches should be utilized. Frequency of data
collection varies between strategies, as patient sample-driven
regimen development only requires a one-time sample; whereas
approaches like CURATE.AI would require longitudinal
data collection.

Can We Harness Digital Platforms to Scale

the Deployment of Personalized Medicine?
Digital platforms have already been harnessed to scale the
deployment of personalized medicine. In order to achieve better
accessibility of personalized medicine, bridging personalized
strategies with digital medicine should be prioritized. For
example, CURATE.AI can be digitized to enable rapid
optimization of patient’s treatment outcomes using the patient’s
own clinical data. The platform has been harnessed to guide
prostate cancer combinatorial treatment, and the patient was
able to resume normal and active lifestyle (5). On the other
hand, CURATE.AI also simultaneously optimized the tacrolimus
dosing of multiple post-liver transplant patients, and they were
able to be discharged earlier than those under standard of care
(15). Digitizing platforms like QPOP can potentially provide
more tailored, personalized treatments to patients who are not
responding to standard of care (28–30). Therefore, digitizing
personalized medicine strategies for deployment in clinical
settings is one critical step forward to integrate them into
established clinical workflows.
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CONCLUSION

Truly personalized or N-of-1 medicine represents a
new avenue toward practice-changing healthcare. Inter-
and intra-patient variability can be addressed by N-of-
1 medicine with its dynamic and continuously guided
treatments that may achieve better clinical outcomes
than those determined from population averages. Despite
its advantages, personalized medicine’s integration into
clinical settings must address the three current grand

challenges discussed above, and others along the way. Once
these concerns are fully addressed, personalized medicine
may be able to fully integrate into clinical settings and
provide personalized, optimized, and accessible healthcare
to patients.
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