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Digital healthcare has grown in popularity in recent years as a scalable solution to address

increasing rates of mental illness among employees, but its clinical potential is limited by

low engagement and adherence, particularly in open access interventions. Personalized

guidance, involving structuring an intervention and tailoring it to the user to increase

accountability and social support, is one way to increase engagement with digital health

programs. This exploratory retrospective study therefore sought to examine the impact

of guidance in the form of personalized prompts from a lay-person (i.e., non-health

professional) on user’s (N = 88) engagement with a 16-week Behavioral Intervention

Technology targeting employeemental health and delivered through amobile application.

Chi-squared tests and Mann-Whitney tests were used to examine differences in retention

and engagement between individuals who received personalized prompts throughout

their 4-month program and individuals for whom personalized prompts were introduced

in the seventh week of their program. There were no significant differences between the

groups in the number of weeks they remained active in the app (personalized messages

group Mdn = 3.5, IQR = 3; control group Mdn = 2.5, IQR = 4.5; p = 0.472). In the

first 3 weeks of the intervention program, the proportion of individuals who explored

the educational modules feature and the messaging with health coaches feature was

also not significantly associated with group (ps = 1.000). The number of modules

completed and number of messages sent to health coaches in the first 3 weeks did

not differ significantly between the two groups (ps ≥ 0.311). These results suggest that

guidance from a non-health professional is limited in its ability to increase engagement

with an open access Behavioral Intervention Technology for employees. Moreover, the

findings suggest that the formation of a relationship between the individual and the

agent providing the guidance may be necessary in order for personalized guidance to

increase engagement.

Keywords: occupational health, mHealth, mental health, Employee Assistance Program (EAP), digital mental

health intervention, Supportive Accountability
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INTRODUCTION

About 20% of the workforce suffers from amild or serious mental
or psychiatric disorder (1), and the prevalence of mental illness
and work-related stress has been rising in recent years (2). This
has brought about high individual, societal, and economic costs,
including increased sickness absence (3), early retirement (4, 5),
and reduced productivity (6). Digital mental health interventions
for employees, which target large-scale, long-term wellness and
health management, have the potential to minimize barriers to
engagement with in-person psychological treatments, including
shortages of mental health professionals, lack of flexibility,
and stigma associated with mental illness (7). Indeed, evidence
indicates that these approaches can be effective in reducing
mental stress, depression, and psychological distress levels among
employees (8, 9).

Behavioral Intervention Technologies [BITs; (10)] are a
subset of digital mental health interventions and are designed
to improve mental health through behavior change. Previous
research has demonstrated that digital interventions rooted
in behavior change theory are particularly effective (11),
including in occupational settings (12). Crucially, success in
these interventions, defined as engagement in health behaviors,
is contingent on engagement with features and components
of the digital intervention itself (13, 14). However, despite the
recent growth in digital healthcare solutions and their clinical
potential, completion rates for digital health programs tend to be
low, and limited user engagement and adherence is one of the
biggest challenges in maximizing their impact (15, 16). Indeed,
intervention completion for web-based employee psychological
interventions can be as low as 3% (8) and a cross-study evaluation
reported a median retention of 5.5 days of app usage in digital
health studies (17). To increase the effectiveness of self-directed
mental health support delivered digitally, it is therefore essential
to identify solutions that sustain engagement.

Guidance, involving structuring of the intervention or
reminders to use it, has been identified as one of the program-
related factors that promotes engagement with such BITs
involving content for users to engage with independently (18–
20). Interventions that include guidance are associated with
better outcomes, including greater symptom improvement and
intervention completion rates, than unguided interventions (10,
21, 22). Recipients of digital health interventions report that text
message prompts increase their perceived support, enhance their
motivation for healthy behavior change, and encourage their
engagement in health behaviors (23). While such guidance can
be machine-driven, for example through automated engagement
monitoring and push notifications, human support can increase
adherence to a greater degree (24, 25). According to Mohr
et al.’s (26) Supportive Accountability model, this is because the
human component provides accountability and social support.
Indeed, accountability–the expectation that one may be called
upon to justify their actions or inactions (27)–encourages goal-
directed behaviors (28), and requires the social presence of
another human. Moreover, in self-directed digital interventions
where most of the content of the treatment is not delivered by a
therapist, the social support provided by human guidance may

help compensate for the absence of a therapeutic alliance and
maintain engagement.

In addition, tailoring of interventions has been shown to
improve outcomes in behavior change interventions (29).
Tailoring refers to the personalization of an intervention’s
characteristics, such as content or timing, to increase
engagement by increasing heuristic and self-referential
processing, and reducing effortful processing, to increase the
end user’s receptiveness (30). Accordingly, personalized activity
recommendations combined with leeway for autonomous
choice in activities leads to higher engagement with BITs by
providing clear and personally relevant guidance for how to
use the intervention while also allowing for exploration and
spontaneous use of the intervention (31). Engagement is a crucial
target in open access workplace BITs, as observational studies of
digital health interventions and open access interventions have
higher attrition rates than randomized controlled trials (32, 33).

The current study examined the impact of human guidance
and support from a lay person (i.e., non-health professional), in
the form of regular, personalized prompts to use app features
sent via in-app text messages, on retention and engagement in an
Employee Assistance Program (EAP) involving a BIT delivered
through an app (Naluri). Naluri is a digital therapeutics solution
that offers personalized 16-week health programs based on the
principles of behavior change. The employee BIT program aims
to improve psychological wellbeing through psychoeducation
and skill training. Specifically, the program includes educational
modules, a health journal for self-monitoring, and a habit
formation and tracking feature, as well as one-on-one coaching
from health professionals (including psychologists, dietitians,
fitness coaches, and medical advisors) via text-based messages
and video calls.

This study focused on the effectiveness of tailored prompts
from a non-health professional (the Naluri Assistant) in
increasing retention and engagement with the BIT content,
specifically the educational modules and text-based exchanges
with health professionals. In this study, engagement was defined
as exploration of the app’s features and number of activities in
each of these features.

METHODS

Design and Participants
This was a retrospective study using data from the digital
therapeutics company Naluri (Naluri Hidup Sdn. Bhd., Kuala
Lumpur, Malaysia) to examine the effects of support from a
lay person on app engagement over a 16-week digital health
program. Participants included in the study registered for an
account on the app voluntarily through sponsorship from their
employer (Company A).

Participants in the personalized message group were Naluri
app users in Malaysia who took part in Naluri’s 16-week EAP
offering and received targeted weekly messages from the Naluri
Assistant throughout their time using the app (N = 30).

Participants in the control group were employees of the same
company who also joined through their employer but did not
receive the personalized messages from the Naluri Assistant until
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the seventh week of their program (N = 75). Participants in this
group only began receiving the targeted messages later in their
program as the personalized messaging curriculum was not yet
introduced at their time of joining. The unequal group sizes are
due to the observational nature of the study and a larger number
of employees joining the Naluri app before the personalized
prompts curriculum was developed and introduced.

Eligibility criteria for the Naluri EAP was: moderate or above
scores on the Depression, Anxiety and Stress Scale (DASS-21)
(34) in a company-wide mental health screening or used at
least one app feature within the first 2 weeks after registering
with Naluri.

Participants who did not select a health goal upon joining
the application or who selected “Just Exploring” as their reason
for using the app were excluded from the analyses. The health
goal options included “Managing Stress and Depression,” and
“Improving General Health,” for example. The final sample sizes
were thereforeN = 28 for the personalizedmessages group andN
= 60 for the control group. Participant characteristics are shown
in Table 1.

This study received ethical approval from the Malaysian
Medical Research and Ethics Committee (Research ID #60291).

Materials
Measures
The DASS-21 (34) was used to assess participant’s mental health
before beginning the Naluri digital EAP. The DASS-21 is a
21-item self-report questionnaire that includes three subscales
designed to measure the severity of depression, anxiety, and
stress symptoms, respectively. The depression subscale measures
symptoms corresponding to hopelessness, anhedonia, dysphoria,
and low energy. The anxiety subscale includes items related to
autonomic arousal as well as situational anxiety and subjective
experience of anxious affect. The stress subscale relates to chronic
non-specific arousal, irritability, nervousness, and tension. Each
of the seven items on the three subscales has four response
options ranging from 0 (did not apply to me at all) to 3 (applied to
me very much, or most of the time). The questionnaire is scored
by summing the items for each subscale and multiplying the
results by a factor of two, yielding a score between 0 and 42 for

each subscale. These scores can be classified into five categories
using the cut-offs proposed by Lovibond and Lovibond (34):
normal, mild, moderate, severe, and extremely severe. Symptoms
of moderate or above depression, anxiety, and stress, used as a
threshold for eligibility for the Naluri program, are defined as
scores ≥14, ≥10, and ≥19, respectively.

The DASS-21 has been shown to have strong reliability
and validity for measuring depression, anxiety, and stress
among a working population (35). Moreover, the measure has
moderate to high correlation with other common self-report
measures of mental health, specifically the 9-item Patient Health
Questionnaire [PHQ-8; (36)] and the 7-itemGeneralized Anxiety
Disorder scale [GAD-7; (37)] in virtual behavior healthcare
settings (38). However, the PHQ-8 and PHQ-9 (39) and the
GAD-7 tend to classify a higher proportion of individuals as
having above threshold symptoms of depression and anxiety
symptoms than the DASS-Depression and DASS-Anxiety scales,
respectively (38, 40).

Naluri Digital Employee Assistance Program
This study used the Naluri app, a BIT delivered to employees
in the form of 16-week programs. Naluri’s mental health
program is built on principles of behavior change and the
transtheoretical model of change (41) and aims to improve
psychological wellbeing through psychoeducation and skills
training. Specifically, the BIT supports individuals in attaining
specific outcomes (such as improved relationships and social
skills, or development of healthy habits) to in turn improve
their mental health. Naluri’s program is delivered through
a combination of independent activities/features (educational
modules, a health journal, and a habit tracker) and a team
of professional health coaches who are in contact with users
primarily through in-app text message channels, as well as
video calls.

The educational modules cover a range of health
and wellbeing-related topics, including mental wellbeing
(e.g., healthy coping, relaxation techniques and cognitive
restructuring), healthy eating, exercise and movement, and
implementing healthy habits. The health journal includes a
thought journal in which users can log both positive and negative

TABLE 1 | Participant characteristics.

Personalized messages (N = 28) Control (N = 60)

Age (mean ± SD) 39.68 ± 8.43 39.41 ± 8.98

Gender (%) Male 35.71 50.00

Female 32.14 26.67

Unknown 32.14 23.33

Psychological symptoms (%) Low 32.14 58.33

Mild to moderate 25.00 18.33

Severe to extremely severe 17.86 13.33

Unknown 25.00 10.00

Low severity of psychological symptoms is defined as a depression score < 10, anxiety score < 8, and stress score < 15. Severe to extremely severe symptom severity is defined as

a depression score ≥ 21, anxiety score ≥ 15, and/or stress score ≥ 26. Mild to moderate symptom severity refers to scores lying between these values for depression, anxiety, and

stress, respectively.
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thoughts and moods, and optionally share these with their health
coaches. The health journal also includes a food journal to which
users can upload pictures of their meals and receive feedback on
them from qualified dietitians. The habit tracker feature allows
users to set habits and receive reminders to complete these at the
set interval.

The multidisciplinary coaching team is led by a qualified
clinical psychologist and includes dietitians, physiotherapists,
fitness coaches, pharmacists, and medical advisors. Each coach
holds the necessary qualifications to practice in their area (i.e.,
a clinical psychology Doctorate/Master’s for psychologists, a
dietetics degree for dietitians, a physiotherapy degree or diploma
for physiotherapists, a personal trainer certification for fitness
coaches, a pharmacy degree for pharmacists, andmedical degrees
for medical advisors). All coaches also completed additional
training on digital coaching with Naluri, which focused on how
to use health psychology techniques in a digital context to
help users improve their mental and physical health through
behavior change.

Alongside the self-directed features, Naluri coaches provide
one-on-one support to participants in the following areas:
identifying and understanding their emotional distress;
identifying the psychological, social, and individual factors
contributing to this distress; psychoeducation and skills training
in areas including self-care, problem-solving, emotion regulation,
and other coping skills; and building resilience and maintaining
healthy habits. Throughout the program, the health coaches
apply motivational interviewing techniques and cognitive
behavioral therapy to support participants in their goal setting
and habit formation. The coaches reach out to participants at the
beginning of the 16-week program to introduce themselves and
explain their role as a coach. Subsequently, the coaches engage in
text-based conversations with participants as and when the latter
initiate exchanges.

The Naluri app also includes a Naluri Assistant, who is a non-
health professional that users can reach out to for support in
using and understanding the app and its features. This Naluri
Assistant does not hold professional health qualifications but
is trained in psychological first aid and in moderating peer
support groups. The Naluri Assistant periodically sends app users
messages regarding new features or changes within the app.
The Naluri Assistant, as well as each coach, can be reached
through their dedicated text-based messaging channel within
the app. While the focus of the coaching is to deliver parts of
the intervention and provide personalized therapeutic content,
the role of the Naluri Assistant is to provide practical support
with accessing and using the different elements of the digital
intervention. These two distinct sources of human support
within the Naluri digital health program enables participants to
receive personalized professional coaching, as well as a source
of support available to help address usability and engagement
failures (42) that is more scalable as it does not require a trained
health professional.

Personalized Messaging Curriculum
The personalized messaging was a pilot developed to facilitate
familiarization with the app and encourage engagement in

the context of remote on-boarding to the Naluri program
due to social distancing measures during the COVID-19
pandemic. Prior to this, in-person onboarding allowed first-
hand demonstration of the app to kickstart engagement with
the program. The personalized prompting involved in-app text-
based messages delivered by the Naluri Assistant to prompt
participants to complete activities within the app. The messages
followed a 16-week curriculum and the prompted activities
corresponded to topics identified by Naluri psychologists as
commonly discussed issues on the platform. These topics
included identifying one’s intrinsic motivations, setting health
and behavior goals, emotion regulation, and building resilience.
The sequence of topics followed the Naluri coaching model
through the phases goal-setting, implementation of action, and
finally, maintaining learned practices.

At least one message was sent by the Naluri Assistant each
week, introducing the week’s topic and prompting the completion
of a relevant app feature, such as messaging their psychologist or
completing a module. Every introduction message was sent with
an infographic of the topic. Topic introduction messages from
the Naluri Assistant were standardized across participants, while
follow-up messages sent later in the week were personalized to
the participant’s in-app activity. For personalization, variations
of messages were scripted to take into account every possible
pairing of incomplete and/or completed prompts, and to mirror
the participant’s preferred messaging style. Throughout the
course of the personalized messaging, incomplete activities were
prompted while completed activities were congratulated and
acknowledged. Thus, in line with the Supportive Accountability
model (26), the Naluri Assistant aimed to develop a bond
with the participants through regular messaging, and to set
up accountability structures, by prompting specific activities
and monitoring their engagement with the app. However, in
contrast to this model, the Naluri Assistant also delivered some
intervention content, in the form of an infographic providing
an overview of the subject area that was the focus of the week’s
suggested activities.

Procedure
Participants were referred to the Naluri app through their
employer (Company A). During a virtual company-wide event
organized by Naluri, employees from Company A completed
an online mental health screening that consisted of the DASS-
21. Upon completion of the questionnaire, employees received
their results and were prompted to create a Naluri account and
download the application via a link that was provided. Employees
were therefore able to register with Naluri immediately after the
health screening and continued to be able register for 3 months
after the health screening event. The personalized messaging
program was launched approximately 1.5 months after the health
screening. Thus, participants in the control group registered
within a week after the health screening, while participants in the
personalized messages group registered 1.5 to 3 months after the
health screening. Upon beginning the program, themental health
symptoms severity scores were therefore more recent among
participants in the control group than among participants in the
personalized messages group.
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After registering with the application, participants created a
profile in which they indicated their age and gender and were
asked to indicate their reason for using the application (i.e., their
health goal). Participants were provided with a range of options
from which to select their health goal, including “Managing
Stress and Depression,” “Improving General Health,” or “Just
Exploring.” Following this, participants were able to use any of
the apps features as they preferred.

Data Analysis
Objectives
The objective was to compare app usage between users
who received personalized prompts over their 16-week health
program and users who did not receive these prompts. App usage
was compared in three areas: length of retention, rate of feature
exploration (i.e., engaging with the feature at least once), and total
number of messages sent to coaches and modules completed.
Messages sent to the Naluri Assistant were used as a proxy
for receipt and acknowledgment of the prompts and were also
compared between groups. Length of retention was defined as the
number of weeks between the participant’s joining date and their
last in-app activity.

Statistical Analyses
Data for retention length and activity counts are presented in
median (Mdn) and interquartile range (IQR). The categorical
variable exploration rate for individual features is reported in
percentages. For comparing length of retention over the 16-
week health program, Mann-Whitney tests were used, as the
data was not normally distributed and because non-parametric
tests are more robust to unequal group sizes. Similarly, Mann-
Whitney tests were used to compare total activity count, as well
as number of modules completed, and number of messages sent
to coaches and to the Naluri Assistant between the two groups.
The associations between group and exploring the modules as
well as the chat with coaches feature were examined using Chi-
squared tests. To account for low retention rates in digital health
interventions (17, 43), engagement metrics were only analyzed
for the period of the program during which at least 50% of the
participants were still active in the app (i.e., for the sample’s
median length of retention). The analyses were conducted using
statistical software RStudio version 1.3.1056.

RESULTS

Retention Length Between Groups
In the personalized messages group, 15.00% of participants were
still active at the halfway point of the program (in week 8), and
5.00% were still active in week 16. In the control group, 10.71%
were still active by week 8, while 3.57% were still active in the
final week. Across the sample, the median retention length was
3 weeks. There was no significant difference in retention length
between the personalized message group (Mdn = 3.5, IQR = 3)
and the control group (Mdn = 2.5, IQR = 4.5; U = 760.5, p
= 0.472).

Percentage of Participants Engaging With
Features
As the median retention length was 3 weeks, exploration of
features during the first 3 weeks of the Naluri program was
examined. The percentages of participants in each group who
used the modules feature and coaches chat feature at least once
in this period are shown in Table 2. There was no significant
association between group and attempting modules at least once
[X2(1)< 0.01, p= 1.00] or between group andmessaging coaches
[X2(1) < 0.01, p= 1.00].

Activity Count per Participant
In the first 3 weeks of the program, the median number of in-
app activities completed by participants (Table 3) did not differ
significantly between groups (U = 941.0, p = 0.365). There was
also no significant between-group difference in the number of
modules completed (U = 951.5, p = 0.311), messages sent to
coaches (U = 844.0, p = 0.969), or messages sent to the Naluri
Assistant (U = 825.0, p= 0.805).

DISCUSSION

The current study set out to examine the effectiveness
of personalized prompts providing guidance on increasing
employees’ engagement with an employer-sponsored Behavioral
Intervention Technology (BIT). There was no significant
difference in length of retention or number of in-app activities
in the first 3 weeks of the program between those who received
personalized messages in that period and those who did not.
In addition, the proportion of participants completing at least
one interactive educational module or reaching out to health
coaches over the first 3 weeks of the program also did not
differ significantly between the control and personalized prompts
groups. These findings suggest that the personalized guidance in
the form of prompts used in this study is limited in its ability
to overcome barriers to engagement in open-access preventative
mental health interventions for employees.

The findings that participants who received guidance did not
engage with the BIT more than participants who did not receive
guiding prompts are in contrast with findings from previous
studies on BITs (18). The low rates of reaching out to coaches
may be explained by a high barrier to reaching out for help
for psychological problems in our sample. Indeed, studies have
identified a preference for self-reliance and a desire to handle the

TABLE 2 | Percentage of participants who engaged in each feature at least once

in weeks 1 to 3.

Modulesa (%) Messages to coaches (%)

Personalized messages 82.14 28.57

(N = 28)

Control (N = 60) 81.67 28.33

aThe Naluri app included 97 modules available to the participants.
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TABLE 3 | Median number of activities per user in each feature in weeks 1 to 3.

Total activity Mdn (IQR) Modulesa Mdn (IQR) Messages to coaches Mdn (IQR) Messages to Naluri Assistant Mdn (IQR)

Personalized messages 3.00 (5.00) 1.00 (1.25) 0.00 (1.25) 0.00 (0.00)

(N = 28)

Control (N = 60) 4.00 (9.50) 2.00 (3.00) 0.00 (1.00) 0.00 (0.00)

aThe Naluri app included 97 modules available to the participants.

problem on one’s own, as well as stigma of mental illness–which
is prevalent in Malaysia, where our sample was from–as common
reasons for not seeking treatment for poor mental health (44–
46). Mojtabai et al. (44) also reported that low perceived need
for treatment was a common barrier to seeking treatment,
particularly among individuals with mild mental disorders. This
barrier is especially relevant in the current study, in which
25% of the participants receiving personalized messages were
identified as having mild to moderate symptoms of psychological
distress, as measured by the DASS-21 (34). This group are likely
to have been using the app with the goal of improving their
positive psychological wellbeing, and the absence of more serious
psychological distress may have made them more reluctant to
reach out to a health professional, in spite of guidance to do so.

The lack of differences between groups in this study may
also be due to the nature of the relationship between the Naluri
Assistant and the participant, needed in order for accountability
and social support to be felt by the user. Indeed, engagement
with the Naluri Assistant did not differ significantly between
participants in the two groups. This may be because the guidance
messages directed participants to other app features, rather
than prompting a reply to the message, thus encouraging the
perception of the Naluri Assistant as a guide rather than a
conversational agent providing social support and with whom
users should interact. As a result, the prompt messages may be
regarded in the same way as automatic notifications, and lose
the benefit of guidance from a human compared to automated
reminders outlined by the Supportive Accountability model (26).
Indeed, when the source of a prompt is perceived to be automated
rather than human, individuals are less likely to attend to it (30).
Prompts from a human also tend to be more effective when they
are accompanied by a two-way interaction between the agent
delivering the prompts and the user, as this allows for a stronger
alliance to be formed, which in turn promotes engagement (47).
A greater emphasis on eliciting conversation with the participant
in the messages may therefore have had a greater impact on
increasing engagement with the prompted activities.

The absence of a significant difference in the length of
retention between the control group and the personalized
messages group suggests that the personalized prompts
used in this curriculum were also insufficient to sustain
continued engagement. This may be due to habituation or
ignoring prompts, which are likely to occur in prompt-based
interventions unfolding over the long-term (30). Although
there is no research directly examining habituation in digital

patient-centered health interventions, alert fatigue has been
found to occur in studies examining responsiveness to alerts
among health providers (48–50). The lack of effectiveness
for the personalized prompts could suggest that the guidance
curriculum requires additional refinement in order to be more
effective and maintain interest over time. While the prompts
were tailored to the individual’s previous in-app activities and
their messaging style, they were not tailored to the individual’s
health goals or health status and instead prompted in-app
activities that were general and applicable to all types of
health goals. This may have resulted in a low perceived fit
among participants, and the addition of further information
relevant to their current situation may improve the prompt’s
effectiveness (18).

Limitations
This study has several limitations which should be taken into
account when considering its findings. First, the sample size
for the personalized messages group was small and the groups
were of unequal sizes because this was a retrospective study in
which participant’s groups were determined by the timing of
their joining. While the non-parametric statistical tests used are
robust to unequal group sizes, the results should nonetheless be
interpreted with caution. Second, participants enrolled in the
Naluri EAP were those who reported experiencing moderate
or above scores of depression, anxiety, or stress on the DASS-
21 in the health screening or who started using the app
within the first 2 weeks after registering with Naluri. However,
individuals with elevated levels of depression, anxiety, or stress
may have different app usage patterns than individuals who do
not experience such symptoms and are merely using the app in a
casual or exploratory manner. To mitigate against within group
differences, though, only individuals who provided a health goal
as a reason for joining the app (rather than just exploring
the app) were included in the study sample. Consequently,
all of the participants indicated that they were using the
app the achieve mental health symptom reduction or health
improvement, reducing the within-group heterogeneity. Third,
receiving the prompts was contingent on having notifications
turned on for the app, and it is possible that this was not the
case for all participants, who may therefore not have seen the
prompts. While the inclusion of all participants regardless of
their notification settings provides insights into the real-world
effectiveness of personalized messaging, it does not allow for an
examination of the efficacy of such prompting.
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Conclusions
This preliminary and exploratory study provides insights into
the effectiveness of human support in increasing engagement
with digital health interventions in real-world conditions.
Overall, the lack of differences between individuals who received
personalized support and those who did not suggests that, to
increase retention or engagement in Behavioral Intervention
Technologies delivered in open-access Employee Assistance
Programs, human guidance and support programs must
incorporate certain elements that were not included here. For
example, the formation of a relationship between the individual
and the agent providing the guidance seems to be a critical
element in the effectiveness of such support. Additional work is
needed to identify the elements involved and to in turn refine
personalized guidance curriculums.
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