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ECGAssess: A Python-Based Toolbox
to Assess ECG Lead Signal Quality
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ETH Zürich, Biomedical and Mobile Health Technology Lab, Zurich, Switzerland

Electrocardiography (ECG) is the method most often used to diagnose cardiovascular

diseases. To obtain a high-quality recording, the person conducting an ECG must be

a trained expert. When these experts are not available, this important diagnostic tool

cannot be used, consequently impacting the quality of healthcare. To avoid this problem,

it must be possible for untrained healthcare professionals to record diagnostically useful

ECGs so they can send the recordings to experts for diagnosis. The ECGAssess

Python-based toolbox developed in this study provides feedback regarding whether ECG

signals are of adequate quality. Each lead of the 12-lead recordings was classified as

acceptable or unacceptable. This feedback allows people to identify and correct errors

in the use of the ECG device. The toolbox classifies the signals according to stationary,

heart rate, and signal-to-noise ratio. If the limits of these three criteria are exceeded, this

is indicated to the user. To develop and optimize the toolbox, two annotators reviewed

a data set of 1,200 ECG leads to assess their quality, and each lead was classified as

acceptable or unacceptable. The evaluation of the toolbox was done with a new data

set of 4,200 leads, which were annotated the same way. This evaluation shows that

the ECGAssess toolbox correctly classified over 94% of the 4,200 ECG leads as either

acceptable or unacceptable in comparison to the annotations.

Keywords: data science, digital health, anaesthesia, emergency and critical care, intensive care unit, biomedical

engineering

1. INTRODUCTION

Globally, cardiovascular diseases (CVDs) are the leading cause of death. An estimated 17.9 million
people died from CVDs in 2019, representing 32% of all global deaths. Over three-quarters of
CVD deaths occur in low- and middle-income countries. It is important to detect CVDs as early as
possible to begin management with counseling and medication (1, 2).

Electrocardiography (ECG) is the procedure most often used to diagnose heart diseases. The
electrical activity created by the patient’s heart is processed by the ECG machine and either printed
on special graph paper or digitally recorded. The ECG’s popularity is due to its advantages as a non-
invasive, inexpensive, and convenient screening tool that is comfortable for patients. Additionally,
the procedure of recording ECGs are extremely safe, which further contributes to its popularity.

However, ECGs must be recorded and analyzed by trained experts. Especially in developing
countries, where experts are concentrated in urban hospitals, this can lead to amedical undersupply
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in rural areas. This major problem was targeted by the
PhysioNet/Computing in Cardiology Challenge 2011. The goal
of this challenge was for participants to develop an efficient
algorithm able to run in near-real-time on a mobile device
that can provide useful feedback to laypeople in the process of
acquiring a diagnostically useful ECG. The software should be
able to indicate within a few seconds—while the patient is still
present—whether the ECG recording is of adequate quality for
interpretation or if another recording should bemade. This could
technically allow inadequately trained personnel to obtain ECG
recordings that can be interpreted without waiting for an expert
to determine the quality; it may be difficult to obtain another
ECG on another day from a patient who may live far from
the clinic (3).

The participants of the PhysioNet/Computing in Cardiology
Challenge developed a program that indicates whether an ECG is
of sufficient overall quality for a diagnosis, as seen in Figure 1

(4–10). This study goes one step further and provides this
feedback for the recording’s individual leads. The advantage of
this approach is that, in the event of an insufficient recording,
it is only necessary to reattach the indicated leads. In this way,
high quality signals can be preserved and the correction can be
reserved for the poor-quality leads. This innovation saves time
and makes the program easier to use.

Because a variety of terms can be used in reference to the
signals discussed in this article, the terms must be clearly defined:
A 12-lead ECG signal will be referred to as an ECG recording, and
the signal of one lead in an ECG recording will be referred to
as a signal.

2. METHODS

2.1. Used Data
The ECG recordings for this study were collected as part
of Sana’s PhysioNet/Computing in Cardiology Challenge and
were provided for free via PhysioNet. This data set was used
in the PhysioNet/Computing in Cardiology Challenge 2011.
The data include 10-s recordings of 12-lead ECGs that were
collected using conventional ECG machines. All the leads
were simultaneously recorded, have a full diagnostic bandwidth
(0.05–100 Hz), and were sampled at 500 Hz with a 16-bit
resolution. Nurses, technicians, and volunteers with varying
levels of training recorded the ECGs. Because the goal of the
PhysioNet/Computing in Cardiology Challenge is to investigate
whether laypersons can use software to collect high-quality ECGs
reliably; the recordings gathered for the challenge include ECGs
taken by volunteers with minimal training.

The publicly available Data Set A consists of 998 ECG
recordings, classified into one of two groups. The classifications
were made by a group of annotators with different levels of
experience in ECG analysis. Group I consists of acceptable
ECG recordings, and Group II consists of unacceptable ECG
recordings. Approximately 70% of the collected recordings were
assigned to Group I and 30% were assigned to Group II. It is
important to mention that the categorization into these groups
was made based on all 12 leads. The classification did not allow

any direct conclusions to be drawn about the quality of individual
leads (3).

2.2. Annotation
For this project, the ECG recordings were evaluated as individual
leads, not as a whole; thus, the above-mentioned division into
Group I and Group II could not be used to verify the toolbox. A
data set with annotations of acceptable quality and unacceptable
quality for each lead was needed. For this purpose, two data
sets were created: a training data set with 50 randomly selected
ECG recordings from each group (Group I and Group II) and a
testing data set with 175 randomly selected ECG recordings from
each group. The data sets for both groups each contain the same
number of recordings, which should lead to meaningful results.

All the signals from the testing data set were preprocessed
using a bandpass Butterworth filter. The recommended bandpass
frequency range for detecting QRS complexes is 8–20 Hz (11).
The selected filter has a bandpass of 8–20 Hz and stopbands of
0–0.5 and 30–250 Hz (Nyquist frequency). Minimum loss in the
stopband is 20 dB; maximum loss in the passband is 0.2 dB.

After preprocessing, the signals in the testing data set were
categorized as acceptable or unacceptable. For the signal to
be acceptable, all but the first and last heartbeats had to be
visually identifiable. An example of this classification is shown in
Figure 2. It is important to note that signals with a significant
level of noise were accepted as well, but only if the heartbeats
could be distinguished from the noise. Any signals that did not
meet this condition were not accepted. This classification was
separately completed by two annotators and disagreements were
discussed and mutually decided upon.

2.3. Three Signal Quality Classification
Algorithms
The developed ECGAssess toolbox contains three algorithms that
check the signals to determine their quality. Each of the three
algorithms assigns a status of passed or not passed to each signal.
The flowcharts of all three algorithms are shown in Figure 3.

2.3.1. Algorithm I : Stationary Signal Check
The first classification algorithm checks the signal on stretches
where the signal remains stationary at one value, called either a
stationary signal or a flatline. The signal was viewed and analyzed
through a 0.2-s window (100 measurements). This window was
technically realized by temporarily copying a section of the signal.
These copies are 0.2-s long (100 measurements) and made at
0.02-s intervals (10-measurement). In all copies, the maximum
and minimum values of the signals were calculated. If the
maximum and minimum values of the same time window were
equal, the signal was stationary and did not pass the assessment
of this algorithm as demonstrated in Figure 4. It must be noted
that only one window of 0.2 s (or 100 measurements) must
be stationary for the signal to be declared not passed by the
stationary signal detection algorithm.

2.3.2. Algorithm II : Heart Rate Check
In this algorithm, the Pan-Tompkins algorithm was used to
detect the QRS complex of the heartbeat (12). This algorithm was
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FIGURE 1 | This recording (Recording 1609343) was annotated as being of unacceptable quality in the PhysioNet/Computing in Cardiology Challenge. However,

according to the assessment in this study, only Lead V1 was unacceptable because the heartbeats provided by this lead were not clearly recognizable. The voltage (y

axis) is given in 100 micro volts, the time (x axis) is given in seconds. Note that the 12-lead ECG signals are visible in the standard ECG grid to improve the clinical

interpretation of the ECG waveforms.
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FIGURE 2 | Six examples of ECG signals that were classified and annotated into acceptable and unacceptable with respect to their quality. The filtered signals were

visually classified, with a focus on the heartbeats. If all heartbeats were visible, the quality was considered acceptable.

FIGURE 3 | Flowcharts of the three signal quality classification algorithms. Algorithm I is a stationary check, Algorithm II is a heart rate check, and Algorithm III is an

SNR check. A passed status on an algorithm means that no characteristics of a low-quality signal were detected. A not-passed status means that characteristics of

poor quality were detected for the ECG signal.

used because it is considered to be the gold standard for detecting
R peaks (13). First, however, the signal had to be filtered. The
same filter was used as for the annotation—that is, an 8–20

Hz bandpass filter (11). This prepared signal was analyzed with
the Pan-Tompkins algorithm, and the detected heartbeats were
counted. The heart rate was calculated bymultiplying the number
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FIGURE 4 | Stationary signal check. The window, represented by the red rectangle, moved through the signal (Recording 1072620) in the direction of the arrows, and

the signal was viewed through the window in this algorithm. If the signal was stationary in the window at a specific time, it was declared not passed. A not-passed

signal is shown on the left and a signal that has passed is shown on the right.

of detected beats by 6 (because the recordings only last for 10
s). If the heart rate was between 24 and 300 bpm, the signal
was declared passed; otherwise, it was declared not passed as
illustrated in Figure 5. The upper threshold of 300 bpm was
chosen because a heart rate above this threshold is unsustainable
(14). No literature was found for the lower threshold of awake
patients, but an expert estimated it to be approximately 25 bpm.

2.3.3. Algorithm III : Signal-to-Noise Ratio Check
The last classification algorithm checks how much noise is
contained in the ECG signal. To express this in numbers,
the signal-noise-ratio (SNR) is calculated. This quality index is
defined as the ratio between the spectral power of the signal and
that of the noise. A periodogram is used to approximate the
power spectral density (PSD). After summing the power of the
frequency bands of signal and noise, the SNR can be calculated
with Formula 1.

SNR =

40Hz∑

2Hz

PSD/

2Hz∑

0Hz

PSD+

250Hz∑

40Hz

PSD (1)

The signal consists of P, Q, R, S, and T waves. Thus, the frequency
range of the signal can be determined with the frequency ranges
of these individual waves. The QRS complex has a frequency
range of 8-50 Hz. The T wave and the P wave have frequency
ranges of 0–10 and 5–30 Hz, respectively (15). Baseline drift is a
low-frequency artifact in ECG signals and belongs to the noise
spectrum. Baseline drift ranges from 0 to 2 Hz and is usually
removed from the ECG signals before analysis (16), and studies
have shown that a high frequency cutoff of 40 Hz enhances signal
quality (17, 18). This leads to a signal frequency range of 2–40 Hz.
The remaining frequencies are interpreted as noise. Noise mainly
includes baseline drift, powerline interference, motion artifacts,
and electromyography noise.

To identify a reasonable threshold value, the training data set
is used. The SNRs of all annotated signals in this data set were
calculated and are plotted in Figure 6 regarding the annotation

of the signal. The different groups are shown to be partially
separated from one another. Visually, the SNR threshold value of
0.5 dB is selected. The signals did not pass this last classification
algorithm if their SNRs were below the selected threshold as
illustrated in Figure 7.

2.4. Agreement Rule
To incorporate the advantages of all algorithms into the result,
the algorithms were combined with an agreement rule. The
following explanation is based on the example presented on
Table 1. For the quality of a signal to be accepted, all three
algorithms must agree on its good quality, as shown for Lead I. If
a signal does not pass one ormore of the algorithms, the quality of
the signal is not accepted. All scenarios for unacceptable signals
can be found in Lead II through V2.

3. RESULTS AND DISCUSSION

ECG signal quality can be evaluated in different ways. A quality
index can be assigned to the signal—for instance, from 0 to 1—
or a binary model can be used, where a 0 or a 1 is assigned. In
this study, a binary model, using acceptable and unacceptable
statuses, was used because it allows for a distinct rule of
assignment. An unambiguous criterion leads to little freedom
in interpretation, resulting in a highly standardized method.
Therefore, the process of assignment is simplified andmademore
transparent. Another reason for choosing a binarymodel is that it
gives the toolbox’s user clear feedback regarding whether a signal
must be rerecorded.

During annotation, a signal was considered acceptable if a
reliable heart rate could be detected; otherwise, the signal was
considered unacceptable. The exact procedure is explained in the
Method section. The results of this annotation for the testing data
set are shown in Table 2.

The training data set was used to develop and optimize the
algorithms. However, in Algorithm I and Algorithm II, however,
this data set had no direct influence because data-independent
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FIGURE 5 | Heart rate check. The filtered signal (Recording 2167341) was analyzed using the Pan-Tompkins algorithm. The detected heartbeats are visible as dots. If

the number of detected heartbeats was not within the accepted range, the signal was marked not passed. A signal that has not passed is shown on the left; a signal

that has passed is shown on the right.

FIGURE 6 | SNRs of the signals from the testing data set. The signals are shown as diamonds if they were annotated as acceptable and as stars if they were

annotated as unacceptable. The selected SNR threshold of 0.5 dB is shown as a black line.

FIGURE 7 | An SNR example. With respect to Algorithm III, an example of a not-passed signal is on the left and an example of a passed signal is on the right

(Recording 1896934). The SNRs of the signals are 0.4384 dB for the signal on the left and 8.1156 dB for the signal on the right.

criteria were used for the quality analysis. In contrast, in
Algorithm III, the data from the training data set influenced the

SNR threshold. The training data set results of the algorithms can
be seen in Table 3.
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TABLE 1 | An example of the agreement rule for assessing the ECG quality of

each lead.

Leads I II III aVF aVR aVL V1 V2 V3 V4 V5 V6

Algorithm I ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Algorithm II ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Algorithm III ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓

Overall result ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

✓ passed, ✗ not passed.

TABLE 2 | Results of the annotation and the total number of leads in the training

and testing data sets.

Acceptable signals Unacceptable signals Total signals

Training data set 815 (67.92%) 385 (32.08%) 1,200 (100%)

Testing data set 2,844 (67.71%) 1,356 (32.29%) 4,200 (100%)

TABLE 3 | Results of the algorithms with respect to the training data set.

Algorithm I Algorithm II Algorithm III Overall result

True positive 815 815 798 798

False positive 75 295 335 44

True negative 310 90 50 341

False negative 0 0 17 17

Correctly categorized 93.75 % 75.42 % 70.67 % 94.92 %

In the end, the toolbox’s functionality was determined with
the use of the testing data set; this large data set was created for
this sole purpose. Algorithms I, II, and III were separately tested
and then tested in combination with the agreement rule. The
results of the toolbox were compared to those of the annotation.
It was found that 94.21% of the signals were correctly categorized
as either acceptable or unacceptable. This result, as well as
the separate results of the individual algorithms, are shown
in Table 4. With respect to the testing data set, a sensitivity
[TP/(TP + FN)] of 98.03% and a specificity [TN/(TN + FP)] of
86.21% were achieved.

We checked whether the classification of the individual leads
into acceptable and unacceptable statuses allows a conclusion to
be drawn about the entire 12-lead ECG recording. The number
of unacceptably annotated signals was identified for Group I
and Group II, and it was found that the two groups could
not be separated based on the number of unacceptable leads.
This analysis was done with the testing data set. Therefore, no
criteria can be established that allow the classification of the entire
recording based on the quality of each individual lead.

The limitation of this study is the approach of annotation
using a binary system. Classification by heart rate is an obvious
approach, but a relatively large amount of information loss in
the signals may be considered acceptable and may prevent a
proper diagnosis. A next step would be to employ a quality
index ranging from 0 to 1, although the assignment of such a
process is considerably more complex and requires the expertise
of cardiologists.

TABLE 4 | Results of the algorithms with respect to the testing data set.

Algorithm I Algorithm II Algorithm III Overall result

True positive 2,844 2,844 2,788 2,788

False positive 457 1,130 941 187

True negative 899 226 415 1,169

False negative 0 0 56 56

Correctly categorized 89.12 % 73.10 % 76.26 % 94.21 %

The ECGAssess toolbox was developed as a dynamic model.
New algorithms that analyze specific characteristics for poor
signal quality can be quickly implemented and immediately
tested in combination with the already developed building
blocks. The toolbox was developed in Python for unrestricted
access. Free PyCharm software was used as the integrated
development environment.When necessary, the researchers used
functions from public libraries, including NumPy, SciPy, ecg-
detectors, Tkinter, and Matplotlib. To convert the code into
an executable (.exe) file, the project auto-py-to-exe was used.
The graphical user interface shown in Figure 8 was developed
to enable people without programming knowledge to use the
toolbox. The toolbox currently supports different types of ECG
formats, such as .txt, .csv, .xls, .xlsx, and .wfdb, and it is worth
noting that the program automatically recognizes the ECG file
extension when it gets uploaded. The program can work with all
sampling frequencies.

To examine the applicability of the toolbox in real-time, we
calculated the order of complexity (O) for our algorithm. The
calculations showed that O is linearly dependent on the number
of ECG recordings, and estimated to be O (|k| ∗ n), where n =
number of ECG recordings and k = number of leads. We also
ran the algorithm over an ordinary laptop [Dell XPS 13 9300,
Intel( R©) Core(TM) i7-1065G7 CPU @ 1.30 GHz 1.50 GHz, 16.0
GB] and it takes 80 ms to process a 12-lead ECG recording.

4. FUTURE WORK

The authors want to encourage numbers of the scientific
community to try their own algorithms with the toolbox and to
find a good combination with already existing algorithms. The
algorithms proposed in this project are by no means complete.
Previously published algorithms can also be incorporated into
the program and compared with the algorithms developed in this
project (19, 20). To improve the adaptability and extensibility of
the ECGAssess toolbox, an open API can be integrated in the
future, suitable algorithms can be found on the internet.1

This is the first version (v1) of the ECGAssess toolbox that is
currently trained over one data set. Additional data sets can be
used to confirm the results. More ECG extension format, beat
detectors (21, 22), signal quality assessment algorithms could
be added. One of the next steps is to train the toolbox over
different ECG data sets. We encourage members of the scientific
community to download the toolbox and try the algorithms

1https://github.com/cdepman/python-ECG-API
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FIGURE 8 | ECGAssess toolbox output. The toolbox graphical user interface was developed to enable people without programming knowledge to use the

application. Pressing the Import Data button opens an explorer window where the .txt file of interest can be selected. The signal is also visible in the plot window with

the standard ECG grid, to improve the interpretation to cardiologists. The visible lead can be selected using the slider. When the “Process” button is pressed, the

signal quality assessment is executed, and the results are displayed in a table format.

on their own data. In this article, we examined the binary
classification (acceptable vs. unacceptable) of ECG signals, and
one of the next steps is to investigate multi-classification (class 1
vs. class 2 vs. class 3). One of the databases is publicly available
and contains three different types of ECG is the Brno University
of Technology ECG Quality Database.2

5. CONCLUSION

Three algorithms—a stationary check, a heart rate check, and an
SNR check—were used to classify the quality of ECG signals as
either acceptable or unacceptable. The binary system provides a
simple and unambiguous way to classify signals. The developed
algorithms are uncomplicated in their realization; thus, they
can be used in mobile devices with limited processing power.

2https://physionet.org/content/butqdb/1.0.0/

The feedback is instantaneously provided to the user. This
study demonstrated a promising way to perform classification
of ECG signal quality. Future versions of this ECGAssess
toolbox may include instructions for proper placement
of electrodes and detection and correction of incorrectly
placed electrodes.
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