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Music is often used for emotion induction. ince the emotions felt when listening to it

vary from person to person, customized music is required. Our previous work designed

a music generation system that created personalized music based on participants’

emotions predicted from EEG data. Although our system effectively induced emotions,

unfortunately, it suffered from two problems. The first is that a long EEG recording is

required to train emotion prediction models. In this paper, we trained models with a

small amount of EEG data. We proposed emotion prediction with meta-learning and

compared its performance with two other training methods. The second problem is that

the generated music failed to consider the participants’ emotions before they listened to

music. We solved this challenge by constructing a system that adapted an iso principle

that gradually changed the music from close to the participants’ emotions to the target

emotion. Our results showed that emotion prediction with meta-learning had the lowest

RMSE among three methods (p < 0.016). Both a music generation system based on

the iso principle and our conventional music generation system more effectively induced

emotion than music generation that was not based on the emotions of the participants

(p < 0.016).

Keywords: electroencephalogram (EEG), emotion induction, emotion prediction, music generation, meta-learning,

iso principle

1. INTRODUCTION

Appropriate emotional induction is important for mental health (1–3). Many research attempts
have used music to induce emotions. Even though such musical elements as rhythm and tempo
induce emotions (4), not every person feels the same emotions when they listen to the same piece
of music (5). In addition, the same person might experience different emotions depending on the
situation. Therefore, it is challenging to induce emotions using music that takes into account the
emotions of participants (6, 7). Using a subjective evaluation is a simple method for obtaining
the emotions of participants. The Self-Assessment Mannequin (SAM) is often utilized for such
emotional evaluation (8). However, since real-time subjective evaluations burden participants,
using physiological signals has been proposed to predict emotions. Since electroencephalogram
(EEG) has a high temporal resolution and are expected to be used for computer-human interaction,
our work induces emotions by generating music with emotions predicted from them.
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We developed a system that generates music based on
participants’ emotions using their EEG data (9). It consists of
three elements. The first is a music generator. We treat emotions
on two axes, valence and arousal, based on the circumplex model
(10). The target emotion’s valence and arousal to be induced are
set in a range from 0 to 1 and input to a music generator, which
creates music that induces an emotion similar to the inputted
emotion. Note that depending on the individual differences in
the feeling of an emotion and the participant’s state, the input
emotion and the actual emotionmay not be identical. The second
element is emotion prediction based on EEG. We previously
showed that a convolutional neural network (CNN), which takes
into account the positional relationships of EEG electrodes,
effectively predicted emotions (9). The system uses a CNN to
predict the participants’ emotions while they listen to music in
real-time. The third element is the control of a music generator.
The system calculates the difference between the target emotion
and the participants’ emotion predicted by the EEG and adds it
to the music generator’s previous input. By changing the inputs
of the music generator based on the participants’ emotions,
the system creates music that matches their characteristics.
We previously verified our system that consists of these
elements with six participants. We used a baseline method that
generates music without considering the participants’ emotions
by continuously inputting the target emotion into the music
generator. Our proposed method used the system to generate
music from the participants’ emotions in real-time. After
comparing these two methods, the distance between the target
emotion and the emotion that was finally induced was smaller
in the proposed method, suggesting the effectiveness of the
system. However, it has two problems, which we address in
this paper.

The first problem is that it takes a long time to record EEG data
for training the emotion prediction models because a sufficient
amount of EEG data is required to train them. In our experiment,
the EEG data were recorded for only 30 min, considering the
burden placed on the participants. Because of this time factor,
we trained an emotion prediction model using EEG data for 30
min and used the system on a different day. Even though the
EEG recording time must be shortened to improve the system’s
usability, a lack of EEG data negatively impacts model training
(11). Previous studies solved this problem by proposing transfer
learning (9, 12), which adapts a pre-trained model from one
domain to another (13). With a small amount of EEG data
to retrain a pre-trained model which was trained on a large
amount of EEG data, more accurate predictions can be made
than with just a small amount of EEG data. However, in previous
studies, the pre-training model mixed the EEG data of multiple
people and treated them as one big amount of data (9, 12).
Perhaps individual EEG characteristics cannot be taken into
account because no individuals are recognized. Meta-learning,
which is an effective solution to this problem, has been used
for few-shot learning, fast many-shot optimization, robustness
to domain-shift, and so on (14). It helps models acquire
experience through multiple tasks with which to improve future
learning performance. There are gradient-descent, reinforcement

learning, and evolutionary search as its optimizer. Some previous
studies on EEG predictions trained models with one person’s
EEG data as a single task and demonstrated the effectiveness
of meta-learning. Model-agnostic meta-learning (MAML) (15)
is one popular type of meta-learning with gradient-descent.
MAML trains an initial model that easily adapts to any task
from multiple tasks. Therefore, the initial model can adapt
to new tasks with a small amount of data. Previous studies
predicted sleep levels (16) and motor imagery (17) using EEG
with MAML. MAML was also used for emotion prediction using
EEG, and its effectiveness was investigated using the DEAP
dataset with music video stimuli and the SEED dataset with
movie stimuli (18). However, we use only music, which is an
auditory stimulus. Since the type of stimulus influences emotion
elicitation (19), we believe that the effectiveness of applying
MAML must be tested for emotion prediction while listening
to music. We have two baseline methods: one trains a model
using multiple participants’ EEG data without MAML, and the
other trains a model with a small amount of a single participant’s
EEG data. We compared the emotion prediction performance
of the proposed method with two baseline methods and
constructed an emotion induction system using a model trained
with MAML.

The second problem is that the music generator creates music
without identifying the participants’ emotions before they listen
to it. We showed that the inputs to the music generator and the
emotions felt by the participants are similar. Therefore, we tried
to increase/decrease the music generator’s inputs based on the
participants’ emotions using empirically-determined formulas.
Here is an example of a case where we want to induce a high
valence. First, a high valence, which is the target emotion, is input
into the music generator. The participants listen to the generated
music. If they experience a low valence, the next valence input
will be higher, and the music generator will try to induce a
higher valence. As shown above, we proposed a method that
makes music that rapidly moves a participants’ emotion toward
the target emotion, starting from the beginning of listening
to a piece of music, and adjusts the music generator’s inputs
based on their states. The proposed method more effectively
induced emotions than the baseline method in which the target
emotion is continuously input to the music generator. In music
therapy, the iso principle, which is used in emotion induction
(20, 21), plays music that is close to the participant’s emotion
and gradually leads them to the target emotion. In a previous
study (22), participants with sadness listened to two pieces of
music: sad music or happy music. The results showed that
listening to happy music after sad music induced more positive
emotions. Our previously proposed method rapidly induced
emotions to target emotions without considering the emotions
of the participants before they listened to music. In this paper,
we develop a system based on this iso principle and investigate
whether music generation with it and our conventional music
generation effectively induce emotions.

Our paper provides the following two contributions:

1. It verifies EEG-based emotion prediction usingmeta-learning.
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FIGURE 1 | Model structure: Upper part is a CNN that predicts emotion from EEG data. Right part is a neural network that uses predicted emotions from CNN and

music generator’s inputs for emotion prediction.

2. It evaluates an emotion induction system using meta-learning
and the iso principle.

This paper is an extension of our previously proposed emotion
induction system (9). To improve it, we utilized emotion
prediction with the meta-learning of our previous work (23)
and newly investigated the relationship between the amount of
training data and the performance of models trained by meta-
learning. We also adopted the iso principle as a new music
generation method and evaluated a new emotion induction
system that applied meta-learning and the iso principle.

2. EEG EMOTION PREDICTION WITH
META-LEARNING

In Section 2, we train a highly accurate emotion predictionmodel
with a small amount of a participant’s EEG data while listening to
music. First, we describe the EEG dataset and the features and
the model structure for training models. We then introduce our
proposed method using meta-learning and two baseline methods
and emphasize its effectiveness by comparing the performances
of the three methods.

2.1. Dataset
In our previous work, we created a dataset containing EEG
data and subjective evaluations of emotions felt by participants
while they listened to music (9). The experiment was approved
by the Ethics Committee of the Nara Institute of Science and
Technology. Its participants were 10 males and 10 females. The
music was created using a music generator designed based on
a previous study (6) that made music that induced emotions
similar to its valence and arousal inputs. We created 41 pieces of
music by inputting 41 various emotions into the music generator.
The detailed input values are described in our previous work (9).
The sample music can be heard here: https://sites.google.com/
view/music-generator. We used a 3-s EEG before listening to
the music for a baseline correction based on a previous study
(24). The participants silently gazed at a cross mark in the center
of the monitor for 5 s for the baseline correction because the
initial silent state may contain body movement noise. They then
listened to a 20 s piece of music while continuing to gaze at the

cross mark. In studies using music to induce emotion, using 30–
60 s of music is appropriate (25). However, we tried to record
EEG using a variety of music. To incorporate the burden on the
participants who wore the electroencephalograph, the music was
set to 20 s, referring to previous studies (6, 26). After listening to
the music, they evaluated the valence they felt using SAM on a
9-point scale between 0 and 1 and then evaluated their arousal in
the same manner. This procedure was repeated for all 41 pieces
of music. The EEG data were recorded using a Quick-30 headset
manufactured by CGX.

2.2. Features and Model Structure
For each piece of music, we recorded 5 s of EEG data before
they listened to the music and 20 s while they listened. We
used the last 3 s before listening for a baseline correction and
divided these 23 s of EEG data into 1 s pieces without overlap.
Then we used band-pass filters and divided them into five
frequency bands: theta (4–7 Hz), alpha (8–13 Hz), low beta (14–
21 Hz), high beta (22–29 Hz), and gamma (30–45 Hz). We
calculated the logarithms of the variances of the EEG waveforms
as features and subtracted the average feature values of the three
samples before listening to the music from each feature of the 20
samples for baseline correction. Although Quick-30 provides 29
EEG channels, emotion prediction using a selection of 14 EEG
channels provided higher performance in our previous work (9).
We also used 14 EEG channels in this paper and calculated 20
samples of features with a total of 70 dimensions per piece of
music. The features calculated as described above were mapped
to matrices, shown in the upper left corner of Figure 1. The
matrices took into account the position of the EEG channels
and the characteristics of the frequency bands. The grid is 6 ×
6 × five matrices. The areas without electrodes are embedded
with zeros.

We used a CNN for the emotion prediction using EEG. The
structure is shown in Table 1 and at the top of Figure 1. We used
an SGD optimizer.

2.3. Emotion Prediction Methods
We compared the following three methods for predicting
emotions using a small amount of EEG data while listening to
music:
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TABLE 1 | Structures of CNN and neural network: Conv is convolutional layer, BN

is batch normalization layer, FC is fully connected layer, and Drop is drop-out layer.

Model Layer Kernel Channels Stride Drop-out rate

CNN Conv+BN+ReLU 2×2 8 1 –

Conv+BN+ReLU 2×2 8 1 –

Conv+BN+ReLU 2×2 8 1 –

FC – 2 – –

Neural network FC+ReLU+Drop – 8 – 0.2

FC – 2 – –

• Method A: multiple participants’ EEG with MAML;
• Method B: multiple participants’ EEG without MAML;
• Method C: a single participant’s EEG.

We set one participant as a target. Methods A and B were
trained by the pre-training models with/without MAML using
the EEG data of multiple participants. The pre-trained models
were trained without the target participant’s EEG data. Then the
pre-training models were fine-tuned by the target participant’s
EEG data. Method C was trained with just the target participant’s
EEG data.

2.3.1. Method A: Multiple Participants’ EEG With

MAML
We first describe method A, which is our proposed scheme. We
usedAlgorithm 1, and the training procedure is shown at the top
of Figure 2.

For pre-training, we randomly extracted 10 participants’ data
from our dataset. We considered one participant’s data as one
task and selected the data of 20 pieces of music from each task
i. We set EEG data x and labels y of the emotions felt by the

participant as support set Di = {x, y} and EEG data x
′
and labels

y
′
of the remaining 21 pieces of music as query set D

′

i = {x
′
, y
′
}.

We first used initialized model parameters θ and updated them
using the support set in each task. These updated parameters were
evaluated with the query set, and the loss was calculated in each
task. After all the tasks were computed, model parameters θ were
updated to minimize the loss for all of them. This process was
repeated. The hyperparameter sets were α ∈ {10−1, 10−2}, and
β = 10−1. The number of hyperparameters was small because we
needed to train 20 pre-trained models for each target participant
to reduce the computation time. We used all of the data from the
remaining nine participants in the dataset and set them as the
validation data. The hyperparameters were determined using the
validation data. The model was trained until the validation loss
did not decrease for five consecutive iterations.

We fine-tuned our pre-trained model using the target
participant’s data. To reduce the preparation time of using the
emotion induction system, a small amount of data must be
collected from the participants before the emotion induction.
Therefore, we examined how much to reduce the amount
of data for fine-tuning. We prepared four different kinds
of training data to investigate the relationship between the
amount of training data and the model performance. We

Algorithm 1 :MAML for emotion prediction using EEG data.

Require: p(T ): distribution over tasks
Require: α,β : learning rate
1: Randomly initialize θ

2: Sample training tasks Ti ∼ p(T )
3: for each iteration do

4: for each Ti do

5: Select data of 20 pieces of music Di = {x, y} from Ti

6: Evaluate ∇θLT i(fθ ) using Di and LT i

7: Update parameters: θ
′

i = θ − α∇θLT i(fθ )

8: Select data of about 21 pieces of music D
′

i = {x
′
, y
′
}

from Ti

9: end for

10: Update θ ← θ − β∇θ

∑

Ti∼p(T ) LT i(fθ ′i
) using each D

′

i

and LT i

11: end for

created the music used for the training data by inputting the
following emotions into the music generator: five pieces of
music ({val,aro}={0,0}; {0,1}; {0.5,0.5}; {1,0}; {1,1}), nine pieces
of music (five pieces of music + {val,aro}={0,0.5}; {0.5,0};
{0.5,1}; {1,0.5}), 13 pieces of music (nine pieces of music +
{val,aro}={0.25,0.25}; {0.25,0.75}; {0.75,0.25}; {0.75,0.75}), and
25 pieces of music (13 pieces of music + {val,aro}={0,0.25};
{0,0.75}; {0.25,0}; {0.25,0.5};{0.25,1};{0.5,0.25};{0.5,0.75};
{0.75,0};{0.75,0.5};{0.75,1};{1,0.25};{1,0.75}). We selected these
music generator inputs to be taken uniformly on the valence
and arousal coordinates. The learning rate was set to 0.1 and the
iterations to 13. These parameters were determined based on our
previous work (23). The fine-tuned model was evaluated using
16 pieces of music, which were not included in the training data.

2.3.2. Method B: Multiple Participants’ EEG Without

MAML
Next we describe method B, which is a baseline method whose
training procedure is shown in the middle of Figure 2.

For pre-training, we randomly extracted the data of 10
participants from our dataset. Multiple participants were
regarded as one large amount of data. Initial parameters θ

were trained with a batch size of 1,024 using the data. The
hyperparameter sets were learning rate ∈ {10−1, 10−2}. We
used all of the data from the remaining nine participants in
the dataset and set them as the validation data from which
the hyperparameters were determined. The model was trained
until the validation loss did not decrease for five consecutive
iterations. The pre-trained model was fine-tuned using the target
participant’s data. We prepared four different kinds of training
data to investigate the relationship between the number of
training data and the performance as well as the proposed
method. The learning rate was set to 0.1 and the iterations to 10.
We evaluated the fine-tuned model using the test data as well as
the proposed method.

Frontiers in Digital Health | www.frontiersin.org 4 June 2022 | Volume 4 | Article 873822

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Miyamoto et al. EEG-Based Emotion Induction System

FIGURE 2 | Three emotion prediction methods using a single target participant’s small amount of EEG data.

2.3.3. Method C: Single Participant’s EEG
Next we describe method C, which is a baseline method whose
training procedure is shown at the bottom of Figure 2. It has no
pre-training. The model was trained from initial parameters θ by
the same procedure as in the fine-tuning of the proposed method
and the other baseline method. We prepared four different
kinds of training data to investigate the relationship between the
amount of training data and the performance as well as the other
methods. The learning rate was set to 0.1 and the iterations to 25.
The fine-tuned model was evaluated using the test data like the
other methods.

2.4. Comparison of Three Methods for
Predicting Emotions Using EEG
We trained 20 models with different target participants in each
method. The emotion prediction results are shown in Table 2

and Figure 3, which show the RMSE between the label values of
the dataset and the values predicted by the CNN. We found a
significant difference among the three methods using the same
amount of data in both valence and arousal in the Friedman test
(p < 0.05). We used Wilcoxon signed-rank tests with Bonferroni
correction to compare the three methods. In the valence results,
there was a significant difference between methods A and B
and methods A and C with any amount of data (p < 0.016).
However, for methods B and C, there was a significant difference
when nine pieces of music were used (p < 0.016). In the arousal
results, there was a significant difference between methods A and
B, between methods A and C, and between methods B and C
with any amount of data (p < 0.016). Proposed method A had
a significantly lower RMSE than the two baseline methods for

both valence and arousal. We also found a significant difference
in the RMSE trained by four different training data amounts of
proposed method A of both valence and arousal in the Friedman
test (p < 0.05). The results indicated that the performance of the
emotion prediction depended on the amount of training data.

These results showed that in the case of arousal prediction
with a small amount of EEG data while listening to music,
methods A and B had lower RMSE than method C. Moreover,
method A had a lower RMSE than method C for the prediction
valence. In the case of using multiple participants’ EEG data,
method A had a lower RMSE than method B in the predictions of
both the valence and arousal. Furthermore, the RMSE was lower
when the amount of training data was larger in proposed method
A, indicating that the amount of training data is important for
highly accurate emotion prediction.

2.5. Predicting Emotions Using EEG and
Music Generator Inputs
Our previous work argued that a neural network using emotions
predicted from EEG and a music generator’s inputs can
predict participants’ emotions with high performance (9). Since
the music generator makes music to induce emotions that
resemble its inputs, we considered its inputs the predicted
emotions felt by the participants when they listened to music.
We also used an emotion prediction neural network in this
paper to stabilize the predictions by using two types of
information as its inputs: the emotion predicted by the CNN
with MAML using EEG and the music generator’s inputs.
We compared the prediction performance of the following
two models:
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TABLE 2 | Participants’ mean and standard deviation of RMSEs of felt and predicted emotions using EEG data: Bold indicates RMSE of proposed method with a

significant difference from baseline methods.

Method 5 pieces 9 pieces 13 pieces 25 pieces

Val Aro Val Aro Val Aro Val Aro

A 0.298 0.298 0.275 0.290 0.262 0.285 0.256 0.274

(0.121) (0.071) (0.101) (0.071) (0.096) (0.066) (0.098) (0.058)

B 0.347 0.328 0.325 0.323 0.318 0.320 0.312 0.308

(0.122) (0.082) (0.103) (0.080) (0.099) (0.077) (0.101) (0.067)

C 0.378 0.391 0.355 0.366 0.338 0.354 0.331 0.344

(0.080) (0.079) (0.084) (0.068) (0.071) (0.070) (0.070) (0.069)

FIGURE 3 | Box plots of 20 participants’ RMSEs of felt and predicted emotions using EEG data.

• Model A: CNN
• Model B: CNN + neural network.

The neural network’s structure is shown in Table 1 and in the
right part of Figure 1. We used an SGD optimizer, fine-tuned
the CNN pre-trained by MAML, and trained the neural network
using the target participant’s data. CNN’s fine-tuning method was
identical as in Section 2.3.1. The learning rate was set to 0.1 and
the iterations to 100 for training the neural network.

The emotion prediction results are described in Table 3 and
Figure 4, which show the RMSE between the label values of the
dataset and the predicted values using model B or the music
generator’s inputs of each target participant. Compared with

Table 2, we found a significant difference among the following
three predictions using the same amount of data in both the
valence and the arousal in the Friedman test (p < 0.05):
using model A, model B, and the music generator’s inputs. We
used Wilcoxon signed-rank tests with Bonferroni correction to
compare the three predictions. In the valence results, there was a
significant difference between models A and B when any amount
of data was used (p < 0.016). For model B and using the music
generator’s inputs, there was a significant difference when 13 or
more pieces ofmusic were used (p< 0.016). In the arousal results,
there was a significant difference between models A and B when
any amount of data was used (p < 0.016). For model B and using
the music generator’s inputs, there was a significant difference
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TABLE 3 | Participants’ mean and standard deviation of RMSEs of felt and predicted emotions using EEG data and music generator’s inputs: Music gen. indicates

emotion prediction using music generator’s inputs.

Model B: CNN + neural network Music gen.

5 pieces 9 pieces 13 pieces 25 pieces

Val Aro Val Aro Val Aro Val Aro Val Aro

0.202 0.204 0.194 0.196 0.181 0.192 0.171 0.184 0.251 0.258

(0.088) (0.044) (0.093) (0.043) (0.078) (0.041) (0.075) (0.039) (0.084) (0.086)

Bold indicates RMSE with a significant difference from both predictions using model A and music generator’s inputs.

FIGURE 4 | Box plots of 20 participants’ RMSEs of felt and predicted emotions using EEG data and music generator’s inputs: Music gen. indicates emotion

prediction using music generator’s inputs.

when nine or more pieces of music were used (p < 0.016). We
also found a significant difference in the RMSE trained by four
different amounts of training data of model B in both the valence
and the arousal in the Friedman test (p < 0.05).

These results showed that for emotion prediction with a
small amount of EEG while listening to music, model B
had lower RMSE than model A. Furthermore, model B had
lower RMSE than using the music generator’s inputs in the
predictions of both the valence and arousal when 13 or more
pieces of music were used. The RMSE values were lower when
the amount of training data was larger in model B. This
result indicates that the amount of training data is important
for highly accurate emotion prediction, as in the results
of Table 2.

In this section, we experimentally used a small amount
of EEG data while our participants listened to music to
train the emotion prediction models. The results showed
that MAML was effective for emotion prediction. We also
developed a neural network using the emotions predicted
by a CNN trained by MAML and the music generator’s

inputs. A neural network using both the EEG data and
the music generator’s inputs improved the performance of
the emotion prediction. In the next section, we construct
and validate an emotion induction system using the CNN
trained by MAML and a neural network as an emotion
prediction model.

3. EMOTION INDUCTION USING MODELS
TRAINED BY META-LEARNING

In Section 3, we construct an emotion induction system using
a CNN trained by MAML and a neural network for emotion
prediction (Figure 5). Since the music generation method
used in the conventional system ignored the emotions of
the participants before they listened to music, we developed
a music generation method based on the iso principle. Our
system generates music that resembles a participant’s emotion
before he listened to music and gradually generated music that
was close to the target emotion. We investigated whether a
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FIGURE 5 | Emotion induction system using meta-learning: Red text is newly implemented methods in this paper.

system using meta-learning and the iso principle effectively
induced emotion.

3.1. Utilization of Emotion Induction
System
We used our system into which we embedded an EEG-based
emotion prediction model trained by MAML to generate music
in real-time. We next present information on the data collection
during emotion induction.

3.1.1. Participants
Ten healthy people (age: 26.6 years; eight males, two females)
participated in this experiment, which was approved by the
ETHICS Committee of the Nara Institute of Science and
Technology. They did not participate in the previous experiments
described in Section 2. We used Section 2’s dataset to train
a pre-training model for the emotion prediction. If the same
participant’s data were used for pre-training and fine-tuning,
we believe that the emotion prediction performance might be
distorted by using the same participant’s data for pre-training
and fine-tuning. For this reason, we carefully recruited these
participants.

3.1.2. Target Emotions
We set the following five types of target emotions to be induced in
the participants: {val,aro} = {0.125,0.125}; {0.125,0.875}; {0.5,0.5};
{0.875,0.125}; {0.875,0.875}. Although in our previous work we
set nine target emotions (9), here we reduced them to five due
to experimental time limitations. These five emotions were taken
from the nine target emotions of our previous work.

3.1.3. Pre-training Model
In Section 2, we showed that training a CNN with MAML
predicted emotions best when using a small amount of
EEG data. Therefore, we used MAML to train the pre-
training CNN with EEG data. We used our dataset with 10
participants for the training data and 10 for the validation
data and tuned the learning rate and the iterations. We

fine-tuned the pre-training model with the data of a target
participant who joined the experiment in Section 3. The neural
network’s effectiveness is also shown in Section 2 using the
emotions predicted by the CNN and the music generator’s
inputs. We only trained the neural network with the target
participant’s data.

3.1.4. Experimental Protocol
At the experiment’s beginning, the participants wore earphones
at a desk with a monitor and listened to five 15 s samples
with the following input values to the music generator:
{val,aro}={0,0};{0,1};{0.5,0.5};{1,0};{1,1}.

Then we conducted a practice session. In this experiment,
we trained the models for predicting the participants’ emotions
using a pre-training model in task 1 and induced emotions by
generating music in a system embedded with the models in
task 2. The details of each experiment are shown in Figure 6.
Our participants practiced each task once to understand how to
perform both tasks. First, we introduce task 1, which trained the
models for predicting the participants’ emotions. They silently
gazed at a cross mark in the center of the monitor for 5 s and
then listened to each 20 s music sample while continuing to gaze
at the cross mark. After listening to the music, they separately
evaluated their emotions using SAM on a 9-point scale from
0 to 1 for valence and arousal. They practiced the experiment
with one of two pieces of music: {val,aro}={0.125,0.25} or
{0.875,0.75}. Next we introduce task 2, which is the emotion
induction procedure of music generation in the system. Before
listening to the music, our participants separately evaluated
their emotions using SAM on a continuous value from 0 to
1 for valence and arousal. They again silently gazed at the
cross mark for 10 s and listened to each 20 s music sample
that has 20 measures while continuing to gaze at the cross
mark. After listening, they evaluated their emotions using SAM;
then they took a 10 s break. They practiced the experiment
with one of two pieces of music: {val,aro}= {0.875,0.75} or
{0.125,0.25}.

Frontiers in Digital Health | www.frontiersin.org 8 June 2022 | Volume 4 | Article 873822

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Miyamoto et al. EEG-Based Emotion Induction System

FIGURE 6 | Experimental protocol.

After the practice, the participants put on a Quick-30 headset
manufactured by CGX. We repeated the same procedures
from the practice session to record the EEG data and the
subjective evaluations of their experienced emotions while
they listened. Section 2 showed how the emotion prediction’s
performance improved with more training data. We used the
13 pieces of music to record the EEG data and the subjective
evaluations so that the participants continued to wear the
electroencephalograph for <30 min. Next we fine-tuned the
pre-training model using the recorded data. The preprocessing
method is the same as described in Section 2. The learning rate
was set to 0.1 and the iterations to 13 for fine-tuning model
A’s CNN. The learning rate was set to 0.1 and the iterations to
100 for training model B’s neural network. Then we conducted
emotion induction by music generation for the system embedded
with the model in task 2. The participants listened to 15 pieces
of music using three different music generation methods. Each
method generated music that was intended to invoke five target
emotions. EEG data from 2 to 5 s after the onset of silence were
used as a baseline correction. The emotion before listening to
music was predicted using the EEG data from 5 to 6 s after the
onset of silence just using model A. Emotions while listening to
music were predicted once every four measures using model B.
For this prediction, we used a 1 s EEG after the beginning of the
first measure in four measures. The EEG’s sampling frequency
in the whole experiment was 100 Hz, and the tools used in the
experiment included MATLAB (2021b), Lab Streaming Layer,
Psychtoolbox (8, 27, 28), Cakewalk, and LoopBe1.

3.2. Music Update Methods
We applied the following three methods for the music updates
using Algorithm 2:

• Music update A: music updates with the iso principle;
• Music update B: music updates without the iso principle;
• Music update C: fixed music without participants’ emotions.

Algorithm 2 : Update music generator’s inputs.

1: Record 1 s EEG during the silent state
2: Predict emotion before listening to music using EEG
3: ifMusic update A then

4: Set a music generator’s inputs as a participant’s emotion
before listening to music

5: else ifMusic update B or C then

6: Set a music generator’s inputs as a target emotion
7: end if

8: for each update do
9: Start generating music using the music generator’s inputs
10: Record a 1 s EEG
11: Predict the current emotion using EEG
12: ifMusic update A then

13: Update the music generator’s inputs using formulas (2)
and (4)

14: else ifMusic update B then

15: Update the music generator’s inputs using formulas (5)
and (6)

16: else ifMusic update C then

17: Update the music generator’s inputs using formulas (7)
and (8)

18: end if

19: end for

3.2.1. Music Update A: Music Update With Iso

Principle
Neither method from our previous work took into account the
participants’ emotions before they listened tomusic (9). However,
the iso principle showed that using music that is close to the
participant’s emotion at the beginning and gradually changing
it to induce the target emotion effectively induces emotion. In
this method, the music generator’s inputs were changed based
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on the iso principle once every four measures using participant’s
emotion and determined by the following formulas:

mid_targetval(s+ 1) =

{

predval(s) if s=0,

predval(0)+ s ∗ (targetval − predval(0))/(smax − 1) if 0<s<smax. (1)

inputval(s+ 1) =

{

mid_targetval(s+ 1) if s=0,

mid_targetval(s+ 1)+ 0.5 ∗ (mid_targetval(s)− predval(s)) if 0<s<smax. (2)

mid_targetaro(s+ 1) =

{

predaro(s) if s=0,

predaro(0)+ s ∗ (targetaro − predaro(0))/(smax − 1) if 0<s<smax. (3)

inputaro(s+ 1) =

{

mid_targetaro(s+ 1) if s=0,

mid_targetaro(s+ 1)+ 0.5 ∗ (mid_targetaro(s)− predaro(s)) if 0<s<smax. (4)

In the formulas, s represents the number of times the inputs
are updated, s = 0 denotes the period before the music
generator starts making music, and s = 1 denotes when the
music generator starts making music. Updates were made up
to s = 5. smax represents the number of times the music was
updated, and smax = 5. input represents the input emotion to
the music generator, target represents the target emotion in the
induction,mid_target represents the intermediate target emotion
determined by the number of times the music was updated,
and pred represents the emotion predicted from the EEG while

inputval(s+ 1) =

{

targetval if s=0,

inputval(s)+ 0.5 ∗ (targetval − predval(s)) if 0<s<smax. (5)

inputaro(s+ 1) =

{

targetaro if s=0,

inputaro(s)+ 0.5 ∗ (targetaro − predaro(s)) if 0<s<smax. (6)

listening to music. First, the system predicts the participant’s
emotion before listening to the music using only model A. The
difference between the target and predicted emotions was divided
by four, which is the maximum number of times the inputs to the
music generator were updated using the participant’s emotion;
the intermediate target emotion was set for each update. In the
first loop, the participant’s emotion before listening was input
directly to themusic generator. In the next loop, the system added
half of the difference between the intermediate target emotion
and the participant’s emotion predicted by model B to the next
intermediate target emotion. We used a half value because the
music generator’s inputs were between 0 and 1 for both the
valence and arousal. Inputs outside the range were set to 0 or 1.
If the difference value is large, the music generator will continue
to receive a constant input, such as 0 or 1, and the music will
not change. For these reasons, half of this difference was added.

In this way, the system generated music that gradually induced
emotions while taking into account how the participants were

feeling. We show a conceptual scheme of the music generator’s
control in the yellow dotted line (Figure 7).

3.2.2. Music Update B: Music Update Without Iso

Principle
In this method, the system first created music by inputting the
target emotion into the music generator and adjusting the inputs
once every four measures using the participant’s emotion. The
inputs were determined by the following formulas:

First, the system predicted the emotion of the participants before
they listened, although the predicted emotion was not used for
the music generation. In the first loop, the target emotion was
input directly to the music generator. In the next loop, the system
added half of the difference between the target and the predicted
emotions of the participant to the previous inputs of the music
generator. In this way, the system generated music that rapidly
induced emotions while taking into account how the participants
felt. We show a conceptual scheme of the music generator’s
control in the red dotted line in Figure 7.

3.2.3. Music Update C: Fixed Music Without

Participants’ Emotions
In this method, the system kept inputting the target emotion
to the music generator. The inputs were determined by the
following formulas:
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inputval(s) = targetval if 0 < s < smax. (7)

inputaro(s) = targetaro if 0 < s < smax. (8)

The system predicts the emotions of the participants before they
listened to the music and while they listened to it, although the
predicted emotions were not used formusic generation.We show
a conceptual scheme of the control of the music generator in the
blue line in Figure 7.

3.3. Evaluation of Emotion Induction
System
We fine-tuned the emotion prediction model of the emotion
induction system for each participant in this experiment

FIGURE 7 | Conceptual scheme of control of music generator using three

methods: Target denotes target emotion for emotion induction. Initial denotes

participant’s emotion before listening to music.

described in Section 3. The model’s performance is important
because two music generation methods used the emotions
predicted by it. We first confirmed the performance of the
trained emotion prediction models of the 10 participants. The
emotion prediction results are shown in Table 4, which shows
the RMSE between the label values evaluated by the participants
of their emotions and the predicted values by models A or B
before/after listening to all the music. As a reference of the
conventional system, the following are the means of the RMSE
of the emotion predictions after listening to music with model
B for all the participants: valence: 0.201 and arousal: 0.180. The
conditions of the conventional system and the current system
are different: the number of participants and target emotions,
the structure of the emotion prediction model, the emotion
evaluation method, and the length of silence before listening to
the music. Therefore, comparing the conventional and current
systems is impossible. However, from the conventional system’s
results as a reference, no large difference seems to exist in the
RMSE of emotion prediction.

We also investigated the effect of emotion induction by the
system. We evaluated the emotion induction performance by
calculating the distance between the target emotion and the final
predicted emotion by model B using following the formula:

distance =

√

(targetval − predval(smax))2 + (targetaro − predaro(smax))2. (9)

The calculated means of the distances of the five types of
emotional induction are shown in Table 5. In the conventional
system of our previous work, the following are the means of the
distances for all the participants: music update B: 0.248 andmusic
update C: 0.296. The results showed that both the current and
conventional systems effectively induced emotions by taking into
account the participants’ emotions.

We not only compared the current system with the
conventional one but also the performances of the three methods

TABLE 4 | RMSE of felt and predicted emotions before or after listening to music in current system: Bold indicates performance of CNN and neural network used by

system to generate music.

Before listening to music After listening to music

Par. Model A Model A Model B

Val Aro Val Aro Val Aro

1 0.183 0.117 0.159 0.162 0.144 0.193

2 0.170 0.317 0.259 0.198 0.126 0.155

3 0.117 0.203 0.297 0.329 0.265 0.311

4 0.163 0.196 0.221 0.239 0.168 0.164

5 0.301 0.199 0.458 0.379 0.321 0.191

6 0.200 0.183 0.233 0.163 0.132 0.163

7 0.251 0.264 0.490 0.358 0.200 0.225

8 0.317 0.167 0.318 0.322 0.253 0.326

9 0.190 0.248 0.192 0.210 0.152 0.155

10 0.242 0.203 0.332 0.356 0.196 0.200

Mean 0.213 0.210 0.296 0.272 0.196 0.208

SD 0.063 0.055 0.109 0.086 0.065 0.062

Frontiers in Digital Health | www.frontiersin.org 11 June 2022 | Volume 4 | Article 873822

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Miyamoto et al. EEG-Based Emotion Induction System

in the current system. We found a significant difference among
them in the Friedman test using the distances calculated for
all the pieces of music for all the participants (p < 0.05). We
used Wilcoxon signed-rank tests with Bonferroni correction
for comparisons of the three methods. There was a significant
difference between music updates A and C and between music

TABLE 5 | Distance between target and induced emotions: Bold indicates

distance with a significant difference from baseline method.

Par. Music update A Music update B Music update C

1 0.483 0.496 0.450

2 0.399 0.371 0.401

3 0.387 0.445 0.348

4 0.318 0.345 0.418

5 0.385 0.353 0.378

6 0.299 0.296 0.393

7 0.234 0.190 0.362

8 0.267 0.284 0.318

9 0.309 0.287 0.340

10 0.224 0.303 0.338

Mean 0.331 0.337 0.375

SD 0.082 0.087 0.041

updates B and C (p< 0.016). From the above results, we conclude
that music updates A and B, which generated music according
to the participants’ emotions, more effectively induced emotions
thanmusic update C that didn’t generatemusic according to their
emotions. However, we found no significant difference between
music updates A and B. We show plots of the music generator’s
inputs and the emotions predicted from model B in Figure 8.
This is the result for participant eight; the target emotion is
{val,aro} = {0.875,0.125}, and music update A provided more
effective emotion induction than the other two methods. The
number of updates is zero before listening to music, and the
music generator created music from five updates. Music updates
B and C suddenly generated music that induced the target
emotion, and music update A generated music that gradually
induced the target emotion, starting from music close to the
participant’s emotion before listening to the music. Music update
A led to an emotion closer to the target than the other two
methods (Figure 8).

4. CONCLUSION AND FUTURE WORKS

Our conventional emotion induction system using music and
EEG suffered from two problems. It took a long time to record
EEG to train the emotion prediction model, which is a required
step for constructing our system. The second problem was that

FIGURE 8 | Plots of inputs of music generator and emotions predicted from CNN and neural network in participant eight: Target emotion is {val,aro} = {0.875,0.125}.
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the music generator’s control method created music without the
participants’ emotions before they listened to music. We solved
these problems by developing a new system that uses meta-
learning and the iso principle. To solve the first problem, we
proposed a meta-learning method using a small amount of EEG
data while listening to music. The proposed method predicted
emotions with higher performance than the baseline methods
without meta-learning. In addition, the system into which the
trained model with meta-learning was embedded effectively
induced emotions. Therefore, we conclude that meta-learning
reduced the EEG recording time and increased the usability of
our emotion induction system.

To solve the second problem, our system induced emotions
through music generation using the iso principle. The methods
with/without it, which took the participants’ emotions into
account, more effectively induced emotions than the methods
that did not consider them. We found no significant difference
between the methods with/without the iso principle. In previous
studies on it, emotions opposite to the target emotion were
induced in the participants beforehand, and then the participants
were led to the target emotion (22). In our experiment, we did
not induce emotions opposite to the target emotion before our
participants listened to music. We believe that music generation
with the iso principle may be more effective than the other two
music generation methods when the participants are induced
to the target emotion from an opposite emotion. We set the
length of the music sample to 20 s. The results are limited in
terms of the music duration. We need to consider how many
seconds of music to use for more effective emotion induction in
the future.

Our future works will investigate two problems. The first is
to improve meta-learning for more efficient emotion prediction.
Meta-learning has been actively studied in recent years, and
improvements are being developed (29, 30). Improvements in

meta-learning that address the EEG characteristics will raise
the accuracy of emotion prediction. The second problem is the
investigation of more diverse music generation methods. We
used predefined formulas to control the music generator. In the
future, we will develop a method using deep learning to control it
based on the participants’ characteristics.
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