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Background: Wrist worn accelerometers are convenient to wear and provide greater

compliance. However, methods to transform the resultant output into predictions

of physical activity (PA) intensity have been slow to evolve, with most investigators

continuing the practice of applying intensity-based thresholds or cut-points. The current

study evaluated the classification accuracy of seven sets of previously published

youth-specific cut-points for wrist worn ActiGraph accelerometer data.

Methods: Eighteen children and adolescents [mean age (± SD) 14.6 ± 2.4 years, 10

boys, 8 girls] completed 12 standardized activity trials. During each trial, participants

wore an ActiGraph GT3X+ tri-axial accelerometer on the wrist and energy expenditure

(Youth METs) was measured directly using the Oxycon Mobile portable calorimetry

system. Seven previously published sets of ActiGraph cut-points were evaluated: Crouter

regression vertical axis, Crouter regression vector magnitude, Crouter ROC curve

vertical axis, Crouter ROC curve vector magnitude, Chandler ROC curve vertical axis,

Chandler ROC curve vector magnitude, and Hildebrand ENMO. Classification accuracy

was evaluated via weighted Kappa. Confusion matrices were generated to summarize

classification accuracy and identify patterns of misclassification.

Results: The cut-points exhibited only moderate agreement with directly measured

PA intensity, with Kappa ranging from 0.45 to 0.58. Although the cut-points classified

sedentary behavior accurately (> 95%), classification accuracy for the light (3–51%),

moderate (12–45%), and vigorous-intensity trials (30–88%) was generally poor. All

cut-points underestimated the true intensity of the walking trials, with error rates ranging

from 35 to 100%, while the intensity of activity trials requiring significant upper body

and/or arm movements was consistently overestimated. The Hildebrand cut-points

which serve as the default option in the popular GGIR software package misclassified

30% of the light intensity trials as sedentary and underestimated the intensity of moderate

and vigorous intensity trials 75% of the time.
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Conclusion: Published ActiGraph cut-points for the wrist, developed specifically for

school-aged youth, do not provide acceptable classification accuracy for estimating

daily time spent in light, moderate, and vigorous intensity physical activity. The

development and deployment of more robust accelerometer data reduction methods

such as functional data analysis and machine learning approaches continues to be a

research priority.

Keywords: wearable sensors, children, adolescents, energy expenditure (EE), GGIR, threshold methods, device

based monitoring, placement

INTRODUCTION

Accurate assessments of physical activity and sedentary behavior
in children and youth are needed to better understand their
relationship with health outcomes, as well as evaluate the
effectiveness of programs and policies to promote physical
activity (1). Historically, researchers conducting field-based
studies have relied on self-report methods to assess physical
activity (1–3). However, self-report methods are subject to
significant social desirability and recall bias (4, 5). Younger
children, in particular, have difficulty recalling their past behavior
accurately; and struggle to understand the concepts of physical
activity frequency, intensity, duration, and type (6). Proxy self-
reports completed by parents or caregivers are one solution,
but this method is also subject to recall bias since respondents
can only report on the time in contact with the child (3, 5).
In light of the limitations of self-report methods, device based
physical activity measures such as accelerometers have become
the preferred method in studies involving children and youth
(1, 7, 8). The ActiGraph device is one of the most widely used
accelerometer-based motion sensor to quantify physical activity
and sedentary behavior in children and adolescents (9, 10).

When first introduced, accelerometers were predominantly

worn on the waist or hip in order to capture the body’s
acceleration and de-acceleration during ambulatory movement.

However, over the last decade, the wrist has emerged as a
preferable wear location (11). Wrist mounted accelerometers

are easier for children to wear for extended periods,
thus minimizing missing data due to non-wear (11, 12).
Moreover, it enables investigators to evaluate compliance
with contemporary 24-h movement guidelines which require
concurrent monitoring of sleep duration and quality using
wrist actigraphy. Yet, despite the shift to the wrist placement,
methods to transform the resultant accelerometer output
into predictions of physical activity intensity have been slow
to evolve, with most investigators continuing the practice
of applying intensity-based thresholds or cut-points (8).
With this approach, the relationship between accelerometer
output (i.e., proprietary activity counts or gravitational
units) is established using linear regression and cut-points
delineating established physical activity intensity categories
are derived. Another common approach is to use of receiver
operating characteristic (ROC) curves to identify cut-points
that provide the best possible combination of sensitivity and

specificity for differentiating adjacent physical activity intensity
categories (13).

To date, at least three investigators have published cut-
points for classifying PA intensity from wrist worn ActiGraph
accelerometer data in school-aged youth. These cut points and
their respective prediction equations are shown in Table 1.
Crouter et al. (14) developed cut-points for the dominant wrist
using processed count data from the vertical axis (VA) and vector
magnitude (VM). Intensity thresholds were determined using
both Receiver Operating Characteristic (ROC) curves and linear
regression. In similar fashion, Chandler et al. (15) used ROC
curve analysis to derive VA and VM cut-points for the non-
dominant wrist using accelerometer data collected in children
attending summer camp. Finally, Hildebrand et al. (16, 17)
derived intensity-based thresholds for unprocessed or “raw”
accelerometer signal from the non-dominant wrist based on
the Euclidian norm minus one (ENMO) metric. Although the
authors reported energy expenditure prediction equations based
on linear regression, intensity thresholds were determined using
ROC curve analyses.

Although the cut-points have been disseminated through
the research literature and applied in numerous field-based
investigations, no previous study has systematically evaluated
their accuracy in an independent sample of youth. Cut-
points tend to perform well when evaluated in holdout
samples performing the same activities; however, accuracy
decreases, often substantially, when tested in independent
samples performing different physical activities (9). In addition,
cut-points for wrist accelerometer data may provide inaccurate
predictions of physical activity intensity because they do not
account for the accelerations resulting from upper body and/or
arm movements when performing sedentary or non-ambulatory
light-intensity physical activities (8, 18).

The absence of an independently conducted validation study
simultaneously comparing the performance of wrist cut-points
for the widely used ActiGraph accelerometer represents a
significant gap in the research literature, given the common
use of wrist-worn accelerometers in youth, and the need
for standardized approaches to accelerometer data processing.
Accordingly, the purpose of this study was to evaluate and
compare the classification accuracy of seven previously published
sets of youth specific cut-points for wrist worn ActiGraph
accelerometer data using energy expenditure, measured via
portable calorimetry, as a ground truth measure.
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TABLE 1 | Youth specific cut points for the ActiGraph accelerometer worn on the wrist.

Author Sample Activities Cut-Points

Crouter et al. (14) n = 18 Range = 8–15 y Mean

age = 12.0 y 97 boys, 84 girls

Structure activities: supine rest, watching

TV, searching internet, reading, computer

games, board games/cards, workout

video, vacuuming, sweeping, light

cleaning, slow and brisk walking, active

video games, playing catch, running,

active children’s games and sports.

Unstructured activity session consisting of

watching movies, reading, doing

homework, active videogames, soccer,

basketball, lifting weights.

Cut-points derived using data from the

structured activities and cross-validated in

data from the unstructured physical

activity session.

(CR_ROC_VA)

ROC curve analysis

Cut points (counts per 5 s):

• SED ≤ 105

• LPA > 105

• MPA ≥ 262

• VPA ≥ 565

(CR_ROC_VM)

ROC curve analysis Cut points (counts per 5 s):

• SED ≤ 275

• LPA > 275

• MPA ≥ 416

• VPA ≥ 778

(CR_REG_VA)

METs = 1.592 + [0.0039 (VA counts per 5 s)]

Cut points (counts per 5 s):

• SED ≤ 35

• LPA > 35

• MPA ≥ 361

• VPA ≥ 1130

(CR_REG_VM)

METs = 1.475 + [0.0025 (VM counts per 5 s)]

Cut points (counts per 5 s):

• SED ≤ 100

• LPA > 100

• MPA ≥ 610

• VPA ≥ 1810

Chandler et al. (15) n = 45 range = 8–12 y Mean

age = 9.0 y 22 boys, 23 girls

Resting, enrichment/coloring, walking,

playground, splash pad, swimming,

shuttle run.

LPA defined as > 13.5% of heart rate

reserve (HRR). MPA defined as > 50%

HRR. VPA defined as > 70% HRR.

10-fold cross-validation

(CH_ROC_VA)

ROC curve analysis Cut points (counts per 5 s):

• SED < 161

• LPA ≥ 162

• MPA ≥ 530

• VPA ≥ 1462

(CH_ROC_VM)

ROC curve analysis Cut points (counts per 5 s):

• SED < 305

• LPA ≥ 306

• MPA ≥ 818

• VPA ≥ 1969

Hildebrand et al.

(16, 17)

n = 30 Range = 7–11 y Mean

age = 8.9 y 16 boys, 14 girls

Lying down, sitting, standing, writing on

whiteboard, activity sequence (remove

shoes stand, move eight things in a

bookshelf, write a sentence, put a paper in

an envelope, and sit down), slow treadmill

walking, fast treadmill walking, stepping,

treadmill running.

Leave-one-out cross-validation

(HD_ENMO)

ROC curve analysis Cut points (m g per 1 s):

• SED < 35.6

• LPA ≥ 35.6

• MPA ≥ 201.4

• VPA ≥ 707.0

METHODS

Participants
A total of 18 adolescents (8 girls, 10 boys) participated the study.

The descriptive characteristics of the sample were as follows:

mean age (± SD) = 14.6 ± 2.4 y, mean body mass index

(BMI) percentile = 66.8 ± 25.9%, with 33.3% overweight or

obese. Prior to participation, parental written consent and child
assent was obtained. The study was approved by the University’s
Institutional Review Board.

Study Protocol
Participants completed 12 structured activities over two
laboratory visits scheduled within a 2-week time period. The
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following six activities were completed on visit 1: lying down,
handwriting, laundry task, throw and catch, comfortable over-
ground walk, and dance. On visit 2, participants completed the
remaining six activities: seated computer game, floor sweeping,
brisk over-ground walk, basketball, over-ground run/jog, and
brisk treadmill walk. Consistent with the recommendations
of Welk (19), the selected activities ranged in intensity from
sedentary to vigorous, included “lifestyle” physical activities
typically performed by children and adolescents, and included
both ambulatory and intermittent free-play activities. Each
activity trial lasted 5min except for the lying down trial, which
lasted 10min. A detailed description of the 12 activity trials is
provided in Table 2 (9).

Instrumentation
Indirect Calorimetry
Oxygen uptake (VO2) during each activity was measured on a
breath-by-breath basis using the Oxycon Mobile (Yorba Linda,
CA), a lightweight (950 g) portable indirect calorimetry system.
A flexible facemask (Hans Rudolph, Kansas City, MO) held
in place by a head harness covered the participant’s nose and
mouth. The mask was attached to a bidirectional rotary flow
and measurement sensor (Triple V) to measure the volume
of inspired and expired air. A sample tube running from the
Triple V to the analyzer unit delivered expired air for the
determination of O2 and CO2 content. Gas exchange responses
were interpolated to 1-s intervals and averaged every 15 s using
he manufacturer’s software. Heart rate was monitored using a
Polar H7 heart rate monitoring chest strap. Before each test,
the Oxycon unit was calibrated according to manufacturer’s
guidelines. Flow control and gas calibration were performed
using Oxycon’s automated calibration system, with the CO2 and
O2 analyzers calibrated against room air as well as to a reference
gas of known composition (4% CO2 and 16% O2). The Oxycon
Mobile has been shown to provide valid measures of oxygen
uptake over a range of exercise intensities (20).

Accelerometry
During each structured activity, participants wore an ActiGraph
GT3X+ tri-axial accelerometer (ActiGraph Corporation,
Pensacola, FL) on the left and right wrist. The GT3X+ is a small
(4.6 x 3.3 x 1.5 cm), lightweight (19 grams) accelerometer-based
motion sensor that records time varying accelerations ranging
from ± 6 g’s. The accelerometer output is sampled by a 12-bit
A-D converter at a user specified rate and stored in non-volatile
flash memory for subsequent downloading and processing.
A sampling rate of 30Hz was used in the current study. Raw
tri-axial acceleration signal was converted to propriety activity
counts in the vertical, medio-lateral, and anterior-posterior
planes using ActiGraph ActiLife Software (Version 5.8). The
vector magnitude (VM) was calculated by taking the square root
of the sum of the activity counts squared in each axis. Euclidian
norm minus one (ENMO) was derived by calculating the VM
of the raw acceleration signal in each axis and subtracting 1 (to
correct for the static component of gravity). Negative values were
rounded up to zero (21). Prior to calculating ENMO, the raw
acceleration signal was calibrated to local gravity using the in-situ

autocalibration procedures described by Nadeau et al. (22). The
Crouter cut-points were developed for the dominant wrist, while
the Chandler and Hildebrand cut-points were developed for
the non-dominant wrist. Hence, accelerometer output from the
left or right wrist was used depending on the cut-point being
evaluated and the child’s handedness.

Data Reduction
Before each test, the ActiGraph and Oxycon units were
synchronized to an external timepiece. A customized Visual
Basic software program was used to align datetime stamps and
calculate mean VO2, mean VA counts per 5 second period, mean
VM counts per 5 second period, and mean ENMO per 5 second
period, recorded between min 2.5 and 4.5 of each structured
activity. For the lying down activity, mean VO2, mean VA counts
per 5 second period, and mean VM counts per 5 second period
were calculated from data collected between min 7.0 and 9.0. For
each participant, the attainment of steady state was confirmed by
inspection of recorded HR and VO2. Tolerance levels were ± 5
bpm and 10% for heart rate and VO2, respectively. Youth METs,
an indicator of absolute intensity, was calculated by dividing
mean VO2 relative to body mass by resting energy expenditure
(REE), where REE was predicted from the participant’s sex, age,
body mass, and height using Schofield’s equation for children
aged 3–10 or 10–18 years (23, 24).

Classification of Physical Activity Intensity
Based on mean VA, VM counts, and ENMO per 5-s period,
structured activities were classified as sedentary, light-, moderate-
, or vigorous-intensity physical activity using the cut points
summarized in Table 1. Structured activities were classified
as sedentary, light-, moderate-, or vigorous-intensity physical
activity based on absolute intensity as measured by Youth METs.
Sedentary activity (SED) was defined as lying or siting posture
with a mean energy expenditure < 1.5 Youth METs. Light
physical activity (LPA) was defined as≥ 1.5 and< 3 YouthMETs.
Moderate physical activity (MPA) was defined as ≥ 3 and < 6
Youth METs. Vigorous physical activity (VPA) was defined as ≥
6 Youth METs (23).

Data Analyses
Agreement between measured and predicted physical activity
intensity category was evaluated by calculating weighted Kappa
statistics. For interpretation of the Kappa coefficients, we
followed the ratings suggested by Landis and Koch (25): poor (0–
0.2), fair (0.2–0.4), moderate (0.4–0.6), substantial (0.6–0.8), and
almost perfect (0.8–1.0). In addition, for each set of cut-points,
confusion matrices were generated to summarize classification
accuracy within each intensity band and identify patterns of
misclassification. Classification accuracy was calculated as the
number of correct predictions divided by the number of total
predictions. To examine how the mode or activity type impacted
classification accuracy, the extent to which each cut-point
correctly classified absolute intensity, underestimated absolute
intensity, and overestimated absolute intensity was calculated
for all 12 structured activities. All data analyses were performed
using SAS Version 9.4.
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TABLE 2 | Description of the 12 structured activities.

Activity

type

Activity Intensity Description of activity

Resting Lying down (LD) Sedentary Lie on floor mat or cot in supine position. Awake with arms at side.

Instructed to minimize all bodily movements.

Sitting Handwriting (HW) Sedentary While sitting in a chair at a desk, use a ball point pen and a pad of

paper to transcribe a standardized written script.

Computer game (CG) Sedentary Seated in a chair at a desk and playing a self-selected online computer

game. Game is played by using a keyboard and/or mouse.

Lifestyle

/Intermittent

Sweeping floor (SW) Light/Moderate Within a 1.5m x 3m area, sweep confetti on floor continuously with a

broom into a marked 30 x 30 cm box at both ends and repeating.

Throw and catch (TC) Light/Moderate Underarm throw and catch a ball while standing 1.5 to 3.0m from a

research assistant at rate of 15 throws per minute. Distance = 1.5m

for ages 6–7 years, 2.5m for ages 8–11 years, and 3m for ages ≥12

years.

Laundry task (LN) Light/Moderate Load a laundry basket with five towels and carry it 3m; then dump out

the towels, fold them, load them back in the basket, carry it back to the

original starting spot, and repeat.

Dance (DA) Light/Moderate Follow a simple dance video for children. Routine included simple arm

and leg movements.

Basketball (BB) Moderate/Vigorous Shoot a basketball using an 8-ft or regulation hoop. Shoot the ball,

rebound, and chase after the ball continuously. Participants instructed

to keep the ball within 4.5m x 4.5m boundary. Given a new basketball

if it leaves the boundary.

Locomotor Comfortable walk (CW) Light/Moderate Walk at a self-selected comfortable speed around the marked

perimeter of an indoor gymnasium

Fast walk (FW) Moderate/Vigorous Walk at a self-selected brisk speed around the marked perimeter of an

indoor gymnasium

Brisk walk treadmill (TW) Moderate/Vigorous Walk on a treadmill at a speed equal to that achieved during the brisk

walking trial.

Run (RU) Moderate/Vigorous Run at a self-selected speed around the marked perimeter of an indoor

gymnasium.

RESULTS

Of the 216 possible structured activities, complete VO2 and

accelerometer data were available for 182 trials. Trials were
excluded if (1) the accelerometer failed to initialize or download,

(2) the Oxycon Mobile malfunctioned, (3) VO2 failed to meet

the criteria for steady state, or (4) participants were absent, failed
to complete the entire trial, or did not follow the instructions.
Table 3 displays descriptive statistics for Youth METs, ActiGraph

VA counts, ActiGraph VM counts, and ENMO for the 12
structured activities. On average, MET values for lying down,
handwriting and computer game fell into the SED category. On
average, MET values for throw and catch, laundry, and sweeping
fell into the LPA category. On average, MET values for slow
walk, dance, brisk walk, and treadmill walking trials fell into the
MPA category, whereas the average MET value for basketball
and running fell into the VPA category. ActiGraph counts and
ENMO during activities requiring significant arm and upper
body movement (throw and catch, laundry, and dance) were,
on average, higher than those recorded during the walking and

running trials, despite having lower energy expenditure.
Weighted Kappa statistics and 95% confidence intervals for

the seven sets of cut-points are displayed in Figure 1. Applying
the rubric of Landis and Koch (25), the cut-points exhibited only

moderate agreement, with Kappa statistics ranging from 0.45
(HD_ENMO) to 0.58 (CR_ROC_VA). There were no significant

differences in agreement between the cut-points.
Heat map confusion matrices summarizing classification

accuracy within each intensity band are displayed in Figure 2.
Classification accuracy for the SED trials was consistently high.

Four sets of cut-points exhibited 100% accuracy (Crouter ROC
VA, Crouter_ROC_VM, Chandler VA, and Chandler VM), with

the remaining cut-points exhibiting an accuracy of 90% or
greater. When true SED trials were misclassified, they were
always misclassified as LPA trials.

Classification accuracy for LPA was extremely poor,
ranging from just 3% (Crouter ROC VA/VM) to 51%
(Hildebrand ENMO). Among the poorest performing
cut-points (accuracy < 20%), true LPA trials were
misclassified as MPA or VPA. For the remaining cut-
points, true LPA trials were consistently misclassified
as MPA. Notably, the Hildebrand ENMO cut-point for
distinguishing LPA from SED was the only threshold to
misclassify a significant proportion of true LPA trials as
SED (30%).

Classification accuracy for MPA and VPA was also poor. For
the MPA activities, accuracy ranged from just 12% (Chandler
VM) to 45% (Crouter ROC VA). True MPA activities were
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TABLE 3 | Descriptive statistics for Youth METs, vertical axis (VA) counts, vector magnitude (VM) counts, and ENMO for each activity trial.

Activity Mean METs SD Median VA IQR Median VM IQR Median ENMO IQR

Lying down 1.3 0.3 0 0–20 0 0–56 21.3 10.7–25.1

Computer game 1.4 0.2 5 0–11 22 5–37 8.5 1.8–21.1

Handwriting 1.5 0.2 7 2–9 35 24–56 0 0–20.7

Laundry 2.4 0.4 1,039 922–1,222 1,583 1,470–1,732 290.1 163.9–334.2

Throw/Catch 2.6 0.7 520 459–624 923 783–1,089 55.9 33.6–83.6

Sweeping 2.9 0.5 394 307–462 573 462–622 26.1 18.9–62.8

Slow walk 3.7 0.6 250 220–287 327 287–381 67.6 30.7–101.2

Dance 4.3 0.8 1,663 1,310–1,903 2,151 1,962–2,418 156.8 130.0–255.5

Fast walk 4.7 0.8 294 253–335 415 364–537 119.5 77.0–181.0

Treadmill walk 5.2 0.9 283 213–337 393 341–521 144.6 96.5–232.0

Basketball 7.2 1.5 1,246 1,045–1,444 1,930 1,692–2,196 450.2 296.5–598.0

Run 9.7 2.3 1,392 1,156–1,477 1,804 1,595–1,983 558.7 396.5–740.5

Stacked column bar graphs summarizing the extent to which each cut-point overestimated, correctly classified, or underestimated the physical activity intensity category of each

structured activity. (LD = lying down, HW = handwriting, CG = computer game, LN = laundry task, TC = throw and catch, SW = sweeping, CW = comfortable walk, DA = dance,

FW = fast walk, TW = treadmill walk, BB = basketball, RU = run).

FIGURE 1 | Kappa statistics for the seven youth-specific ActiGraph cut-points for the wrist.

misclassified as LPA or VPA, with the majority misclassified as
LPA. Notably, the Hildebrand EMNO cut-points misclassified
20% of the true MPA activities as SED. The intensity of the
VPA activities was consistently underestimated as MPA or LPA.
With the exception of the Crouter ROC VA and VM cut-points

(88% accuracy), between 30 and 70% of true VPA activities were
misclassified as MPA or LPA.

Figure 3 summarizes the extent to which the cut-points
overestimated, correctly classified, or underestimated the
intensity of each structured activity. All seven sets of cut-points
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FIGURE 2 | Heat map confusion matrices for the youth specific ActiGraph cut-points for the wrist. Diagonal = correct predictions; Columns = predictions; Rows =

measured by portable calorimetry.

underestimated the true intensity of walking, with error rates
ranging from 57 to 100% for slow walking, 35 to 100% for brisk
walking, and 53 to 100% for brisk walking on a treadmill. In
contrast, the cut-points consistently overestimated the true
intensity of non-ambulatory activities requiring significant
upper body and/or arm movements (throw and catch, laundry
task, and aerobic dance). Notably, for this activity type, the
overestimation rate for the Crouter cut-points exceeded 90%. For

activities at the high end of the intensity spectrum (basketball,
running), the cut-points consistently underestimated physical
activity intensity. The exception to this pattern was the Crouter
ROC cut-points, which overestimated the intensity of a small
percentage (7%) of the basketball and running activities. As
noted above, all seven sets of cut-points correctly classified the
intensity of sedentary activities (lying down, handwriting, and
videogame).
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FIGURE 3 | Stacked column bar graphs summarizing the extent to which each cut-point overestimated, correctly classified, or underestimated the physical activity

intensity category of each structured activity. (LD = lying down, HW = handwriting, CG = computer game, LN = laundry task, TC = throw and catch, SW =

sweeping, CW = comfortable walk, DA = dance, FW = fast walk, TW = treadmill walk, BB = basketball, RU = run).

DISCUSSION

The current study evaluated the classification accuracy of

previously published youth-specific cut-points for wrist-
mounted ActiGraph accelerometers. The results clearly

demonstrate that wrist cut-points perform poorly when
applied to new accelerometer data from an independent sample.

Cut-points for the wrist exhibited only moderate agreement

with directly measured physical activity intensity, and with the
exception of true sedentary activities, physical activity intensity
was misclassified 40–60% of the time. Of concern, light-intensity
activities involving extensive upper body and/or armmovements
were consistently misclassified as MVPA, while the intensity
of moderate-to-vigorous intensity ambulatory activities such
as walking and running was consistently underestimated.
These findings indicate that wrist cut-point methods for the
ActiGraph accelerometer data are not valid for quantifying time
in light and moderate-to-vigorous intensity physical activity
and that other accelerometer data processing strategies should
be applied.

The poor performance of the wrist cut points was not
unexpected considering that, for many human activities,
acceleration recorded at the wrist is not a reliable indicator of
physical activity intensity. Threshold approaches assume that
the magnitude of acceleration, expressed in proprietary activity
counts or gravitational units, is strongly correlated with the

rate of energy expenditure (18, 26). This assumption may be
reasonable when the accelerometer is positioned close to the
body’s center of mass on the participant’s waist or hip. However,
when the accelerometer is worn on the wrist, this assumption is
no longer tenable. The energy cost of non-ambulatory activities
with significant arm or wrist movement will be overestimated,
while the intensity of moderate-to-vigorous activities with
limited or constrained arm movement will be underestimated
(27, 28). Such misclassification errors were clearly visible in
the current study. All seven sets of cut-points overestimated
the intensity of activity trials involving significant arm or wrist
movement (throw and catch, laundry, dance), while everyday
moderate intensity activities such as brisk walking were routinely
misclassified as light-intensity physical activity. The intensity
of vigorous activities such as running and playing basketball
was consistently underestimated and misclassified as moderate
or light intensity activity. Notably, activity counts and ENMO
recorded during the laundry trial were, on average, three times
higher than those recorded during the brisk walking trial, despite
requiring only half the energy expenditure. Median activity
counts recorded during the dance activity trial were 20–30%
higher than those recorded during the vigorous intensity running
and basketball trials (7–10 METs), despite having an average
energy cost of just over 4 METs. Collectively, these findings
underscore the need for alternative modeling approaches for
wrist accelerometer data.
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For more than a decade, research leaders in device-based
measurement have been calling for a shift away from cut-
point methods and the use of machine learning accelerometer
data processing approaches (29, 30). This call has led to the
development of several youth-specific machine learning physical
activity classification and energy expenditure regression models
for wrist accelerometer data and other wear locations (31–38).
When evaluated in independent samples of children, machine
learning models for wrist accelerometer data produce more
accurate predictions of physical activity intensity than cut-
point methods (36, 37). Yet, despite such findings, the uptake
of machine learning methods among public health researchers
and sports scientists has been minimal, primarily because their
implementation requires basic to intermediate programming
skills and specialized software. Indeed, most authors now provide
links to the final prediction model, along with snippets of
code and sample datasets (28, 31, 32), making it is possible
for end users without specialist coding skills to implement
machine learning models in open-source platforms such as R
and Python. Nevertheless, it is acknowledged that in the absence
of open-source software tools (e.g., graphic user interfaces) to
simplify the application of machine learning models, the uptake
of machine learning methods will be limited, and researchers
will continue to use flawed cut-point methods. Considering the
significant misclassification errors observed in the current study,
the development of user-friendly software tools for implementing
machine learning models represents a critical research priority.

Because the Hildebrand cut-points serve as the default
option for estimating physical activity intensity in the popular
GGIR accelerometer data processing package in R (39), the
performance of these cut-points warrant closer inspection.
Within our sample, the Hildebrand cut-points misclassified
30% of the light intensity trials as sedentary behavior and
underestimated the intensity of moderate and vigorous intensity
trials over 75% of the time. Of concern, 20% of the
moderate intensity activity trials, including those that involved
walking, were misclassified as sedentary behavior, while the
true intensity of the brisk walking, basketball, and running
trials was consistently underestimated. While GGIR end users
can specify their own intensity-related thresholds and use
thresholds established for other gravitational unit types, our
results suggests that time in intensity estimates based on the
default Hildebrand ENMO cut-points should be interpreted with
extreme caution GGIR users should consider using other metrics
and/or data reduction approaches available in GGIR (40) or
apply validated youth-specific machine learning models for wrist
accelerometer data.

The current study has several strengths. First, to account
for individual differences in the energy cost of performing
a given physical activity, energy expenditure, measured by
portable indirect calorimetry was used as a criterion measure
of physical activity intensity. This was an important design
feature because previous wrist accelerometer validation and
calibration studies involving children have mostly relied on one-
size-fits-all intensity ratings based on direct observation (28,
41, 42) or predictions of intensity from concurrently worn hip-
mounted accelerometers (43, 44). Second, classification accuracy

was examined in children completing a variety of activities that
ranged in posture, tempo, absolute intensity, and amount of
arm movement. This contrasts with previously published studies
that evaluated wrist cut-points using predominantly sedentary
and light-intensity activities with little or no arm movements
(27, 45).

Offsetting these strengths were several limitations. First,
due to the burdensome nature of the data collection protocol,
our sample size was relatively small. However, our dataset
was more than adequate to address the aims of the study.
The 182 structured activities available for analysis provided a
95% confidence interval width of 0.17, which was within the
0.20 difference between adjacent categories of agreement
proposed by Landis and Koch (25). Nevertheless, our
findings require replication in larger, more diverse samples
of children and adolescents. Second, because the lying
down activity trial did not follow established protocols for
measuring resting energy expenditure, predicted resting
energy expenditure was used to calculate Youth METs.
However, our reported MET values were in close agreement
with previously published values (23). Third, to maximize
internal validity and obtain steady-state measures of energy
expenditure, participants completed a series of controlled
structured activities which may not fully replicate the movement
behaviors undertaken by free-living children and adolescents.
Therefore, additional research is needed to evaluate the
classification accuracy of ActiGraph wrist cut-points for
school-aged children under true free-living conditions. It is
worth noting that two recent studies involving free-living
preschool-aged children found that cut-points for the wrist
and hip were associated with significant misclassification
error (32, 42). Therefore, it is unlikely that wrist cut-points
for school-aged children will perform differently under true
free-living conditions.

In conclusion, previously published ActiGraph cut-points
for the wrist, developed specifically for school-aged youth, do
not provide acceptable classification accuracy for estimating
daily time spent in light, moderate, and vigorous intensity
physical activity. Public health researchers and sports scientists
using wrist mounted accelerometers to quantify movement
behaviors in school-aged youth are urged to adopt alternative
accelerometer data processing methods such as functional
data analysis (40, 46) or machine learning approaches based
on time and frequency domain features in raw acceleration
signal (35).
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