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Background: Recent research has shown that photoplethysmography (PPG)
based wearable sensors offer a promising potential for chronic disease
monitoring. The aim of the present study was to assess the performance of
an in-ear wearable PPG sensor in acquiring valid and reliable heart rate
measurements in a clinical setting, with epileptic patients. Methods: Patients
undergoing video-electroencephalography (EEG) monitoring with
concomitant one-lead electrocardiographic (ECG) recordings were equipped
with an in-ear sensor developed by cosinuss°. Results: In total, 2,048 h of
recording from 97 patients with simultaneous ECG and in-ear heart rate data
were included in the analysis. The comparison of the quality-filtered in-ear
heart rate data with the reference ECG resulted in a bias of 0.78 bpm with a
standard deviation of +2.54 bpm; Pearson’s Correlation Coefficient
PCC = 0.83; Intraclass Correlation Coefficient ICC = 0.81 and mean absolute
percentage error MAPE = 2.57%. Conclusion: These data confirm that the
in-ear wearable PPG sensor provides accurate heart rate measurements in
comparison with ECG under realistic clinical conditions, especially with a
signal quality indicator. Further research is required to investigate whether
this technology is helpful in identifying seizure-related cardiovascular changes.
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1. Introduction

Current advancements in optical wearable sensors have made them an attractive tool

in disease monitoring, in which patients’ physiological and behavioral metrics are

captured in a continuous, unobtrusive way (1). A notable percentage of the optical

sensing devices use the PPG, a non-invasive technology, measuring optical variations

based on blood volume changes (2). Heart rate is one of the key neurophysiological

metrics when monitoring patients’ condition. In PPG measurements a certain

proportion of the emitted light is absorbed through tissue. Since tissue absorption
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depends on the local blood volume, it is possible to infer the

heart rate from the ratio of absorbed to reflected light, which

is measured by a photodiode.

In a medical setting, heart rate is typically measured by an

ECG, involving electrodes on the skin. This method is

uncomfortable for the patient, not suitable for continuous,

long-term monitoring, especially when patients move. PPG-

based heart rate monitors can be a promising alternative to

ECG. The comparison of PPG and ECG in heart rate

monitoring has already been discussed in a number of studies.

An example of raw signals from a PPG sensor and an ECG is

provided in Supplementary Materials, Figure S1. Some

studies comparing the two methods found differences, other

groups reported an overall strong agreement (for an overview

see (3)). Nevertheless, these studies had diverse experimental

settings, measurement locations and/or methods of analysis.

Results on the influence of the sensor location are sparse (see

for example (4)). Ear-worn PPG devices have been discussed

in several studies as an alternative to ECG (5–7). When the

sensor was placed on the earlobe, moderate to good

accordance between PPG and ECG was shown (8–10).

Overall, previous studies have shown that the PPG is a

promising technology regarding its use in ear-worn wearables.

However, most of the studies mentioned evaluated non-

commercial, prototype ear-worn devices (11, 12).

Recent research has shown that alterations in heart rate can

be used as a biomarker in epilepsy monitoring (13–16). Epilepsy

is a common neurological disease affecting about 0.6% of the

world’s population (17). It is characterized by recurrent

seizures with highly variable symptoms, ranging from mild

pure body sensations to severe symptoms such as loss of body

movements control and consciousness (18). A significant

proportion of seizures are not recalled by patients for various

reasons, hampering the accurate documentation of disease

activity by seizure diaries held by patients (19). Therefore

novel treatment options allowing real-time seizure monitoring

in daily life can benefit patients tremendously by reducing

unpredictability and improving their quality of life (20, 21). In

this context, epilepsy monitoring is one of the potential

medical applications of in-ear wearable PPG sensors.

Within the scope of the EPItect project (22), we hypothesize

that PPG-based sensors placed inside the ear canal are well

protected from movement-related artifacts and have a

potential to accurately capture all necessary biosignals that are

required to detect a wide range of epileptic seizures. As a

fundamental step towards this goal, here we aimed to evaluate

the performance of an in-ear PPG-based wearable sensor in

acquiring accurate and reliable heart rate with respect to an

ECG. This CE-marked device, cosinuss° One (developed by

Cosinuss GmbH, Munich, Germany), is capable of detecting

heart rate by using PPG signals, head movements by

measuring acceleration in three dimensions and core body

temperature via contact temperature sensor.
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Our results demonstrate that the cosinuss° One with PPG-

technology can derive heart rate with high accuracy in a real-

life clinical setting, in an epileptic patient population. Our

findings also indicate the necessity of a signal qualifier for

identifying medically useful data points. To our knowledge,

this study is the first to conduct a detailed validation of a

commercial in-ear heart rate monitor using PPG in a clinical

setting.
2. Materials and methods

2.1. Subjects

Patients (�18 years) with refractory epilepsy, who

underwent video-EEG monitoring in the Department of

Epileptology in University of Bonn Medical Center, for non-

invasive presurgical evaluation, syndrome diagnosis, or

monitoring of seizure control, were included in the study.

Informed consent was obtained from all subjects involved in

the study. Subjects participated in long-term VEEG-

monitoring for 1–13 days depending on the individual

diagnosis and the amount of seizures recorded. During that

time, videos of the subjects were recorded as well as the EEG,

pulse oximetry, and one-lead ECG. Additionally, the patients

wore the cosinuss° One in-ear sensor, which recorded their

heart rate, PPG-signals, core body temperature and the 3D-

acceleration data. Every six hours the study nurses changed

the in-ear sensor to a fully charged device. The study was

approved by the local medical ethics committee

(Ethikkommission der Medizinischen Fakultät der Rheinischen

Friedrich-Wilhelms-Universität Bonn, No. 355/16) and

conducted in accordance with the Declaration of Helsinki.
2.2. In-ear sensor: Cosinuss° One

To record the PPG signals, we used the in-ear sensor

cosinuss° One (Cosinuss GmbH, Munich, Germany), which is

shown in Figure 1. It is a mobile wearable sensor that

continuously measures the core body temperature, heart rate

and acceleration. In addition, it records the intervals between

heart beats (known as RR intervals), fluctuations of which is

correlated with heart rate variability. The cosinuss° One

incorporates a PPG sensor element (combining a light-

emitting diode (LED) and a photodiode), a resistance

temperature sensor and a 3D-accelerometer. For heart rate

measurements the so-called circummission method uses green

light, which is emitted into the ear canal by a LED (23). The

photodiode measures the proportion of the light reflected. The

heart rate is automatically calculated by the sensor device and

can directly be derived from the data output.
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FIGURE 1

Concept of the cosinuss° One in-ear sensor used as a wearable to detect heart rate in the study. Top left image: (1) sensor head, (2) processing unit,
(3) accelerometer, (4) temperature sensor, (5) PPG sensor elements. Bottom image: Acquired data are sent to the cosinuss° LabApp smartphone
application via Bluetooth, which are then automatically uploaded to the cloud via a Wi-Fi connection.
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The sensor has a size of (H) 45 � (W) 38 � (D) 18 mm

and a weight of 6.5 g. Close contact of the sensor with the

tissue inside the ear canal is crucial for a precise

measurement. For this reason, the LED, photodiode and

temperature sensor are placed on a soft silicone shield that

fits firmly into the ear canal. The sensor head is available in

three sizes (S, M, L) to adapt to different ear canal sizes of

children, adults and elderly. The processing unit is behind

the ear. Battery life of the sensor is at least 7 h according to

the manufacturer (24). The cosinuss° One is certified with

the consumer CE-mark.
2.3. Data collection

The one-lead ECG was recorded at lead I with a sampling

rate of 256 Hz, using the Micromed system (Micromed S.p.A.,

Treviso, Italy). The data collected from the in-ear sensor was

recorded in real-time with a sampling rate of 50 Hz for the

PPG and acceleration data, and approximately 1 Hz for the

vital parameters (heart rate with RR intervals, core body

temperature). The data were continuously transferred from

the sensor to an Android smartphone using Bluetooth Low

Energy (Bluetooth 4.2), without compression. From the

Android device the data was automatically sent to the

cosinuss° cloud server via a Wi-Fi connection for further

analysis and archiving of the data using the cosinuss°
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LabApp (see Figure 1). All personal identifying information

and medical health data on the cosinuss° cloud server are

pseudonymized. Only authorized persons have access to the

data.
2.4. Data analysis

Data was analyzed using Python 3. Heart rate data from the

in-ear sensor is directly derived from the cosinuss° cloud server.

Data from the ECG recording was exported and uploaded to the

same cloud server by the clinical staff. For the ECG data the R-

wave peaks are detected using the well-approved Pan-

Tompkins-algorithm (25). From the resulting RR-intervals,

the heart rate values in units of beats per minute (bpm) are

obtained.
2.4.1. Data processing & quality filtering
The in-ear sensor provides a signal quality indicator (QI,

ranging from 0–100 (a.u.), with 100 being the most reliable).

It is calculated at each heart rate data point and indicates its

reliability by measuring the PPG signal dominance in relation

to the perturbations. Before the following steps in data

processing, this quality measure is smoothed and then used to

remove data points that do not exceed a specified quality

threshold. With the choice of this threshold, a trade-off
frontiersin.org
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between improvement of statistical values and loss of data is

made.

To determine the threshold QI value, a sensitivity analysis

was performed. It was assessed how data loss and mean

absolute percentage error (MAPE) changes with an increasing

quality threshold. MAPE is computed as follows:

MAPE ¼ 100%
n

Xn

n¼1

At � Ft
At

����

���� (1)

where At is the reference value and Ft is the value as measured

by the in-ear device. How exactly these simultaneous data points

At and Ft were extracted is explained in more detail in 2.4.2. The

measure of data loss is obtained by comparing the absolute

number of available raw data points before and after filtering

for quality. The results can be seen in Figure 2. The higher

the threshold, the more data will be removed by the quality

filter, while the results of the statistical analysis performed on

the remaining data improve. Using the smallest threshold,

where the QI needs to be larger than 0, is already an

improvement to performing no quality filtering at all. It is

mainly because the QI is set to 0 for each data point where

the QI’s x-value and the corresponding heart rate data point’s

x-value differ by more than 2.5 s and when the heart rate is

not within the range of 40 to 148 bpm. For thresholds 20 or
FIGURE 2

Sensitivity analysis of the quality indicator threshold, provided by the in-ear
percentage error (MAPE) and data loss.
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larger, there is a near-linear relationship between the

threshold of the quality indicator and percentage of data

points that are removed based on this threshold, ranging

from 11% data loss at a threshold of 20 to 53% data loss at

a threshold of 80. For thresholds >80, the slope is slightly

steeper, reaching 100% data loss at a threshold of 100. As

expected, the MAPE drops with increasing QI threshold.

Between thresholds of 40 and 80, the slope of decline is the

steepest. Using a quality threshold of 0, the MAPE is at

4.14, and from a threshold of 70 upwards, the MAPE is

below 2.6.

The sensitivity analysis shows that the choice of the exact

threshold can be made at liberty, as the trade-off between

data loss and MAPE is nearly linear if using thresholds of 80

and lower. If the primary goal of an evaluation is to include

as much of the original data as possible, the smallest

threshold would suffice to obtain reasonable heart rate values.

Due to the large dataset available, it was decided that losing a

larger portion of data in order to optimize for quality would

still leave sufficient amounts of data for the analysis. As the

data loss incline gets steeper upwards of a QI threshold of 80,

and the MAPE is well below 3 upwards of 70, it was decided

to use 70 as the QI threshold.

Only heart rate data points that exceeded the quality

threshold were kept, removing about 40% of the data of the

in-ear sensor. The main reason for this large percentage is the
sensor to be used for quality filtering, in relation to mean absolute

frontiersin.org
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FIGURE 3

Top plot: Example of a high quality heart rate recording (bpm) over
three hours by the ECG (red) and the in-ear sensor (blue). The signal
quality indicator of the in-ear sensor (green) is above the quality
threshold of 70 (indicated by the dashed line) at nearly all times of
the recording. The heart rate data of the in-ear sensor and of the
ECG overlap in a way that the red line of the ECG is completely
hidden by the blue line of the in-ear sensor. Bottom plot: For
better visibility this figure shows a short clipping of the recording
above. During a period of relatively high variance in the heart rate,
compared to the rest of the measurement, the heart rate values
obtained by the ECG (red) and the in-ear sensor (blue) still show
high agreement.

FIGURE 4

Example of a critical quality heart rate recording (bpm) over five
hours by the ECG (red) and the in-ear sensor (blue). The signal
quality indicator of the in-ear sensor (green) returns values below
the quality threshold of 70 (indicated by the dashed line) for
certain periods of time.
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fact that the quality threshold discards long periods of

measurement if the patient is not assigned a well-fitting

sensor size or if the device is not worn properly in the ear

canal. The reference ECG signal also underwent data

processing in order to detect and remove unreliable data

points due to motion artifacts and poor placement of the

electrodes. A value was considered an outlier, and was

discarded, if it deviated by more than 8 bpm from the median

of itself and the 14 data points that follow it. If, within this

area of 15 data points, more than three values were

considered outliers, all 15 points were discarded. This step

reduced the ECG data by 23%.

Figure 3 shows an example recording of heart rate over

three hours. As a relatively high quality indicator predicts, the

in-ear sensor coincides well with the ECG data. An enlarged

segment of this example can be seen in Figure 3, bottom plot.

In contrast, a recording that exhibits critically low quality

values for a certain period of time is shown in Figure 4. The

quality indicator (shown in green), while stable at first, drops

below the critical threshold of 70 (indicated by the dashed

line) after one hour, most likely because the sensor tip has

lost its firm contact with the ear canal tissue. During this

time, the in-ear sensor’s data points are dismissed due to their

unreliability. Towards the end of the measurement, the quality

rises above the threshold again, as the sensor may have gotten

readjusted into the ear.

After data cleansing, the heart rate data of the ECG and the

in-ear sensor were matched based on their respective time

stamps, keeping only simultaneous data points of sufficient

quality where signals from both sources were available.

2.4.2. Statistical analysis
For further analysis, the data points were combined into

time windows of two seconds. The average value of each time

bin as provided by the in-ear sensor is compared to the

respective average value of the ECG recording, testing both

precision and reliability. Correlation between recordings was

measured using Pearson’s correlation coefficient (PCC). Since

high correlation does not necessarily guarantee high

agreement, the Intraclass Correlation Coefficient—ICC (3,1) as

defined by Shrout and Fleiss (26)—is considered to be a more

suitable measure to quantify an instrument’s accuracy (27).

Besides the ICC, MAPE was computed to assess accuracy. To

test precision, Bland-Altman plots were employed, which plot

the difference between two samples over their mean value

(28). Thus, it shows the accordance of the two measurements,

while also visualizing whether a measurement error is

systematic, i.e. correlated with the value it is measuring. The

mean value over all deviations within a recording session

leads to an absolute bias of the two measurement methods

and the lower (LLOA) and upper (ULOA) limits of agreement

can be derived using the standard deviation (SD):

LLOA ¼ bias� 1:96� SD and ULOA ¼ biasþ 1:96� SD,
Frontiers in Digital Health 05
respectively. For the following evaluation, the parameters

deduced from the Bland-Altman plots (LLOA, ULOA, mean,

standard deviation) were taken from a conjoined Bland-

Altman plot of all data points of each person. PCC, R-

squared, ICC, and MAPE were calculated for each

measurement individually and then averaged per person.
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3. Results

3.1. Study characteristics

A total of 174 subjects (age: 43:2+ 17:7 years; gender: male

46%, female 54%) participated in this study. At the beginning of

the study a prototype in-ear sensor with a red and infrared LED

was used. The reason for that was to be able to derive more

physiological signs (such as the blood oxygen saturation) from

the PPG signal. However, during the recordings with the first

65 patients, we observed substantial motion artifacts, which

led to unreliable heart rate measurements. Since the PPG

signals from green LED are more robust in dealing with

motion artifacts, after the first 65 patients, we decided to

switch to the cosinuss° One in-ear sensor using a green LED,

to acquire more reliable heart rate measurements. Only data

recorded with the cosinuss° One was taken into account for

further analysis. During the initial trial a few recordings of

the in-ear sensor were missed due to technical issues.

Furthermore, not all ECG data was stored permanently for

the first half of the study, where only the first 12–24 h

recording per patient was stored. This results in a total of 97

subjects and 2048.46 h of recording including ictal as well as

interictal activity.

After the quality filtering and smoothing of the

simultaneous ECG and PPG data -as described in Section D,

the heart rate data from the in-ear sensor and the ECG

amount to 1396.77 h of recording. Using recordings from 97
FIGURE 5

Plot (A): Bland-Altman plot of a recording of heart rate without quality filtering
over a recording time of 63 h. The plot shows the deviations of the heart rat
dashed lines indicate the mean value of the deviations (bias) and the low
bias+ 1:96 � SD. This leads to a bias of 1.8 bpm and limits of agreement o
plot of a recording of heart rate with quality filtering, comparing the in-ear
of 46 h. The same data set as in left plot is shown, removing the data poi
limits of agreement as calculated as bias+ 1:96� SD. Removing low qualit
LLOA ¼ �1:9 bpm and ULOA ¼ 3:3 bpm.

Frontiers in Digital Health 06
different patients, this leads to an average of 14.4 h of data

per patient.
3.2. Effect of quality filtering on in-ear
heart rate measurements

To analyze the effectiveness of the quality indicator on the

in-ear heart rate measurement, we used Bland-Altman plots

(28) and visualized the deviations of heart rate data from the

in-ear sensor and the ECG, as shown in Figure 5. Data

shown in Figure 5, subplot A), comprises a recording time of

approximately 63 h. All data points originating from the in-

ear sensor were used without filtering. There are some

significant deviations of the in-ear sensor’s heart rate

measurements to the ones of the ECG. Most deviations occur

around a heart rate of 60–70 bpm, because the majority of

this patient’s heartbeats were in this range. Said deviations are

mostly positive, meaning that the ECG generally returned

higher values than the in-ear sensor. The mean bias and

standard deviation lead to a lower and upper limit of

agreement of LLOA ¼ �10:6 bpm and ULOA ¼ 14:2 bpm

for this patient. Figure 5, subplot B), shows the same

patient’s data; however, the in-ear sensor’s quality indicator

was taken into consideration, removing all points that were

below the threshold of 70, leaving 46 h of data. As a result,

the upper limit of agreement improves to ULOA ¼ 3:3 bpm

and the lower limit rises to LLOA ¼ �1:9 bpm.
, comparing the in-ear sensor’s heart rate measurement with the ECG
e values (y-axis) relative to the mean of the two methods (x-axis). The
er (LLOA) and upper (ULOA) limits of agreement as calculated as
f LLOA ¼ �10:6 bpm and ULOA ¼ 14:2 bpm. Plot (B): Bland-Altman
sensor’s heart rate measurement with the ECG over a recording time
nts below the quality threshold. The lower (LLOA) and upper (ULOA)
y data points leads to a bias of 0.7 bpm and limits of agreement of
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TABLE I. The resulting statistical values averaged over all 97 patients.
Values are average duration, bias, standard deviation (SD), lower limit
of agreement (LLOA), upper limit of agreement (ULOA), Intraclass
Correlation Coefficient (ICC), Pearson’s Correlation Coefficient
(PCC), the coefficient of determination, R2, in this case the squared
Pearson’s correlation coefficient, and the mean absolute percentage
error (MAPE).

All data points Quality-filtered

Duration (h) 21.12 14.40

Bias (bpm) 1.64 0.78

SD (bpm) 12.75 2.54

LLOA (bpm) –23.35 –4.19

ULOA (bpm) 26.62 5.75

ICC 0.46 [0:41, 0:51] 0.81 [0:78, 0:84]

PCC 0.50 [0:45, 0:55] 0.83 [0:80, 0:86]

R2 0.30 [0:25, 0:35] 0.71 [0:68, 0:75]

MAPE (%) 7.94 [6:42, 9:46] 2.57 [2:24, 2:90]

Note: The 95% confidence interval of the averaged ICC, PCC, R2, and MAPE

values are given in square brackets.

FIGURE 6

Box plot of the Intraclass Correlation Coefficient—ICC (3,1) as
defined by Shrout and Fleiss (26)—comparing the quality filtered
in-ear heart rate data to the heart rate from ECG over all 97
patients. Each recording was weighted by its duration. The median
is at 0.85. 50% of the data points lie within the range of 0.78–0.9.
Six outliers that score lower than 0.62 were identified.
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3.3. Accuracy of quality filtered in-ear
heart rate measurements

After quality-filtering of all in-ear heart rate measurements,

the comparison of the in-ear sensor and the ECG leads to a bias

of 0.78 bpm and a standard deviation of 2.54 bpm. Table I

visualizes the effectiveness of the quality filter by comparing

statistical results using all data points to statistical results

keeping only points of sufficient quality. The overall limits of

agreement amounted to LLOA ¼ �3:95 bpm and

ULOA ¼ 5:53 bpm; the average ICC ¼ 0:81; while the

average PCC scored slightly higher, at 0.84 over all recordings;

the average MAPE was 2.43%. Removing unreliable points

significantly improves all statistical parameters. As an

example, Figure 6 shows a box plot of the ICC value over all

measurements.
4. Discussion

The present study examined the accuracy of the cosinuss°

One, an in-ear wearable sensor utilizing PPG-technology, for

measuring heart rate in a real-life clinical setting, in

comparison with ECG. The results prove that the in-ear PPG

sensor can provide a valid heart rate measurement if further

improved by filtering algorithms. Though achieving moderate

results using all data points, applying the quality indicator of

the in-ear sensor improved all statistical parameters by

removing unreliable data points. If less data loss is desired,

the quality threshold can be decreased without

disproportionally increasing the MAPE, as both parameters

have a near linear relationship to the threshold.
Frontiers in Digital Health 07
PCC and ICC were calculated to test the correlation of the

in-ear sensor with the reference ECG device. The fact that the

PCC (0.83) scored slightly higher than the ICC (0.81) is not

surprising, as the in-ear sensor cosinuss° One shows a more

or less constant bias of þ0.8 bpm, and the PCC measure

returns high correlation for linear relationships between

recordings. In medicine, there is no consensus whether the

ICC is a sufficient measure of quality for a heart rate

measurement device. According to Rosner’s definition (29),

the value obtained by the cosinuss° One in the present study

signifies an excellent agreement, while according to Koo et al.

(27), it signifies a good agreement. Fokkema et al. (30)

suggest to interpret ICC values as excellent, good, moderate,

and low agreement thresholds, if they are �0.90; 0.75–0.90;

0.60–0.75; and �0.60, respectively. This interpretation of ICC

values indicates a good agreement between the cosinuss° One

and the ECG recordings in this case.

Testing the accuracy of the in-ear sensor using MAPE resulted

in 2.57%. There is no standard cut-off value for acceptable

MAPEs, however Nelson et al. (31) consider a MAPE �10% as

an indicator of inaccuracy, whereas Fokkema et al. (30) suggest

a threshold of �5% for a value to be considered accurate. Etiwy

et al. (32) tested the accuracy of four PPG-based wrist-worn

heart rate measurement devices as well as the Polar H7 chest

strap, comparing all to standard ECG limb leads. The devices

were tested on 80 patients in cardiac rehabilitation while they

were at rest, on a treadmill and on a stationary cycle. The Polar

strap achieved the best results in all disciplines, reaching a

MAPE of 0:9+ 1:6% during the resting period. The other

wearable devices reached MAPEs between 4:1+ 7:2% (Apple

watch on the stationary cycle) and 13+ 18% (Garmin device

on the stationary cycle). Therefore, applying the previous

interpretations of the MAPE in similar contexts, it can be

concluded that the MAPE achieved by the in-ear sensor

cosinuss° One in here (MAPE ¼ 2:57%) is comparably low and

can be considered as accurate.
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Bland-Altman analysis revealed that the cosinuss° One had

a bias of þ0.78 bpm and 95% of differences fall within þ5.75

and �4.19 bpm of the ECG (ULOA - LLOA ¼ 9.94 bpm). As

the differences were calculated by subtracting the in-ear

sensor’s value from the one of ECG’s and the mean bias is

positive, we conclude that the in-ear sensor tends to slightly

underestimate heart rate values. This result is in line with the

findings of Passler et al. (6). In this previous work by Passler

et al., the cosinuss° One in-ear sensor was compared and

validated against an ECG. However, this validation was done

on 20 healthy subjects during graded cycling, under

laboratory conditions. Results of the in-ear sensor showed a

bias of þ0.4 bpm and 95% of all differences within þ4.38

and �5.17 bpm of the ECG (ULOA - LLOA ¼ 9.55 bpm)

during resting conditions with a heart rate �90‘bpm.

Furthermore the study demonstrated an excellent agreement

(ICC ¼ 0:94; MAPE ¼ 2:5%) between the cosinuss° One

and ECG recordings during resting conditions (mean heart

rate + standard deviation of 53:6+ 8:3 bpm as measured by

the cosinuss° One) and a good agreement (ICC ¼ 0:84) at

maximum heart rate (mean heart rate + standard deviation

of 181:6+ 6:4 bpm as measured by the cosinuss° One).

There is no indication that the quality indicator of the in-ear

sensor was taken into account. Therefore, we argue that the

quality filtering algorithm of the cosinuss° One significantly

improves the accuracy of the HR measurements, especially

when applied in realistic clinical settings where a certain

contingent of application errors must be assumed.

There are however some limitations to the performed study

that could be addressed in future research. First, the study

focused on the heart rate recordings of stationary patients,

who were at resting-state. This leads to recordings of mostly

moderate heart rate values and small changes. Therefore the

accuracy of the in-ear sensor during periods of activity needs

to be assessed in further work. Not yet understood is the

more or less constant bias of 0.8 bpm on average below the

ECG heart rate. Second, it must be noted that the current

analysis did not take into account whether the patients also

had cardiac diseases, which would affect the reproducibility of

the results.

The third limitation of this study is that, while all patients

experienced epileptic seizures during the recording periods, it

was not assessed to what extent the seizure-related data was

retained after quality filtering. We expect that the

measurement quality deteriorates during seizures where

muscles cramp and the heart rate increases. However, the

validation of cosinuss° One against ECG is still a necessary

prerequisite for future research on seizure detection. Taking

into account the fact that the heart rate provided by the in-

ear sensor proved to be reliable, a sudden deterioration in the

quality may thus be used as a factor in seizure detection.

While the loss of sensor-to-skin contact might be the main

reason for decreased signal quality of the sensor, another one
Frontiers in Digital Health 08
is seizure occurrence. If information is lost during seizures

purely due to the event itself, the sensor will regain contact

immediately afterwards, at which point the heart rate will be

at a higher level and then gradually return to normal during

the next minutes. This pattern, an example of which is shown

in Supplementary Figure S2, could be detected and used for

further analysis.

Furthermore, there are examples where the sensor’s signal

quality stayed reasonably high during a seizure, as in

Supplementary Figure S2, bottom plot, allowing for accurate

heart rate measurements during the entire process.

The next step is to investigate the feasibility of using the

heart rate, acceleration and PPG signals from the in-ear

sensor to detect epileptic seizures. In a first attempt, Henze

et al. (33) evaluated a multimodal approach by combining the

3D acceleration and heart rate data from the in-ear sensor

developed by cosinuss°. They trained a selection of

classification models to be used on the EPItect project dataset

to detect tonic-clonic seizures. The labels originated from the

project’s video-EEG recordings, which was annotated by

medical professionals, to mark the on- and offset of seizures.

This previous study found that using the combination of

heart rate and acceleration data, in comparison to acceleration

data only, indeed correlated with a higher number of tonic-

clonic seizures. Bruno et al. (34) concluded in their systematic

review on preictal heart rate changes that heart rate

measurements could be valuable in identifying seizures prior

to their apparent onset, although additional research is

necessary to clearly mark down those patients that might

benefit from heart rate monitoring. Furthermore, El Atrache

et al. (35) identified changes in the PPG signal using wearable

wristbands in the periictal periods of patients with focal

impaired awareness seizures (FIAS) and concluded that FIAS

detection using PPG data is feasible.

In the light of recent findings, we speculate that seizure

detection will likely comprise a combination of features

derived from multiple biosignals during, before and after the

event. To make the in-ear optical sensor suitable for usage in

epilepsy practice, future research should focus on the

feasibility of using the heart rate, acceleration and PPG signals

of the in-ear sensor to detect epileptic seizures and the impact

of movement on the accuracy of the PPG-signal.
5. Conclusions

This validation study showed that the in-ear sensor cosinuss°

One with PPG-technology can determine heart rate with high

accuracy compared to single-lead ECG. The signal quality

indicator of the sensor provides robust filtering of the

unreliable PPG data, significantly increasing the overall

accuracy of the heart rate measurements, which is critical in

everyday clinical practice. This is the first paper to describe a
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fdgth.2022.909519/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fdgth.2022.909519/full#supplementary-material
https://doi.org/10.3389/fdgth.2022.909519
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Adams et al. 10.3389/fdgth.2022.909519
detailed validation of heart rate derived from a commercial in-

ear PPG sensor in a realistic clinical setting.

In the grand scheme of clinical epilepsy practice, our main

question remains as whether in-ear PPG-based measurements

can be used for epileptic seizure detection. Since epileptic patients

may ultimately benefit from continuous, real-time monitoring

and seizure detection using the in-ear sensor, establishing its

accuracy in this specific setting was a crucial first step.

Subsequent studies should be conducted to explore whether

the various biosignals measured by the wearable device might be

useful to detect a broad spectrum of epileptic seizures.
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