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The photoplethysmographic (PPG) signal has been applied in various research fields,

with promising results for its future clinical application. However, there are several

sources of variability that, if not adequately controlled, can hamper its application in

pervasive monitoring contexts. This study assessed and characterized the impact of

several sources of variability, such as physical activity, age, sex, and health state on PPG

signal quality and PPG waveform parameters (Rise Time, Pulse Amplitude, Pulse Time,

Reflection Index, Delta T, and DiastolicAmplitude). We analyzed 31 24 h recordings by

as many participants (19 healthy subjects and 12 oncological patients) with a wristband

wearable device, selecting a set of PPG pulses labeled with three different quality levels.

We implemented a Multinomial Logistic Regression (MLR) model to evaluate the impact

of the aforementioned factors on PPG signal quality. We then extracted six parameters

only on higher-quality PPG pulses and evaluated the influence of physical activity, age,

sex, and health state on these parameters with Generalized Linear Mixed Effects Models

(GLMM). We found that physical activity has a detrimental effect on PPG signal quality

quality (94% of pulses with good quality when the subject is at rest vs. 9% during intense

activity), and that health state affects the percentage of available PPG pulses of the

best quality (at rest, 44% for healthy subjects vs. 13% for oncological patients). Most of

the extracted parameters are influenced by physical activity and health state, while age

significantly impacts two parameters related to arterial stiffness. These results can help

expand the awareness that accurate, reliable information extracted from PPG signals can

be reached by tackling and modeling different sources of inaccuracy.

Keywords: photoplethysmography, quality assessment, wearable device, morphological analysis, pervasive

monitoring

INTRODUCTION

The digital healthcare revolution promises to switch from a hospital-centered model to a
personal-centered model (1), offering the possibility to remotely and continuously monitor
patients’ health state, thus reducing the use of bulky instruments and complicated procedures
(2). One of the key elements of this revolution is represented by wearable devices,
which are small electronic systems that can be worn during daily life (3). However,
such devices are not used as diagnostic tools yet for several reasons, including ethical
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aspects, limitations in the infrastructure, and concerns related
to data protection (4). Nonetheless, wearable sensors have been
used in several applications for research purposes, ranging from
rehabilitation (4) and sport (5) to cardiovascular monitoring (6)
and emotion recognition (7).

Photoplethysmographic (PPG) sensors are one of the most
widespread technologies within wearable devices (8). They are
based on an optical technique: a light source illuminates a
portion of the body surface, penetrating the skin and reaching the
blood vessels, and a matched photodetector detects the changes
modulated by the pulsatile component of the blood flow (9).
The resulting signal is quasi-periodic, consisting of a stereotyped
waveform called “PPG pulse,” which occurs with each heartbeat
(10). Each PPG pulse contains several fiducial points, each of
them corresponding to a cardiac event (11), as shown in Figure 1:

• Systolic foot: represents the minimum of the pulse and
corresponds to the beginning of the systolic phase of the heart;

• Systolic peak: represents the maximum of the pulse and
corresponds to themaximumblood volume during the systolic
phase of the heart;

• Dicrotic notch: a local minimum corresponding to the aortic
valve closure;

• Diastolic peak: represents the second maximum of the pulse
and corresponds both to the diastolic phase of the heart and
wave reflection in the periphery.

For various reasons, the fiducial points are not always
traceable in the PPG pulses. Based on the fiducial points that
can be detected, the quality of each PPG pulse can be expressed
as (12):

• Basic quality: systolic peaks are identifiable, so reliable
heart rate, heart rate variability parameters, and some basic
morphological features can be derived;

• Diagnostic quality: systolic and diastolic peaks are visible, so a
more in-depth morphological analysis can be conducted.

Currently, PPG sensors are mainly used for heart rate
estimation in a real-world context: the heart rate can be estimated
by simply calculating the time distance between two consecutive
systolic feet or peaks (10). Still, the PPG waveform morphology
also carries relevant information that can be exploited, e.g.,
for arterial stiffness (13, 14) and blood pressure (15) indirect
estimation, or early detection of adverse cardiac events (16) or
mental disorders signs (17).

Although the PPG signal has proven its potential as a helpful
tool in different health domains, its clinical application is still
hampered by its poor robustness to several sources of inaccuracy
(18), which can be detrimental to the PPG signal quality or
misleading for the interpretation of the extracted parameters
(19). This limitation is particularly emphasized in the real
world, where the monitored subjects conduct their daily-life
activities and are no longer in a controlled environment like in
laboratory experiments.

The recent article of Fine et al. (18) offers a detailed review
of the main factors that influence the PPG signal and its
extracted features. If not adequately controlled, these factors may
preclude the development of reliable PPG-based applications.

Specifically, Fine et al. grouped the sources of inaccuracy in
three categories: external perturbations, variations within and
across individuals, and physiology. As an external perturbation,
physical movement is the primary source of inaccuracy in the
PPG signal; on the one hand, it is well-recognized that physical
movement leads to signal quality deterioration (19); on the
other hand, it also influences the cardiovascular system, and in
turn, the PPG morphology, inducing temporary changes, as the
cardiovascular system must adapt to the physical stress (20).
Another external source of inaccuracy is given by the contact
pressure between the PPG sensor and the skin, significantly
influencing the quality and the morphology of the recorded
signal (21, 22). Individual subject variations can also play a
role in modifying PPG signal quality and morphology. For
example, it is well-known that the dicrotic notch is less visible
as age increases (23), making systolic and diastolic waves less
pronounced. This factor can lower the probability of finding
Diagnostic quality pulses in older subjects, limiting the possibility
of conducting an in-depth morphological analysis. Also, it is
well-known that sex can affect the cardiovascular system, thus,
in turn, the PPG morphology (24). Finally, the health state can
also have an impact on PPG, even in those cases in which the
pathology is not closely related to the cardiovascular system.
For example, some recent studies demonstrated the link between
cancer and cardiovascular alterations, which can origin both
from the pathology itself or from cancer treatment (25). Several
studies have already investigated the association between cancer
and heart rate variability, pointing out significant parameters’
alterations in the oncological population (26, 27), also by using
PPG (28). In addition, some studies also revealed an impact of
cancer (29) and related therapies (30) on PPG signal waveform.
From this evidence, it is clear that a PPG-based system that
is agnostic to the health state of the subject may lead to
misinterpretation of the extracted parameters, failing its primary
goal of providing continuous accurate monitoring (18).

Whatever the final application, all these factors, if not
adequately controlled, can have a dual negative effect: on the
one hand, they can have a different impact on PPG signal
quality, hindering the extraction of meaningful PPG features
(e.g., a small amount of Diagnostic pulses prevents a reliable,
in-depth morphological analysis), and, on the other hand, they
can act as confounding factors, invalidating the interpretation
and the reliability of the parameters extracted from the PPG
morphology. Therefore, to obtain a “true health monitoring” (18)
PPG-based application, a proper characterization of these factors
is crucial.

This work aims to characterize the impact of these factors,
namely physical activity, health state, age, and sex, both on
PPG signal quality and PPG waveform parameters. We used a
convenience sample of 31 participants, 19 healthy subjects, and
12 oncological patients, monitored in a real-world scenario. For
each subject, we selected an equal number of PPG pulses for four
different physical activity ranges (estimated by the accelerometer
data) and labeled them with a quality level. Firstly, we evaluated
the quality levels distribution based on the factors above. We
then extracted six morphological parameters and appraised their
behavior in relation to physical activity, health state, age, and sex.

Frontiers in Digital Health | www.frontiersin.org 2 July 2022 | Volume 4 | Article 912353

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Moscato et al. PPG Analysis in Daily-Life

FIGURE 1 | PPG signal and highlighted fiducial points.

FIGURE 2 | Empatica E4 wristband.

MATERIALS AND METHODS

Dataset
Thirty-one subjects (19 healthy subjects and 12 oncological
patients) were monitored for 24 h with the Empatica E4
wristband (Figure 2), a medical-grade wearable device that
records several physiological signals, including:

• PPG signal: the sensor is equipped with four light sources
(two green, two red) and two matched photodetectors, with
a sampling frequency of 64Hz.

• Accelerometer (ACC) signal: the sensor consists of a tri-axial
accelerometer with a ±2 g range and a sampling frequency
fsACC = 32Hz.

Subjects were instructed to conduct their daily routine
activities and remove the E4 wristband while showering. They
were also asked to provide their age and sex.

The study was conducted according to the declaration of
Helsinki, and each subject signed informed consent before
participating in the study. The two datasets (healthy subjects
and oncological patients) belong to two different studies: (1)
healthy subjects’ recordings were obtained from an internal data
collection campaign involving researchers and students at the
Personal Health Systems Lab of the University of Bologna; (2)
oncological patients’ recordings come from an interventional
study approved by the Local Ethical Committee (Area Vasta
Emilia Centro, Bologna, Italy; approval n◦ 542-2019-OSS-
AUSLBO) (31).

Signal Processing
PPG signals were filtered by applying a second-order Butterworth
band-pass filter, with cut-off frequencies of 0.5 and 12Hz (32),
and consequently divided into PPG pulses by applying the
algorithm by Elgendi et al. (33) for systolic feet detection. Each
pulse was then normalized with the z-score procedure (34), and
the baseline (i.e., systolic feet values) was set to zero.

ACC signals’ components were firstly resampled at 64Hz
(fsACC−RES) with linear interpolation to reach the same PPG
sampling frequency and then filtered by applying a fourth-order
band-pass filter, with cut-off frequencies of 0.025 and 10Hz
(35, 36). We then calculated the ACC vector magnitude for each
sample j as:

Aj =

√

ACC2
xj
+ ACC2

yj
+ ACC2

zj
(1)

The Activity Index (Aind ) was estimated using the algorithm of
Lin et al. (37):

• Standard deviation of Aj for T = 5 s epochs: (1)
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σ =

√

√

√

√

1

N

N
∑

j = 1

(Aj − µ)2 (2)

where

µ =
1

N
(A1 + A2 + . . . + AN)

N = T∗fsACC−RES

Minute-wise Aind:

Aind =

M
∑

k = 1

σk (3)

where M is set to 12 to obtain a minute-wise Aind by summing
12 epochs.

• Aind resampling at 64Hz with linear interpolation.

Once we estimated the Aind for each recording, we defined
four activity ranges (AR) based on the quartile values of all the
activity indices.

Each PPG pulse was then associated with an Aind value as a
final signal processing step.

PPG Pulse Classification
We randomly selected a subset of 100 PPG pulses for each AR
within each subject’s recording, thus obtaining 400 pulses for
each subject (12,400 PPG pulses in total). We chose 400 pulses
per subject as a good trade-off between the need to have a
representative sample of all pulses and the clinical effort needed
to evaluate and label them. It is also in line with previous
studies (38, 39). Three independent raters (a cardiologist and two
biomedical engineers, all three experts in cardiovascular signals)
assigned to each pulse one of the following quality levels:

• Bad (B)
Systolic and diastolic peaks cannot be distinguished from

noise, so the pulse is not suitable for analysis;
• Fair (F)

The systolic peak is clearly detectable, and the diastolic peak
is not so that the pulse can be used for a heart rate estimate and
a basic morphological analysis;

• Excellent (E)
Both the systolic and diastolic peaks can be clearly detected

so that the pulse can be used for heart rate estimate and
in-depth morphological analysis.

An example of the three different quality levels is presented in
Figure 3.

We adopted a majority voting approach to determine the level
if only two raters agreed. If there was no agreement among raters,
the pulse was automatically labeled as B.

Based on these quality levels, Basic PPG pulses were obtained
as the union between F and E pulses, while the Diagnostic PPG
pulses coincide with the only E pulses (12).

PPG Waveform Parameters Estimation
We estimated six PPG parameters only on those PPG pulses
suitable for analysis (i.e., Basic and Diagnostic pulses), thus
discarding the B quality pulses. For both Basic and Diagnostic
pulses, the systolic peak is the highest value found using the
Matlab findpeak function within each PPG pulse. For Diagnostic
pulses, the same Matlab findpeak function is applied, and the
diastolic peak is found as the second-highest value.

From Basic pulses, we estimated:

• Rise Time (RT) [s]: time between the systolic foot and the
subsequent systolic peak (40);

• Pulse Time (PT) [s]: time between two consecutive systolic feet
(10, 39);

• Pulse Amplitude (PA) [a.u.]: height of the systolic peak, with
the previous systolic foot as the reference (38).

From Diagnostic pulses, we estimated:

• Reflection index (RI) [%]: ratio between diastolic and systolic
amplitude (10, 39);

• Delta T (1T) [s]: time lag between systolic peak and the
subsequent diastolic peak (41);

• Diastolic Amplitude (DA) [a.u.]: height of the diastolic peak,
with the previous systolic foot as the reference (10).

A graphical representation of the PPG above parameters is
proposed in Figure 4.

FIGURE 3 | PPG pulses with three different quality levels (from left to right): bad, fair, and excellent.
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FIGURE 4 | PPG morphology parameters.

Statistical Analysis
To qualitatively assess the impact of physical activity and health
state on PPG signal quality, we evaluated the distribution of
quality levels among the four AR and throughout the 24 h
separately for healthy and oncological subjects. To statistically
assess the impact of physical activity, health state, age, and sex
on PPG signal quality, we implemented a multinomial logistic
regression (MLR) model. MLR is used to predict the relative
probability of being in one category compared to being in
a reference category, obtained with a linear combination of
predictor variables that can be continuous or categorical. The
logit function is usually employed as a link function for MLR
models. Setting the K-th category as a reference, the MLR can be
written as (42):

πj = Pr
(

y = j
∣

∣x
)

=
exp(βj

Tx)

1+
∑K−1

k=1 exp(βk
Tx)

(4)

where πj is the j-th category membership probability against the
reference categoryK, βj is the regression coefficients vector, and x
is the regressors vector. We set Aind (continuous variable), health
state (dichotomous variable, 0= healthy subject, 1= oncological
subject), age (continuous variable), and sex (dichotomous
variable, 0=male, 1= female) as regressors vector.

To evaluate the influence of physical activity, health state,
age, and sex on PPG waveform parameters, we fitted each
PPG parameter with a Generalized Linear Mixed-Effects Model
(GLMM). GLMMs extend the generalized linear models,
allowing to model both fixed and random effects. A simple Linear
Mixed-Effects model can be written as (43):

E(y|X,Z) = Xβ + Zu (5)

where X is the matrix of the fixed effects, β is the vector of
fixed effects regression coefficients, Z is the matrix of the random
effects, u is the vector of random effects coefficients, and E(y|X,Z)
is the expected outcome variable conditional on X and Z. In a
“Generalized” Linear Mixed-Effects Model, the outcome variable
can have a non-normal distribution so that a GLMM can be
expressed as:

g
(

E(y|X,Z)
)

= Xβ + Zu (6)

where g(•) is the link function for the outcome variable. The link
function maps the relationship between the conditional expected
outcome and the linear combination of the predictors. There is
an associated canonical link function for each distribution of the
outcome variable.

GLMMs are particularly useful when data samples are non-
independent, such as, e.g., in a hierarchical structure (i.e.,
different instances coming from a single subject) (44). We fitted
one GLMMs for each of the six PPG parameters, using the Basic
pulses to determine RT, PT, and PA, and the Diagnostic pulses
to determine RI, 1T, and DA. We set the PPG parameter as the
outcome variable, the four factors as the fixed effects, while the
“subject” variable was set as the random effect to consider the
inter-subject variability. We tested three different distributions
for the GLMMs (and the respective link functions): normal
(identity), gamma (negative inverse), and inverse Gaussian
(inverse squared), the last two suitable to model non-negative
outcome variables. Table 1 presents the three distributions and
the respective link functions.We then chose the best model based
on the Akaike Information Criterion (AIC) (45) and evaluated
the results, both for fixed and random effects (46). We performed
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TABLE 1 | Distribution of the outcome variable and respective link function. µ is

expected value of y (outcome) conditional on x (predictors).

Distribution Link function

Normal g (µ) = µ

Gamma g (µ) = −µ−1

Inverse Gaussian g (µ) = µ−2

TABLE 2 | Demographics of the sample.

All Healthy Oncological

Sample Size 31 19 12

Age [years] 37 ± 13.8 29.2 ± 7.1 49.5 ± 12.8

Sex 15M, 16 F 13M, 6 F 2M, 10 F

a marginal F-test to determine the significance of single fixed-
effects coefficients. To test the significance of the random effects,
we evaluated the 95% standard deviation’s confidence interval as
the estimated covariance parameter for the random effects (i.e.,
“subject”): if the interval does not contain 0, the random effects
are significant at the 5% significance level. The analyses were
carried out on Matlab 2021b (47).

RESULTS

Descriptive Statistics
We analyzed PPG recordings from 31 subjects, 19 healthy
subjects and 12 oncological patients (one bone and soft tissue,
four gastrointestinal, two genital tract, one endocrine, one
hematological, two breast, one urinary). The demographics of the
sample are reported in Table 2. The average recording length was
26:50 (±05:51) h.

Quartile values of the Aind distribution were Q1 = 0.04, Q2 =

0.41, Q3 = 1.32, with a maximum value of 6.75. According to the
classification made by Lin et al. (37), the four ARs correspond,
respectively to rest/sleep, rest/sleep/sedentary, light activity, and
moderate activity.

For the 12,400 randomly selected pulses, the three
independent raters agreed on 86% of the labels. By applying
a majority voting approach, we obtained the following labels
distributions: 5,962 (48.1%) B pulses, 4,612 (37.2%) F pulses, and
1,826 (14.7%) E pulses. Table 3 reports the distribution of quality
levels for each subject.

Impact on PPG Pulses Quality
We evaluated the distribution of the three quality levels among
the four ARs. As can be seen in Figure 5, panel a, the percentage
of B pulses rises as the physical activity increases (ranging from
7% in AR0 to 92% in AR3), while the percentage of F and E pulses
decreases (from 62% in AR0 to 7% in AR3 for F pulses; from 32%
in AR0 to 2% in AR3 for E pulses).

By analyzing separately healthy and oncological subjects, the
different distribution of the three quality levels appears evident
(see Figure 5, panels b and c): oncological patients present
a lower percentage of E pulses in all the ARs and a higher

TABLE 3 | Distribution of quality levels among healthy subjects and oncological

patients.

Subject B F E

1 251 81 68

2 157 203 40

3 133 255 12

4 227 45 128

5 214 57 129

6 239 85 76

7 136 164 100

8 144 192 64

Healthy subjects 9 207 155 38

10 208 84 108

11 276 60 64

12 170 128 102

13 139 197 64

14 231 113 56

15 103 185 112

16 124 239 37

17 217 106 77

18 316 31 53

19 126 59 215

1 203 197 0

2 147 242 11

3 160 239 1

4 229 168 3

5 222 171 7

Oncological patients 6 206 147 47

7 205 123 72

8 194 183 23

9 127 248 25

10 217 173 10

11 189 162 49

12 245 120 35

B, Bad; F, Fair; E, Excellent.

percentage of F pulses in the lowest ARs (84 and 67% for
oncological patients against 48 and 45% for healthy subjects in
AR0 and AR1, respectively).

A graphical representation of the quality levels throughout
the 24 h is provided in Figure 6, together with the Aind

values. The figure shows the percentage of the different quality
levels during each hour. A higher percentage of F and E
pulses can be found during the night when the Aind values
are lower both evaluating the whole dataset (panel a) and
dividing it into healthy (panel b) and oncological subjects
(panel c). During the night, oncological patients present a lower
number of B pulses (around 10%) compared to healthy subjects
(around 20%).

From the MLR model, we obtained the results reported in
Table 4, setting the B quality level as the reference category.
We present here the β coefficients for each regressor (i.e.,
Aind , health state, age, and sex), whose interpretation is the
following: positive β coefficients represent a direct association
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FIGURE 5 | Distribution of the three quality levels among different activity ranges. (A) All subjects, (B) Healthy subjects, and (C) Oncological patients.

between the regressor and the probability of belonging to
that category compared to the reference one; higher values
mean a stronger relationship between the regressor and the
probability of belonging to that category compared to the
reference one. Aind has a significant impact on the relative
probabilities (with respect to the B quality level) for both F
and E quality levels: as Aind increases, the relative probability
of belonging to F and E quality levels decreases. Health state
significantly influences the relative probability of having F and
E quality pulses: oncological patients have an increased relative
probability of having F pulses, while there is a lower relative
probability for the same population of having E pulses. Finally,
age significantly influences the relative probabilities of F and
E quality levels: the coefficient has a positive value (0.03) for
F quality level and a negative value (−0.0088) for E quality
level. This means a higher relative probability of having F
pulses and a lower relative probability of having E pulses as the
age increases. Regarding sex, female subjects have an increased
relative probability of having F (0.84) and E (0.48) pulses
compared to males.

PPG Waveform Parameters
After grouping pulses into Basic (F+E) andDiagnostic (E) pulses,
we obtained the following proportions:

• 6,438 Basic pulses, 3,944 from healthy subjects (61.3%), and
2,494 from oncological subjects (38.7%)

• 1,826 Diagnostic pulses, 1,540 from healthy subjects (84.3%),
and 286 from oncological subjects (15.7%)

We fitted six different GLMMs, one for each PPG parameter,
using the Basic pulses to determine RT, PT, and PA, and the
Diagnostic pulses to determine RI, 1T, and DA. Table 5 shows
the AIC values for all the six models using normal, gamma,
and inverse Gaussian distributions. Four out of six models were
best fitted with a normal distribution (RT, PT, RI, and 1T),
while two (PA and DA) were best fitted with an inverse gaussian
distribution. The interpretation of β coefficients for the two
distributions (and the related link functions) is the following:
for the normal distribution (and identity link function), positive
coefficients indicate that the outcome variable increases if the
predictor increases; for the inverse Gaussian distribution (and
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FIGURE 6 | Distribution of the three quality levels and related activity index profile over the 24 hours. (A) All subjects, (B) Healthy subjects, and (C) Oncological

patients.

Frontiers in Digital Health | www.frontiersin.org 8 July 2022 | Volume 4 | Article 912353

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Moscato et al. PPG Analysis in Daily-Life

TABLE 4 | Multinomial logistic regression coefficients.

Fair* Excellent*

Estimate p-value Estimate p-value

Aind −2.31 0 −3.03 0

HealthState (Oncological) 0.15 0.04 −0.87 0

Age 0.03 0 −0.009 0.02

Sex (Female) 0.84 0 0.48 0

Intercept −0.42 0.0001 0.79 0

*Against Bad quality level (set as reference category).

TABLE 5 | Akaike Information Criterion (AIC) for different models.

AIC Normal Gamma Inverse Gaussian

RT –18,186 15,611 41,620

PT –10,034 −79,912 2,326

PA −1,337 −30,577 –36,263

RI –2863.2 −729 2,927

1T –6,183 4,067 11,774

DA 1,491 −4,819 –5,389

In bold the lowest AIC number for each outcome variable, corresponding to the best fitting

model.

inverse squared link function), positive coefficients indicate that
the outcome variable increases if the predictor decreases.

In Table 6 results from the GLMMs are shown. All PPG
parameters, except RT, are significantly influenced by physical
activity (Aind). Specifically, all the parameters coefficients tend
to have lower values as the Aind increases. The health state
significantly influences PT, PA, RI, and DA: these parameters
assume lower coefficient values for oncological patients than
healthy subjects. Age significantly influences 1T and DA: 1T is
shorter as age increases, whileDA increases with age progression.
Sex does not have any significant effect on the analyzed
parameters. Since the 95% random-effects confidence intervals
for all the PPG parameters do not contain the 0 value, inter-
subject variability is significant for all the tested PPG parameters.
Figure 7 shows the graphical representation of both Basic and
Diagnostic PPG pulses, as the mean of the analyzed pulses, for
different ARs and health states.

DISCUSSION

This study assessed the impact of several sources of inaccuracy
on PPG signal quality and PPG waveform parameters by using
31 24 h real-world recordings, 19 from healthy subjects and
12 from oncological patients. We randomly selected 400 pulses
for each recording, 100 for each physical activity quartile
and labeled them into three quality levels. We compared the
quality levels distribution among different physical activity
ranges throughout the 24 h. We then used a Multinomial
Logistic Regression model to quantitatively evaluate the impact
of physical activity, health state, age, and sex on PPG signal

quality. We finally estimated six PPG parameters only on higher-
quality pulses (i.e., Basic and Diagnostic quality) and fitted
each of them into a Generalized Linear Mixed Effects model to
evaluate their sensitivity to physical activity, health state, age,
and sex.

Physical activity is well-recognized as the main cause
hindering the clinical application of PPG signals in daily life (48).
This study could demonstrate its detrimental effect by comparing
the quality levels distribution among different physical activity
ranges. As expected, as the physical activity got more intense,
the percentage of higher quality pulses (i.e., F and E) got
lower. Similar results were also obtained from the MLR model’s
fitting, confirming a lower relative probability of having F and E
pulses against B pulses as the physical activity increased. Reliable
information can thus be gathered in case of low physical activity,
for example, when the subject is at rest or in sedentary conditions,
corresponding to AR0 and AR1, in agreement with previous
literature (49). As also Pradhan et al. (50) highlighted, the best
data quality could be obtained during the night when the subjects
were likely to be asleep. However, a prodromic signal quality
analysis appears necessary to obtain reliable data from PPG
signal processing.

Another interesting aspect is the different quality distribution
obtained by analyzing pulses of healthy and oncological subjects
separately. The latter group showed a lower percentage of E
pulses than the former in the lowest ARs, and concurrently a
higher percentage of F pulses. In addition, cancer subjects were
shown to have fewer negative pulses than healthy subjects. This
could mean that the pathological condition (cancer in this case)
does not affect the quality of PPG signal to such an extent
that it completely loses its information content (i.e., B pulses)
but rather negatively affects the morphology of PPG pulses by
losing definition (i.e., F pulses). The MLR model confirms that
for oncological patients and as the age increases, i) the relative
probability of having F pulses (compared to B pulses) increases,
and ii) the relative probability of having E pluses (compared to
B pulses) decreases (positive coefficients). The lower probability
of finding E pulses can be ascribed either to a deterioration of
the cardiovascular health state because of the pathology itself and
the related therapy (51) or to the higher age of the oncological
patients compared to the healthy subjects (41), as can be seen in
Table 1.

Sex had a significant impact on PPG pulses quality. The
relative probability of having F and E pulses against B pulses
was considerably higher for female subjects than males. Previous
studies reported significant sex-based differences in the pulse
transit time, that is, the time between the R peak recorded
through the electrocardiogram and the consecutive PPG cycle
(24), and it is well-known that the cardiovascular system
differs between women and men, both in physiological and
in pathological conditions (52). A previous study has already
found that commercial smartwatches are less accurate, for heart
rate measurement only, for men than for women (53). This
difference could be due to the different skin thickness, higher for
males than females (54): PPG sensor light has to pass through
a larger thickness in male subjects, which could then lead to a
deterioration in the PPG signal quality.
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TABLE 6 | Generalized linear mixed effects models.

Fixed effects Random effects σ(subject)

Estimate Lower Upper F-Test Estimate Lower Upper

Aind −0.00 −0.0055 0.001 0.21 0.03 0.03 0.04

Health state (Oncological) −0.01 −0.03 0.005 0.14

RT§ Age 0.0005 −0.0008 0.002 0.47

Sex (Female) −0.004 −0.02 0.01 0.61

Intercept [s] 0.24 0.19 0.30 0

Aind −0.12 −0.13 −0.12 0 0.12 0.09 0.15

HealthState (Oncological) −0.12 −0.18 −0.05 0.0002

PT§ Age −0.0005 −0.005 0.004 0.85

Sex (Female) −0.03 −0.08 0.02 0.25

Intercept [s] 0.94 0.76 1.11 0

Aind 0.005 0.004 0.006 0 0.005 0.004 0.006

HealthState (Oncological) 0.003 0.0005 0.006 0.02

PA* Age 0.0001 −0.0001 0.0003 0.39

Sex (Female) 0.0004 −0.002 0.002 0.71

Intercept [a.u.] 0.10 0.09 0.11 0

Aind −0.02 −0.04 −0.01 0.0003 0.09 0.07 0.01

HealthState- (Oncological) −0.06 −0.11 −0.02 0.008

RI§ Age 0.003 −0.0007 0.006 0.12

Sex (Female) 0.02 −0.01 0.06 0.25

Intercept [ ] 0.67 0.53 0.80 0

Aind −0.01 −0.02 −0.01 0 0.03 0.03 0.04

HealthState (Oncological) 0.005 −0.01 0.02 0.58

1T§ Age −0.001 −0.003 −0.0002 0.03

Sex (Female) −0.001 −0.02 0.01 0.84

Intercept [s] 0.30 0.24 0.35 0

Aind 0.01 0.01 0.02 0.0001 0.04 0.03 0.06

HealthState (Oncological) 0.04 0.02 0.05 0.0004

DA* Age −0.002 −0.004 −0.0004 0.016

Sex (Female) −0.01 −0.03 0.004 0.11

Intercept [a.u.] 0.26 0.19 0.33 0

§ Normal distribution and identity link function.
* Inverse Gaussian distribution and inverse squared link function.

RT, Rise Time; PT, Pulse Time; PA, Pulse Amplitude; RI, Reflection Index; 1T, delta T; DA, Diastolic Amplitude; Aind , Activity Index.

In bold the p-values lower than 0.05.

From the analysis of PPG waveform parameters, we found
that all parameters, except RT, were significantly influenced by
physical activity, lowering their values. This result is Two-fold:
rise time RT can be used as a parameter independent of physical
activity; conversely, other parameters must be interpreted in
light of current physical activity levels. Furthermore, pathological
states should also be considered when interpreting PT, PA, RI,
and DA, negatively affecting their values. Finally, age had a
significant impact only on 1T and DA: as the age increases, the
former assumes lower values while the latter increases. These
findings agree with previous literature. Specifically, other authors
have found that aging causes a reduction in the time between
systolic and diastolic peaks (1T) (10, 55) and an increase in the
diastolic amplitude (DA) (10, 39), mainly due to an increased
arterial stiffness (56). Since the diastolic peak depends on the
reflection of the pressure wave on artery walls, a loss of elasticity

(i.e., increased arterial stiffness) brings to a quicker and more
intense wave reflection (57).

The PPG signal quality analysis results recommendusing
features extracted from a basic morphological analysis (i.e., using
Basic quality pulses) rather than from an in-depth morphological
analysis (i.e., using Diagnostic quality pulses) in the real-world.
This is remarkably advisable if the PPG-based application should
be used by subjects at risk of cardiovascular system impairment
or deterioration. Unfortunately, several experimental PPG-based
applications use features that can be extracted only on Diagnostic
quality pulses (58–61), thereby risking malfunctioning in this
population, especially in real-world conditions, where the
availability of Diagnostic quality pulses is further lowered because
of the presence of motion artifacts.

In addition, our results related to the PPG waveform
parameters confirmed, as already pointed out by Fine et al. (18),
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FIGURE 7 | Basic and diagnostic pulses in different activity ranges (ARi, i = 1, ..., 3) in healthy and oncological subjects. The represented pulses were obtained as the

mean of all collected pulses for each AR and dividing them for healthy and oncological subjects.

that future PPG-based applications should accurately consider
several personal and health-related factors, as these can act
as sources of inaccuracy and limit the interpretability and
generalizability of the results. PPG sensors undoubtedly have
excellent qualities, as they can be easily embedded in wearable
devices, are inexpensive, and can collect a variety of vital
information. A proper characterization of the various sources of
inaccuracy influencing the PPG signal may expand its use in the
clinical field, obtaining a powerful tool allowing pervasive and
continuous recordings.

Besides the several sources of inaccuracy the PPG can be
subjected to, it is worth remembering that different physiological
activities can also influence PPG waveform parameters: in
particular, for the time parameters (RT, PT, 1T), changes in
cardiac activity have a significant impact on the timing of the
events reflected in the PPG waveform (11); respiration can
induce variations affecting both the pulsatile and non-pulsatile
components of the PPG signal (62); lastly, PPG is strongly

affected by the autonomic nervous system, leading to significant
changes especially in the time domain (63).

This study presents some limitations, primarily related to the
sample size. As previously pointed out, age significantly differed
between healthy and oncological subjects (mean age 29.2 vs. 49.5
years), thus partly overlapping the effects due to age and health
state. The range of physical activities gives another limitation:
our dataset lacks vigorous activities, based on the classification
of Lin et al. (37), although, based on our results, we can speculate
that a tiny proportion of pulses in that category could be used for
further processing (i.e., labeled as F or E).

We used a convenience sample, investigating the impact
of cancer as a pathological state. We intended to raise the
attention, by providing quantitative results, on how a pathology
that apparently should have no impact on the PPG signal can
lead to misinterpretations if not adequately considered. This
study can help expand the knowledge about the impact of
cancer on PPG, with the double objective of i) controlling the
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“health state” variable for a general purpose application, and ii)
using PPG with a diagnostic and/or prognostic value for the
oncological population. The transferability of these results to
other pathologies should be investigated further. However, this
work can pave the way to future studies aiming at evaluating the
influence of different pathologies on PPG.

From a technical point of view, the low PPG sampling
frequency (64Hz) may limit the accuracy of those time-
domain parameters with an order of magnitude comparable
to the sampling period (0.0156 s), such as RT and 1T (mean
values equal to 0.26 s and 0.25 s, respectively). In the present
study, we obtained 34 different values for RT and 27 for 1T,
so the analysis can still be considered valid. However, we
suggest deepening this aspect by using sensors with a higher
sampling frequency.

Future studies can be conducted on larger datasets, with a
more heterogeneous sampling by age and physical activity and
deepening the effects of other personal and health factors, such as
weight and height, or other pathological states.

CONCLUSIONS

This study aimed to evaluate the impact of different sources
of inaccuracy both on PPG signal quality and on parameters
extracted from the PPG morphology. We used a convenience
sample of healthy subjects and oncological patients to assess
the impact of physical activity, age, sex, and health state. As
expected, we found that a higher percentage of good quality PPG
pulses can be found during the night and when the subject is
in sedentary conditions. Age, pathological state, and male sex
are three factors that lower the probability of finding Diagnostic
quality pulses. Regarding the impact of these factors on PPG

morphology parameters, physical activity and health state must
be considered when interpreting parameter values, while age
acts more on those PPG parameters closely related to arterial
stiffness. Therefore, it is advisable to conduct further studies on
this topic on larger datasets, investigating the effects of different
pathological conditions on the PPG signal. Such an approach can
help expand the use of PPG-based application, offering a greater
robustness and, thus, a more reliable tool for continuous and
pervasive monitoring.
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