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Background: Mobile app-based tools have the potential to yield rapid, cost-
effective, and sensitive measures for detecting dementia-related cognitive
impairment in clinical and research settings. At the same time, there is a
substantial need to validate these tools in real-life settings. The primary aim
of this study was thus to evaluate the feasibility, validity, and reliability of
mobile app-based tasks for assessing cognitive function in a population-
based sample of older adults.
Method: A total of 172 non-demented (Clinical Dementia Rating 0 and 0.5)
older participants (aged 76–77) completed two mobile app-based memory
tasks—the Mnemonic Discrimination Task for Objects and Scenes (MDT-OS)
and the long-term (24 h) delayed Object-In-Room Recall Task (ORR-LDR).
To determine the validity of the tasks for measuring relevant cognitive
functions in this population, we assessed relationships with conventional
cognitive tests. In addition, psychometric properties, including test-retest
reliability, and the participants’ self-rated experience with mobile app-based
cognitive tasks were assessed.
Result: MDT-OS and ORR-LDR were weakly-to-moderately correlated with
the Preclinical Alzheimer’s Cognitive Composite (PACC5) (r= 0.3–0.44, p
< .001) and with several other measures of episodic memory, processing
speed, and executive function. Test-retest reliability was poor–to-moderate
for one single session but improved to moderate–to-good when using the
average of two sessions. We observed no significant floor or ceiling effects
nor effects of education or gender on task performance. Contextual factors
such as distractions and screen size did not significantly affect task
performance. Most participants deemed the tasks interesting, but many rated
them as highly challenging. While several participants reported distractions
during tasks, most could concentrate well. However, there were difficulties in
completing delayed recall tasks on time in this unsupervised and remote
setting.
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Conclusion: Our study proves the feasibility of mobile app-based cognitive assessments
in a community sample of older adults, demonstrating its validity in relation to
conventional cognitive measures and its reliability for repeated measurements over
time. To further strengthen study adherence, future studies should implement
additional measures to improve task completion on time.

KEYWORDS

Alzheimers disease (AD), digital cognitive assessment, smartphone-based cognitive assessments,

remote and unsupervised assessment, episodic memory
Introduction

Identifying individuals with cognitive impairment at risk of

developing Alzheimer’s disease (AD) via conventional in-clinic

cognitive assessment is time-consuming and costly.

Conventional cognitive testing is limited with regards to test

frequency and design as it requires trained staff and the

individual on-site for each assessment. Recent technological

developments have created the opportunity to implement mobile

app-based cognitive testing on smartphones and tablets, both in

population screening and clinical assessment settings. Digital

and unsupervised cognitive assessments could thus serve as pre-

screening in the health care system before more expensive and

invasive clinical examinations such as cerebrospinal fluid

sampling or neuroimaging are performed. Furthermore, they

could represent more reliable and scalable cognitive baseline

measures and outcomes in clinical trials, allowing for remote

assessment of a larger population than samples obtained via in-

clinic and supervised examinations (1–4).

Trends in digitalization suggest that older adults are

increasingly familiar and comfortable with new technologies,

and surveys from 2019 indicate that 77% of North Americans

aged 50+ own a smartphone (5). In the European Nordic

countries, 78% of people born in Sweden during the 1940s (74–

84-year-olds) use smartphones, and 43% use tablets regularly.

83% of Sweden’s older adults born during the 1940s use the

Internet (66% use it daily). In this survey, 100% report that they

have access to the Internet in their household (6).

While there is also potential in various novel assessment

techniques such as passive monitoring (7) (e.g., using sensors

and wearables), spoken language analysis and automated

language processing (8), eye tracking (9), digital pens (e.g.,

Digital Clock Drawing) (10), this study solely focuses on

unsupervised mobile app-based cognitive testing. Mobile app-

based cognitive testing can address some of the shortcomings

of conventional in-clinic cognitive testing. For example,

automatically alternating test versions avoid or diminish

practice effects (11, 12) and enable more frequent and flexible

cognitive testing (13). More frequent assessments may also

increase reliability in cognitive measurement (14, 15).

Furthermore, it may yield more sensitive disease-related

measures (16, 17), such as accelerated forgetting (18), and the

possibility of employing tests of long-term delayed recall.
02
However, several potential challenges remain unexplored as

mobile app-based testing is performed in an uncontrolled

environment (1, 2). First, the feasibility of mobile app-based

examinations in older adults, including examining the

psychometric properties (15, 19–21), participant experience

(15, 19, 22), and external aspects of testing (16). Second,

participant adherence to unsupervised and remote study

designs is an important research question (23). Finally, there

are many important and so far understudied aspects that

might affect task performance in unsupervised study settings.

Thus, we will explore contextual factors such as potential

distractions, device-specific factors such as screen size, and

individual traits including age and education.

We employed two mobile app-based cognitive tasks

building on recent findings on the functional brain

architecture of episodic memory and the spatiotemporal

progression of AD pathology (24–26). First, the Mnemonic

Discrimination Task for Objects and Scenes (MDT-OS) (27),

taxing pattern separation as a short-term memory task (28).

Pattern separation is the process of discriminating among

highly similar but unique pieces of information (e.g., where

you parked your car today vs. yesterday). Second, the Object-

In-Room Recall Task (ORR-LDR) was developed to tax

pattern completion (29), i.e., the ability to retrieve a stored

memory based on a cue of incomplete information. The

ORR-LDR was implemented as a one- to three-day long-term

delayed recall task, consequently assessing long-term memory.

In this study, we investigated how demographic and

contextual factors affect task performance in these tasks in a

population-based sample of individuals aged 76–77, and how

the participants rated their experience using the app. There is

still little research on the psychometric properties of mobile

app-based cognitive testing. Therefore, we investigated the

psychometric properties of this type of cognitive assessment,

including reliability over repeated sessions (test-retest

reliability) (30). We also investigated the score distribution of

the tasks due to the importance that a cognitive test has

sufficient range of scores to detect individual differences in

performance (floor or ceiling effects) (31). Finally, we assessed

how well the employed app-based tests correlated with

conventional in-clinic cognitive tests (construct validity),

including gold-standard neuropsychological testing commonly

used as cognitive measures in clinical practice, such as the
frontiersin.org
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optimized version of the Preclinical Alzheimer Cognitive

Composite (PACC5) (32), designed to be sensitive to early

AD-related cognitive impairment. Given that the tasks

evaluated in this study are primarily memory tasks, we

hypothesized that they would be associated most strongly with

other measures of memory (convergent validity) and less so

with measures that theoretically should not be highly related

(discriminant validity).
Materials and methods

Sample

The Gothenburg H70 Birth Cohort Studies are longitudinal

population-based studies of health and aging. The most recent

cohort examined includes 1,203 individuals born in 1944 (559

men and 644 women) (33). Using the Swedish Tax Agency’s

population register, individuals born in 1944 (mean age = 70.5

years) were invited to participate in the baseline in-clinic

examination (January 2014–December 2016).

The five-year follow-up in-clinic examination was initiated

in 2020. Due to the COVID-19 pandemic, participants are

still being invited for follow-up assessments according to the

study protocol (see Figure 1 for a flowchart of the study

design). At the time of this study, 879 participants have

completed their follow-up in-clinic examination. The clinical

and neuropsychological assessments included in this study

were from the follow-up examination initiated in 2020. In

parallel with the follow-up study, we have invited participants
FIGURE 1

Flowchart of baseline and follow-up examinations. ORR-LDR, Object-in-Room
Scenes. *Please note, these numbers represent participants that correctly co
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to the mobile app-based add-on study (which will be

described in the following section).
Remote mobile app-based add-on study

In the course of the follow-up in-clinic examination, 692 of

879 participants have thus far been invited to participate in a

two-year study using the neotiv-App (12, 34). Of these, 172

participants have signed the informed consent and initiated

the mobile app-based cognitive testing to date. The remainder

of the participants will be invited to participate in future

recruitment waves.

Each month’s testing consisted of a two-phase session

separated by 24 h. For ORR-LDR, the two phases were

encoding (ORR encoding, lasting ∼10 min) and long-term

delayed recall (ORR-LDR, lasting ∼4 min). For MDT-OS, the

phases (lasting ∼10 min each) were two halves of the

mnemonic discrimination task (one-back and two-back

memory task, respectively). All test sessions were completed

by participants remotely and unsupervised, following a Bring-

Your-Own-Device (BYOD) approach. During the mobile app-

based study, participants were contacted via telephone and

offered help to install the app correctly when needed. Besides

this contact, there was no further personal contact with the

participants.

Here, we primarily present the results of the first test session

of each task. Every month, the participants were reminded via

push notifications to initiate their monthly tasks. Even though

participants were recommended to do the tasks at a given
Recall Task; MDT-OS, Mnemonic Discrimination Task for Objects and
mpleted all phases after initial filtering (see section 3.1).
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time of the day, there was no restriction on when the task could

be initiated. The very first test session could be initiated at any

time of the day. Precisely 24 h after the end of the first test

session, a push notification was sent to initiate the second test

session. Before each session, participants were informed by

the app to carry out the task in a quiet environment, to

ensure that they had their glasses ready if needed and that

their screen was bright enough to see the stimuli well. They

also underwent a short practice session before the actual task

session. Following each task session, participants were asked

to state whether they were distracted by anything in their

surrounding environment and to rate their concentration,

subjective self-performance, task interest, and task effort. All

written communication, including app instructions, was in

Swedish language.
Mobile app-based test measures

Object-In-Room recall task
In ORR-LDR, participants see a computer-generated room

with two 3D-rendered objects (see Figure 2) (12, 34). In the

encoding phase, participants learn the position of two objects

in a room and are tested for immediate retrieval. During the

immediate retrieval, they see empty rooms and are asked to

recall which object was at a specific location. The aim is to

encode 25 object and scene associations. They respond via

tapping on one of three objects pictured below the empty room

(one is the correct object for that location, the second is the

object presented in the room but at a different location, and

the last is an entirely unrelated object). Twenty-four hours

later, the same memory recall task is repeated. The primary

outcome of this task for our study is the total amount of

recalled objects after 24 h (ranging between 0 and 25).

Mnemonic discrimination task for objects and
scenes

In MDT-OS, participants are shown 3D-rendered

computer-generated objects and scenes, repeated either

identically or slightly altered (see Figure 2) (24, 27). Here the

task is to determine whether a replicated display is a

repetition of the original stimulus or an altered version. An

answer is given by tapping on the location of the difference

(for stimuli believed to be altered). If no change is perceived,

the button “nothing has changed” is clicked. In total,

participants are shown 32 object and 32 scene pairs. Half of

the pairs are identical or altered, respectively. The whole task

is separated into two phases and conducted during two days

with a 24-hour delay. The first phase is designed as a one-

back task, while the second phase is designed as a two-back

task. In this study, the outcome is the corrected hit rate. Hit

rate (trials where identically repeated stimuli are identified

correctly) and a false alarm rate (trials where slightly altered
Frontiers in Digital Health 04
stimuli are incorrectly identified as identical repetitions) are

calculated and subtracted from each other (hit rate minus

false alarm rate). The possible scores range between 0 and 1.
Clinical and neuropsychological
assessments

Participants underwent the follow-up clinical examinations

at the Sahlgrenska University Hospital Memory Clinic in

Mölndal, Sweden, or in their homes. The examinations were

performed on average 11.16 months before the mobile app-

based study (SD = 6.48 months; range = 0.34–21.49 months).

Research nurses administered the neuropsychological

examinations primarily via a tablet (iPad Pro 12.9″, 3rd

generation) using the Delta cognitive testing platform (35).

Our neuropsychological examinations comprised tests for (a)

speed and attention: Digit span (36), Trail making test A

(TMT A) (37), (b) memory: Rey Auditory Verbal Learning

Test (RAVLT) (38), Brief Visuospatial Memory Test—Delta

version (BVMT) (39), (c) executive function: Digit-Symbol-

Test—Delta version (Digit-Symbol-Test) (36), Category

fluency test animals (Word fluency animals) (40), Controlled

Oral Word Association Test FAS (Word fluency FAS) (41),

Trail making test B (TMT B) (37), Stroop—Delta version

(Stroop) (42) and (d) visuospatial function: Block Design—

SRB 3 version (Block Design) (43). For all digitalized tests,

designs were equivalent or similar to paper-and-pencil

counterparts. For tests where a pencil traditionally functions

as an input (TMT A/B, Digit-Symbol-Test, Stroop, and

BVMT), the Apple Pencil (2nd generation) was used.

The PACC (32) is a cognitive composite developed to be

sensitive to AD-related cognitive impairment and consists of

episodic memory, executive function, and global cognition

measures. We created a PACC5 (44) cognitive composite

using an average of z-scored measures of RAVLT delayed

recall (included twice), MMSE, Digit-Symbol-Test, and Word

fluency animals. PACC weighs heavily on aspects of episodic

memory, and PACC5 additionally incorporates elements of

semantic memory, i.e., category fluency.

None of the participants had a dementia diagnosis at

baseline (age = 70) as defined by the diagnostic and statistical

manual of mental disorders, 3rd ed., revised (DSM–III–R)

criteria. The MMSE (45) was used to measure global cognitive

function, and the Clinical Dementia Rating (CDR) (46) to

measure clinical dementia staging. At follow-up, 152

participants had a CDR score of 0 (cognitively normal), and

20 had a score of 0.5 (questionable dementia). The CDR is

based on six areas of cognitive and functional performance

(memory, orientation, judgment and problem solving,

community affairs, home and hobbies, and personal care). No

participant had CDR 1 (mild dementia), CDR 2 (moderate

dementia), or CDR 3 (severe dementia).
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FIGURE 2

(A) ORR-LDR and (B) MDT-OS. ORR-LDR, Object-in-Room Recall Task; MDT-OS, Mnemonic Discrimination Task for Objects and Scenes. Used with
permission from neotiv GmbH.
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Statistical analyses

Linear regressions were used to determine the relationships

between demographics (sex and education), contextual factors

(distractions), device-specific factors (screen size), self-rated

experience (self-reported task performance, task

concentration, task interest, and task effort) and mobile app-

based cognitive measures. Group differences were assessed

using independent samples Welch’s t-tests, Student’s t-tests,

and χ2 test. The relationships between the mobile app-based

cognitive measures and conventional neuropsychological tests

were assessed using Spearman correlation. Test-retest

reliability was calculated using intraclass correlation coefficient

(ICC) (30) of individual sessions. We also calculated ICC

based on mean-rating (for an average of two sessions) (k = 2),

absolute-agreement, mixed-effects model. ICC was reported

alongside their 95% confident intervals. All tests were two-

tailed, and a p-value <0.05 was considered statistically

significant. All statistical analyses were performed using

R Statistical Software (version R 4.1.2) (47). Recruitment for

the study is ongoing. Here we analyzed the data collected up

until March 1, 2022.
Results

Recruitment, adherence, and filtering

We included study participants who completed at least one

test session of the two cognitive tasks (each session consisting of

two phases). As one complete test session was scheduled per

month, at least two months were needed to collect the data. A

total of 64% of the participants used smartphones and 36%

tablets; 41% used android OS and 59% iOS devices. To date,

172 participants have signed the informed consent and

initiated the mobile app-based cognitive testing, of which

100% have finished the first phase of the first month, 92%

(n = 158) have completed all phases for the first month of

testing, 75% (n = 129) have finished the first phase of the

second month of testing, and 69% (n = 119) have completed

the second phase of the second month of testing. As this is an

ongoing study, and participants have been informed that it is

acceptable to perform the test sessions even after the

scheduled time point, we cannot yet draw any final

conclusions on participant attrition (e.g., drop-outs).

In order to address potential recruitment bias, we performed

group comparisons between those that signed the informed

consent and initiated the mobile app-based cognitive testing (n

= 172) and those that have not yet chosen to participate (n =

520). The groups did not differ in terms of sex (p = .102) and

CDR (p = .790). While years of education (p = .043) and

MMSE (p = .002) did significantly differ between the groups,
Frontiers in Digital Health 06
the mean differences were only minimal (0.16 difference in

MMSE score and 0.74 difference in education years). Thus,

there was a very small effect where the group that did enroll in

the mobile app study was slightly better educated and had a

minimally higher global cognitive function.

In the final dataset, we filtered the data according to the

following criteria. For ORR-LDR, 35% (n = 56) of the

participants performed the delayed recall after a longer time

than allowed (72 h). We decided to exclude these sessions

from further analyses because the time between encoding

and retrieval (time-to-retrieval) was negatively associated

with task performance (β = −0.15, p < .001, 95% CI, −0.21,
−0.10), and these data might obfuscate the results. The

proportion of participants exceeding the restriction for time-

to-retrieval was smaller in participants with CDR 0.5 than

those with CDR 0. For participants with CDR 0.5, only 25%

were excluded. Furthermore, a chi-square test of

independence showed no significant association between

CDR score (0 vs. 0.5) and correct vs. incorrectly performed

time-to-retrieval. Additionally, we restricted the number of

timeouts (e.g., not responding to a given trial in time) as

technical problems or other issues cannot be ruled out. The

minimum percentage of answered trials was set to 60% of

total task items. This restriction resulted in the further

exclusion of eight participants for ORR-LDR and none for

MDT-OS.

The final dataset consisted of 94 (CDR 0 N = 81; CDR 0.5 =

13) participants that successfully completed the ORR-LDR and

119 (CDR 0 N = 102; CDR 0.5 = 17) participants that

successfully completed the MDT-OS.
Clinical measures

Demographics and descriptive statistics for mobile app-

based and conventional neuropsychological measures are

described in Table 1. T-tests comparing these measures of

participants with CDR 0 and CDR 0.5 showed that the groups

did not differ on any of the measures besides MMSE score

(p = .021), MDT-OS (p = .040), and Word fluency FAS

(p = .039) where participants with CDR 0 showed slightly

better performance.
Relationship to demographics

The associations between the mobile app-based cognitive

measures and sex and years of education were investigated

using multiple linear regression models. Years of education

was not associated with task performance on any of the tasks

(ORR encoding, β = 0.02, p = .790, 95% CI, −0.10, 0.14; ORR-
LDR, β = 0.08, p = .315, 95% CI, −0.08, 0.26; MDT-OS phase

1, β = 0.00, p = .072, 95% CI, −0.00, 0.02; MDT-OS phase 2,
frontiersin.org
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TABLE 1 Demographics and cognitive measures.

Demography Total (n = 172) CDR 0 (n = 152) CDR 0.5 (N = 20) CDR 0 vs. 0.5 (p-value)

Sex (Male/Female) 88/84 80/72 8/12 0.760

Age 77.05 (0.30) 77.04 (0.31) 77.17 (0.15)

Age range 76–77 76–77 76–77

Education 14.13 (3.82) 14.15 (3.75) 13.93 (4.42) 0.801

Cognitive measures

Mobile app-based

ORR-LDR (n = 94a) 11.93 (3.44) 11.90 (3.26) 12.08 (4.54) .836

MDT-OS (n = 119a) 0.38 (0.16) 0.39 (0.16) 0.31 (0.13) .040*

Global

PACC5 composite 0.00 (0.68) 0.03 (0.66) −0.27 (0.81) .065

MMSE 29.09 (1.21) 29.22 (1.00) 28.10 (1.97) .021*

Speed and attention

TMT A 40.94 (14.45) 40.23 (15.38) 46.30 (15.25) .099

Digit span 15.37 (4.26) 15.36 (4.30) 15.35 (4.04) .981

Memory

RAVLT encoding 38.50 (9.30) 38.81 (9.26) 36.15 (9.56) .231

RAVLT delayed recall 6.82 (3.40) 6.91 (3.41) 6.15 (3.28) .347

BVMT encoding 16.54 (6.15) 16.46 (6.38) 17.04 (4.71) .756

BVMT delayed recall 7.45 (2.54) 7.44 (2.67) 7.50 (1.52) .913

Visuospatial

Block Design 21.46 (6.70) 21.76 (6.77) 19.50 (6.10) .161

Executive

Digit-Symbol-Coding 50.68 (11.83) 50.76 (11.44) 50.75 (14.69) .977

Word fluency animals 22.19 (5.60) 22.26 (5.69) 21.65 (4.92) .647

TMT B 96.08 (39.50) 93.83 (35.39) 113.10 (61.04) .182

Word fluency FAS 45.20 (14.47) 46.03 (14.23) 38.95 (15.08) .039*

Stroop 36.29 (10.76) 36.53 (10.67) 34.55 (11.50) .442

Results are presented as mean and SD, unless otherwise stated. Independent samples t-test was used for significance testing, except for sex, where chi-square test

was used.

ORR-LDR, Object-in-Room Recall Task; MDT-OS, Mnemonic Discrimination Task for Objects and Scenes; PACC5, Preclinical Alzheimer’s Cognitive Composite;

MMSE, Mini-Mental State Examination; RAVLT, Rey Auditory Verbal Learning Test; TMT, Trail Making Test; BVMT, Brief Visuospatial Memory Test—Delta version.
aThese numbers represent participants that correctly completed all phases after initial filtering (see section 3.1).

*p < .05.

Öhman et al. 10.3389/fdgth.2022.933265
β = 0.00, p = .407, 95% CI, −0.01, 0.01). Likewise, sex was not

associated with task performance on any of the tasks (ORR

encoding, β =−0.39, p = 0.402, 95% CI, −1.31, 0.53; ORR-

LDR, β = 1.02, p = .153, 95% CI, −0.38, 2.43; MDT-OS phase

1, β =−0.00, p = .963, 95% CI, −0.07, 0.07; MDT-OS phase 2,

β =−0.02, p = .497, 95% CI, −0.09, 0.04).
Self-rated task experience

Participants’ experiences using mobile app-based

cognitive tasks in a remote unsupervised setting give insight

into the acceptance and tolerability of these novel measures.

Table 2 outlines the full details of the self-rated task

experience. Directly following each test phase, the
Frontiers in Digital Health 07
participants were asked to report whether they had been

distracted and to rate their subjective concentration, task

performance, task interest, and task effort. Few (an average

of 10%) participants reported that they were distracted by

something in their environment. A clear majority (an

average of 95%) stated that their concentration was average

or better. Self-rated task interest was good, with very few

(an average of 5%) participants rating the tasks

uninteresting. Questions regarding self-rated task effort

indicated that a minority (22%) found the encoding phase

of ORR-LDR demanding. In comparison, 57% found the

long-term delayed recall phase demanding. A clear majority

(an average of 78%) deemed both phases of the MDT-OS

demanding. Again, a clear majority (89%) rated their

performance as average or better for the encoding phase of
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TABLE 2 Self-reported measures.

Self-reported task disturbance

Not distracted during task Distracted during task

ORR encoding 89% 11%

ORR-LDR 90.4% 9.6%

MDT-OS (phase 1) 89.9% 10.1%

MDT-OS (phase 2) 89.9% 10.1%

Self-reported task concentration

Very bad Bad Average Good Very good

ORR encoding 0% 2.3% 23.3% 51.7% 22.7%

ORR-LDR 0% 6.4% 34% 44.7% 14.9%

MDT-OS (phase 1) 0.8% 1.5% 24.8% 48.8% 24%

MDT-OS (phase 2) 1.7% 3.4% 21% 53.8% 20.2%

Self-reported task performance

Very bad Bad Average Good Very good

ORR encoding 0.6% 9.9% 30.8% 43% 15.7%

ORR-LDR 7.4% 45.74% 38.3% 8.5% 0%

MDT-OS (phase 1) 8.5% 32.6% 47.3% 11.6% 0%

MDT-OS (phase 2) 15.7% 45.4% 34.5% 4.2% 0%

Self-reported task interest

Very uninteresting Uninteresting Neither Interesting Very interesting

ORR encoding 0.6% 1.7% 12.2% 64% 21.5%

ORR-LDR 0% 4.3% 19.1% 64.9% 11.7%

MDT-OS (phase 1) 0.8% 3.1% 22.5% 58.9% 14.7%

MDT-OS (phase 2) 1.7% 5.9% 22.7% 58.8% 10.9%

Self-reported task effort

Very demanding Demanding Neither Undemanding Very undemanding

ORR encoding 0% 21.5% 27.9% 37.2% 13.4%

ORR-LDR 10.6% 46.8% 35.1% 6.4% 1.1%

MDT-OS (phase 1) 19.4% 51.9% 24% 3.9% 0.8%

MDT-OS (phase 2) 28.6% 55.5% 15.1% 0.8% 0%

Note that percentages may not equal 100% because of rounding.

ORR-LDR, Object-in-Room Recall Task; MDT-OS, Mnemonic Discrimination Task for Objects and Scenes.
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ORR-LDR, while only 47% did for the long-term delayed

recall. For MDT-OS, 59% rated their performance as

average or better for the first phase, while 39% did so for

the more challenging second phase.

Self-rated task concentration was not significantly associated

with task performance on ORR-LDR (β = 0.86, p = .052, 95% CI,

−0.00, 1.72) and MDT-OS (phase 1: β = 0.04, p = .087, 95% CI,

−0.00, 0.08; phase 2: β = 0.02, p = .361, 95% CI, −0.02, 0.06).
Self-rated task performance was significantly positively

associated with task performance on MDT-OS phase 1 (β =

0.06, p = .003, 95% CI, 0.02, 0.10), but not ORR-LDR (β =
Frontiers in Digital Health 08
0.84, p = .081, 95% CI, −0.11, 1.79) and MDT-OS phase 2

(β = 0.03, p = .239, 95% CI, −0.02, 0.07). Self-rated task

interest was not significantly associated with task performance

on ORR-LDR (β = 1.14, p = .344 95% CI, −1.25, 3.54) and

MDR-OS (phase 1: β = 0.10, p = .078, 95% CI, −0.01, 0.21;

phase 2: β = 0.11, p = .058, 95% CI, −0.00, 0.22). Self-rated

task effort was significantly positively associated with task

performance on MDR-OS phase 1 (β = 0.04, p = .036, 95% CI,

0.00, 0.09), but not with ORR-LDR (β = 0.10, p = .829, 95%

CI, −0.78, 0.98) and MDR-OS phase 2 (β = 0.04, p = .163, 95%

CI, −0.01, 0.09).
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Distribution of test results

We examined the basic psychometric properties of each

phase of the mobile app-based tasks, which is important given

that a task’s application area is both to detect subtle

impairment in preclinical AD and clinical groups with more

pronounced cognitive impairment. Floor and ceiling effects

were defined by participants obtaining either the minimum or

maximum score of a task. While we observed an expected

ceiling effect in the ORR encoding phase, there were no
FIGURE 3

Distribution of test scores across (A) ORR-LDR and (B) MDT-OS. ORR-LDR, O
for Objects and Scenes.
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apparent floor or ceiling effects in the delayed recall phase and

neither in the MDT-OS. However, in ORR-LDR, 10% (n = 9)

of participants scored below chance following a delay period of

up to 72 h. Except for ORR encoding, all tasks were normally

distributed (skewness =−0.07–0.32, kurtosis = 2.84–3.04). The

skewness of the ORR encoding (skewness =−1.80, kurtosis =
6.53) can be attributed to the nature of the encoding phase,

which is meant to ensure that the items have been encoded

successfully. See Figure 3 for the distribution of test results

across the outcome measures of the mobile app-based tasks.
bject-in-Room Recall Task; MDT-OS, Mnemonic Discrimination Task
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Test-retest reliability

The test-retest reliability of unsupervised tasks is relatively

unexplored. It becomes important when considering the

longitudinal cognitive trajectory of participants, regardless of

whether the application of the specific task is a single

measurement or the average across multiple measurements.

Test-retest reliability measured by ICC using single sessions

(n = 35) was poor for ORR-LDR when time-to-retrieval was

restricted to a maximum of 72 h (see Table 3) (range: ICC

0.23–0.44; Session one vs. session two [ICC = 0.23, 95% CI,

(−0.12, 0.52)], session one vs. session three (ICC = 0.44, 95%

CI, 0.12, 0.67), session one vs. session four (ICC = 0.26, 95%

CI, −0.05, 0.54), session two vs. session three (ICC = 0.33,

95% CI, 0.00, 0.595), session two vs. session four (ICC = 0.36,

95% CI, 0.05, 0.61), session three vs. session four (ICC = 0.33,

95% CI, 0.00, 0.59). For MDT-OS, test-retest reliability using

single sessions (n = 53) was moderate [range: ICC 0.48–0.66;

Session one vs. session two (ICC = 0.48, 95% CI, 0.24, 0.67)],

session one vs. session three (ICC = 0.57, 95% CI, 0.35, 0.72),

session one vs. session four (ICC = 0.51, 95% CI, 0.29, 0.69),

session two vs. session three (ICC = 0.62, 95% CI, 0.34, 0.78),

session two vs. session four (ICC = 0.52, 95% CI, 0.29, 0.70),

session three vs. session four (ICC = 0.66, 95% CI, 0.45, 0.80).

In contrast, ICC using the average of two sessions yielded

increased test-retest reliability—moderate for ORR-LDR

(ICC = 0.70, 95% CI, 0.41, 0.85) and good for MDT-OS

(ICC = 0.82, 95% CI, 0.70, 0.90)

TABLE 4 Cognitive measures and correlation to mobile app-based
measures.

Cognitive
measures
(PACC5)

Cognitive
domain

Correlation
ORR-LDR

Correlation
MDT-OS

PACC5 composite Multi-domain r = 0.44, p < .001* r = 0.32, p < .001*

MMSE Multi-domain r = 0.06, p = .609 r = 0.03, p = .724

RAVLT delayed recall Memory r = 0.40, p < .001* r = 0.32, p < .001*

Digit-Symbol-Coding Executive r = 0.28, p = .008* r = 0.14, p = .136

Word fluency animals Executive r = 0.19, p = .060 r = 0.07, p = .418
Influence of contextual and device-
specific factors

In an unsupervised test setting, it is of interest how

contextual and device-specific factors affect task performance.

Using multiple linear regression models, we explored how the

presence of distractions during tasks and device screen size

were associated with task performance. The presence of
TABLE 3 Psychometric properties.

Psychometric properties ORR-LDR MDT-OS

Ceiling effect (percentage) 0% 0%

Floor effect (percentage) 0% 0%

Skewness 0.32 −0.07

Kurtosis 3.04 2.84

Range 5–22 −0.09–0.78

SD 3.44 0.16

ICC (single sessions) 0.23–0.44 0.48–0.66

ICC (average of two sessions) 0.70 0.82

SD, standard deviation; ORR-LDR, Object-in-Room Recall Task; MDT-OS,

Mnemonic Discrimination Task for Objects and Scenes.
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distractions was associated with poorer performance for the

encoding phase of ORR-LDR [β =−1.94, p = .042, 95% CI

(−3.09, −0.20)]. The other tasks were not associated with the

presence of distractions (ORR-LDR, β =−0.75, p = .571, 95%

CI, −3.39, 1.88; MDT-OS phase 1, β = 0.10, p = .078, 95% CI,

−0.21, 0.01; MDT-OS phase 2, β =−0.11, p = 0.058, 95% CI,

−0.22, 0.00). Screen size was not associated with task

performance on any of the tasks (ORR encoding, β = 0.02,

p = .575, 95% CI, −0.06, 0.10; ORR-LDR, β = 0.00, p = .915,

95% CI, −0.12, 0.13; MDT-OS phase 1, β = 0.00, p = .933, 95%

CI, −0.00, 0.00; MDT-OS phase 2, β =−0.00, p = 0.900, 95%

CI, −0.00, 0.00).
Validation against conventional cognitive
measures

As part of the validation, we investigated the task’s construct

validity regarding conventional cognitive measures (see Table 4

and Figures 4–6). The relationships were statistically significant

and positive (i.e., better mobile app-based memory performance

was associated with better performance on the conventional

cognitive tests). ORR-LDR and MDT-OS were weakly to

moderately correlated with the PACC5 (r = 0.44, p < .001, and

r = 0.32, p < .001). ORR-LDR showed weak to moderate

relationships with PACC5 subtests RAVLT delayed recall (r =
TMT A Speed/attention r = 0.21, p = .039* r = 0.08, p = .377

TMT B Executive r = 0.10, p = .355 r = 0.21, p < .020*

Digit span Speed/attention r = 0.15, p = .165 r = 0.17, p = .077

Block Design Visuospatial r = 0.21, p = .060 r = 0.28, p = .003*

Word fluency FAS Executive r = 0.18, p = .078 r = 0.14, p = .129

Stroop Executive r = 0.39, p < .001* r = 0.26, p = .005*

RAVLT learning Memory r = 0.27, p = .010* r = 0.33, p < .001*

BVMT learning Memory r = 0.26, p = .060 r = 0.17, p = .175

BVMT delayed recall Memory r = 0.37, p = .007* r = 0.19, p = .122

The correlation values represent Spearman’s Rho.

ORR-LDR, Object-in-Room Recall Task; MDT-OS, Mnemonic Discrimination

Task for Objects and Scenes; PACC5, Preclinical Alzheimer’s Cognitive

Composite; MMSE, Mini-Mental State Examination; RAVLT, Rey Auditory

Verbal Learning Test; TMT, Trail Making Test; BVMT, Brief Visuospatial

Memory Test—Delta version.

*p<.05.
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FIGURE 4

ORR-LDR, MDT-OS and correlation with PACC5. (A) ORR-LDR and (B) MDT-OS were weakly to moderately correlated with PACC5 (r = 0.44, p < .001,
and r = 0.32, p < .001). The correlation values represent Spearman’s Rho. Colored dots represent Clinical Dementia Rating (CDR) 0 (black) and CDR
0.5 (orange). ORR-LDR, Object-in-Room Recall Task; MDT-OS, Mnemonic Discrimination Task for Objects and Scenes; PACC5, Preclinical
Alzheimer’s Cognitive Composite.
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0.40, p < .001) and Digit-Symbol-Coding (r = 0.28, p = 0.008).

MDT-OS was weakly associated with the PACC5 subtest

RAVLT delayed recall (r = 0.32, p < .001).

Next, we explored relationships between mobile app-based

memory tasks and all conventional cognitive measures

separated by cognitive domains (episodic memory, speed and

attention, executive function, visuospatial function). For

episodic memory measures, weak to moderate correlations

were observed with ORR-LDR (r = 0.27–0.40) and MDT-OS

(r = 0.32–0.33). A weak correlation was seen with ORR-LDR

(r = 0.21) for speed and attention, while MDT-OS showed no

significant correlation. Weak to moderate correlations were

observed between tests of executive function and ORR-LDR

(r = 0.28–0.39) and MDT-OS (r = 0.21–0.26). For visuospatial

functioning, a weak correlation was seen in relation to MDT-

OS (r = 0.28).

As mentioned in the methods section, the time between

follow-up in-clinic examination and the initial mobile app-

based test sessions differed across participants (mean = 11.19

months, SD = 6.55 months, range = 0.34–21.49 months). To

explore whether this affected the results, linear regressions

were performed using the time elapsed and conventional

cognitive tests as predictors and mobile app-based tasks as an

outcome. The model showed no significant associations for

time elapsed, indicating that the time elapsed between the

examinations did not significantly affect the correlation

between mobile app-based tasks and any of the conventional

cognitive tests.
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Discussion

In this study, we utilized remote and unsupervised mobile

app-based cognitive testing in a sample of older adults. We set

out to explore important aspects to consider when employing

unsupervised testing, including contextual factors, device-

specific factors, and individual traits. In our sample, we

found that these factors had very limited influence on task

performance. Our participants rated the tasks as challenging

but highly interesting at the same time. Importantly,

distractions were not associated with actual test performance

outcomes. We observed good psychometric properties, and

test-retest reliability for one session was initially poor-to-

moderate but increased significantly when using the average

of two sessions. Lastly, the mobile app-based cognitive

measures demonstrated construct validity concerning

meaningful in-clinic cognitive measures—including the

PACC5.

To investigate whether the outcomes of remote and

unsupervised digital cognitive assessments are comparable to

traditional cognitive measures, construct validity was

determined. This is usually accomplished by comparing novel

measures against conventional cognitive tests used in

controlled studies (14, 19, 21, 48–50). Our results showed

that, as expected, the correlation between mobile app-based

memory tasks and individual conventional cognitive measures

was strongest for episodic memory measures, indicating

convergent validity. In addition, they were related to tests of
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FIGURE 5

ORR-LDR and correlation with PACC5 subtests. ORR-LDR were weakly to moderately correlated with PACC5 subtests (A) RAVLT delayed recall (r =
0.40, p < .001) and (B) Digit-Symbol-Coding (r = 0.28, p = 0.008). ORR-LDR was not significantly correlated with the PACC5 subtests (C) Word
fluency animals and (D) MMSE. The correlation values represent Spearman’s Rho. Coloured dots represent Clinical Dementia Rating (CDR) 0
(black) and CDR 0.5 (orange). ORR-LDR, Object-in-Room Recall Task; RAVLT, Rey Auditory Verbal Learning Test; MMSE, Mini-Mental State
Examination; PACC5, Preclinical Alzheimer’s Cognitive Composite.
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timed executive function with weaker relationships to other

measures (discriminant validity).

A cognitive measure often used in the early stages of AD is

the PACC, and earlier studies have already compared

unsupervised cognitive assessments against the PACC in

similar samples. For example, a composite measure of the

Boston Remote Assessment for Neurocognitive Health

(BRANCH) (19) was strongly correlated with the PACC5 (r =

0.62) in cognitively normal participants. Another recent study
Frontiers in Digital Health 12
(34) used a composite of similar but not identical tasks as

used in this study and demonstrated a strong correlation to

PACC (r = 0.51) in cognitively normal individuals without

cognitive complaints. A study using the Ambulatory Research

in Cognition app (15) in primarily cognitively normal

participants (again using a composite of cognitive measures)

reported a strong correlation with a global composite similar

to the PACC (r =−0.53). Our study found that our mobile

app-based tasks were significantly associated with the PACC5
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FIGURE 6

MDT-OS and correlation with PACC5 subtests. (A) MDT-OS was weakly correlated with the PACC5 subtest RAVLT Recall (r = 0.32, p < .001). MDT-OS
was not significantly correlated with the PACC5 subtests (B) Digit-Symbol-Coding, (C) Word fluency animals, and (D) MMSE. The correlation values
represent Spearman’s Rho. Colored dots represent Clinical Dementia Rating (CDR) 0 (black) and CDR 0.5 (orange). MDT-OS, Mnemonic
Discrimination Task for Objects and Scenes; RAVLT, Rey Auditory Verbal Learning Test; MMSE, Mini-Mental State Examination; PACC5, Preclinical
Alzheimer’s Cognitive Composite.
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(r = 0.3–0.5), with similar effect sizes reported in previous work

(15, 19, 34). However, our study did not use a composite

measure but individual memory scores. As expected, they

were most strongly associated with conventional memory

measures (r = 0.27–0.40), which align nicely with relationships

of pure memory measures in the abovementioned studies (r =

0.30–0.47 and −0.22–0.32) (15, 19). Thus, our results support
the notion that the mobile app-based memory measures

assess relevant cognitive functions as confirmed by
Frontiers in Digital Health 13
conventional cognitive outcomes but also showed associations

with speed and executive function. It is important to note that

construct validity may prove initial validation for newly

developed cognitive tests. However, traditional cognitive tests

only weakly correlate with AD biomarkers in preclinical

stages. For example, the cross-sectional association between

amyloid-β and conventional cognitive tests in biomarker-

defined preclinical AD is generally weak (51–54). Thus, the

possible usefulness for specific disease-related applications
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may not primarily depend on the correlation with conventional

in-clinic tests (1). Furthermore, the correlation between

conventional cognitive tests measuring similar cognitive

domains does not consistently correlate strongly. For example,

in our sample, the correlation between the memory measures

RAVLT delayed recall and BVMT delayed recall correlated

only moderately (r = 0.39, p < .001).

If a task is too difficult, it is less useful for individuals with

more impaired cognitive function (floor effect)—the reverse is

true when a task is too easy (ceiling effect). We did not find

apparent floor or ceiling effects in our study population.

However, for ORR-LDR, 10% (n = 9) of participants scored

below chance which indicates that this specific delay period

(up to 72 h) might have been too difficult for some of the

participants of this old age sample. Future studies utilizing

this type of unsupervised and remote long-term delayed recall

should thus implement appropriate measures to strengthen

study adherence or limit the delay time to shorter time periods.

A challenge in administering long-term delayed recall tests

is that the test leader needs to contact the participant several

times over a period. This has traditionally been solved by

calling the participants the next day and asking them what

they remember from a list of words for example. The use of

mobile app-based tools has simplified this. In our study, we

remind participants using a push notification on their phone,

provided they have chosen to accept push notifications, and

ask them to log in the next day. However, a significant

proportion of participants performed the long-term delayed

recall (ORR-LDR) after the recommended time of 24 h. While

only 8% of test sessions had not been completed at all, many

(35%) were simply completed too late. This could be because

push notifications were not activated, they were not noticed,

or because the participant was occupied elsewhere the

following day. Although many participants completed the

long-term delayed recall too late, our analysis showed that the

proportion of data with increased delayed recall times outside

the schedule was not higher in participants with CDR 0.5 as

compared to those with CDR 0. This suggests that the

schedule is as feasible for participants with CDR 0.5 as those

with CDR 0, boding well for implementing this measure in

clinical groups (for example patients with mild cognitive

impairment).

One possibility to strengthen task completion within the

given time is to improve the clarity of the task instruction.

While the instructions were not detailing that the participants

should carefully follow the recommended time, we recently

optimized the instructions by adding clarifications regarding

the importance of the timing of the delayed recall. This is

particularly relevant in long-term delayed recall settings with

delay times that extend to the next day. Before the

participants initiate the task, they are now clearly informed

that they should ensure availability on the next day to

continue the task (“Tomorrow you will be asked about your
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memory of today’s task. Before you start today’s task, please

make sure that you are available for the next task at about the

same time tomorrow.”). It now needs to be evaluated whether

this will improve adherence to the study design in future studies.

Given the importance of adherence in unsupervised studies,

the participants’ experience of usability and tolerability is

especially important. The tasks were generally perceived as

interesting in our study and lower task interest was not

associated with actual task performance. We also collected

information about distractions and concentration during the

tasks, important confounders in an unsupervised test setting.

Few participants reported being distracted, and most could

focus well during tasks. This indicates that most participants

can find an environment where they can perform the tasks

undisturbed. While it still remains unclear what disturbances

did appear during the test sessions, our analyses showed that

experienced distractions and concentration did not affect task

performance. One rationale for using mobile app-based tools

is that cognitive data can be collected unobtrusively compared

to a clinic visit, thus reducing participant burden. Most

participants rated the tasks as rather challenging. Challenging

tasks might be beneficial following the idea that sensitive

cognitive tests likely need to be demanding for the participant

to allow for the detection of subtle cognitive impairment in

the preclinical phase of AD (55). However, how this will be

associated with long-term participation over time (23) will

need to be explored. For future practical implementation it

holds promise that most of the participants in our study rated

the tasks as interesting.

For future clinical implementation, sufficient test-retest

reliability is critical for a test assessing cognitive performance

over time. We initially reported poor–moderate test-retest

reliability using a single test session for our sample. However,

when using the mean across two sessions, test-retest reliability

increased to moderate–good. Note that reliability was

challenging for a single session of ORR-LDR. As reported

above, ORR-LDR showed increased variability in the time

between encoding and retrieval within and across participants

which was in turn associated with task performance. Thus,

variability in time between encoding and retrieval is likely an

important limitation for test-retest reliability in this case and

may increase in future studies with restricted delay periods.

The generally lower retest reliability for one test session

compared to the average of two test sessions is expected and

consistent with earlier work on short unsupervised memory

tests via mobile app-based approaches (14, 56). Test-retest

reliability for a single session in our study was lower

compared to conventional cognitive testing (57). However, the

increased retest reliability for an average of two sessions is

equal to or better than what has been reported for

conventional cognitive testing as well as computerized testing

(58). Given that one advantage of mobile app-based

approaches is that cognitive tasks can be administered
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repeatedly, we conclude that cognitive data in such settings

should be collected at several time points to obtain

significantly higher test-retest reliability.

Our study had several important limitations. First, our

sample was Swedish-speaking and very limited in terms of

cultural and language diversity. Future studies should attempt

to include cohorts with a more diverse background. Second, it

is essential to point out that this study was an experimental

study conducted in a convenience sample drawn from a larger

population-based study. Thus, we cannot rule out potential

biases in recruitment that might limit the generalizability of

our results. For example, persons that are cognitively healthier

might be more likely to consent to app-based studies.

Comparisons between those recruited to the app-based study

and those that so far have not been enrolled showed a

significant effect where the group that was enrolled in the

mobile app study was slightly better educated and showed

slightly higher global cognitive scores. This effect was,

however, minimal, and the groups did not differ regarding

clinical rating or sex ratio. Thirdly, some participants did not

strictly adhere to the study design (i.e., completing the long-

term delayed recall test after the recommended time limit),

resulting in missing data for a proportion of the participants.

Fourth, the present limited recruitment is also a potential

limitation (i.e., 172 of 692 have signed the informed consent

and initiated the testing). However, we anticipate that this

number will increase as the study continues. Lastly, the study

is so far missing AD biomarkers, including longitudinal CSF-

and neuroimaging-based biomarkers and clinical progression.

In conclusion, this study has explored the validity and retest

reliability of cognitive assessments obtained in unsupervised

environments which is critical to initiate cognitive testing

outside research centers on a large scale. Continued studies in

the H70 cohort will investigate the mobile app-based tasks in

relation to AD biomarkers and clinical progression, address

the potential issues of long-term adherence and report more

comprehensive experiences from participants.
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