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Machine Learning for Health (ML4H) has demonstrated efficacy in computer
imaging and other self-contained digital workflows, but has failed to
substantially impact routine clinical care. This is no longer because of poor
adoption of Electronic Health Records Systems (EHRS), but because ML4H
needs an infrastructure for development, deployment and evaluation within
the healthcare institution. In this paper, we propose a design pattern called a
Clinical Deployment Environment (CDE). We sketch the five pillars of the
CDE: (1) real world development supported by live data where ML4H teams
can iteratively build and test at the bedside (2) an ML-Ops platform that
brings the rigour and standards of continuous deployment to ML4H (3)
design and supervision by those with expertise in AI safety (4) the methods
of implementation science that enable the algorithmic insights to influence
the behaviour of clinicians and patients and (5) continuous evaluation that
uses randomisation to avoid bias but in an agile manner. The CDE is
intended to answer the same requirements that bio-medicine articulated in
establishing the translational medicine domain. It envisions a transition from
“real-world” data to “real-world” development.
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Introduction

Bold claims and huge investments suggest Machine Learning (ML) will transform

healthcare (1). High impact publications showcase precision models that predict

sepsis, shock, and acute kidney injury (2–4). Outside healthcare, tech titans such as

AirBnB, Facebook, and Uber create value from ML despite owning “no property, no

content and no cars” (5). Inspired by this, and very much aware of the flaws and

unwarranted variation in human decision making (6), government and industry are

now laying heavy bets on ML for Health (ML4H) (7, 8).

Widespread adoption of electronic health records (EHR) might be thought a

sufficient prerequisite for this ambition. Yet while EHR adoption is growing at pace
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(9), those ML4H models that have reached the market rarely use

the EHR. They are instead embedded in isolated digital

workflows (typically radiology) or medical devices (10). Here

the context of deployment is static and self-contained

(imaging), or fully specified (devices), and translation has

proved easier to navigate.

In contrast, the EHR is in constant flux. Both the data and

the data model are updating. New wards open, staffing patterns

are adjusted and from time to time major incidents (even global

pandemics) disrupt everything. There are multiple interacting

users, and eventually there will be multiple interacting

algorithms, and organizations will face the ML equivalent of

poly-pharmacy (11). Algorithms will require stewards (12).

Whilst the aforementioned high impact prediction models are

developed on real-world data, this is not the same as real-

world development. Data are either anonymized and analyzed

offline, or moved out of the healthcare environment into an

isolated Data Safe Haven (DSH) [also known as Trusted

Research Environment (TRE)] (13). This separation is the first

fracture leading to the oft-cited AI chasm (14) leaving the

algorithms stranded on the laboratory bench.

A future that sees ML4H generate value from the EHR

requires an alternative design pattern. TREs excel at meeting

the needs of population health scientists but they do not have

the full complement of features required to take an ML4H

algorithm from bench-to-bedside. Using drug development as

an an analogy, a TRE is custom made for drug discovery not

translational medicine (15).

In this paper, we describe the functional requirements for a

Clinical Deployment Environment (CDE) for translational

ML4H. These requirements map closely to the classical

components of translational medicine, but differ in that

algorithms will require ongoing stewardship even after a

successful deployment. The CDE is an infrastructure that

manages algorithms with the same regard that is given to

medicines (pharmacy) and machines (medical physics).

Moreover, the value of ML4H will not just be from externally

developed blockbuster models, but will also derive from

specific and local solutions. Our vision of a CDE therefore

enables both development and deployment.

Our CDE is supported by five pillars:
1. Real World Development

2. ML-Ops for Health

3. Responsible AI in practice

4. Implementation science

5. Continuous evaluation
We describe these pillars below alongside figures and vignettes

reporting early local experience in our journey building this

infrastructure.
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1. Real world development

Real-world data (RW-Data) means the use of observational

data at scale augmented by linking across multiple data sources

to generate insights simply not available from isolated

controlled clinical trials (16). The FDA uses data from tens of

millions of patients in its Sentinel programme to monitor

drug safety, and the OpenSafely programme in the UK

generated impactful insights into COVID-19 within the first

few months of the global pandemic (17).

Given the sensitive nature of health data, these initiatives

depend on expanding investment into TREs (18). TREs are an

example of “data-to-modeler” (DTM) designs where data

flows from source (primary, secondary, social care and

elsewhere) to a separate, secure landing zone. Here research

teams write the code to link, clean and analyze the data.

Derived insights eventually return to the bedside through

clinical guidelines and policy. To date, DTM is also the

dominant design pattern in ML4H but this approach is

fundamentally flawed.

It is flawed because it imposes a separation between the

modeller and the end-user. ML4H is not concerned with better

guidelines or policy but with better operational and clinical

decision making. This requires the practitioner to work

alongside the end-user because excellent offline model

performance provides no guarantee of bedside efficacy.

Algorithms with inferior technical performance may even

provide greater bedside utility (19, 20). An inverted “modeler-

to-data” (MTD) paradigm was initially proposed to reduce

privacy concerns (data are no longer copied and shared but

analyzed in situ (21)), but we see important additional value in

that it forces “real-world development” (RW-Dev) and enables

the end-user to work with the modeler in rapid-cycle build-

test-learn loops. This first pillar of the CDE is the equivalent of

an internal TRE within the healthcare institution (21).

RW-Dev has four functional sub-requirements that

distinguish it from a TRE. (1) Firstly, data updates must

match the cadence of clinical decision making. For most

inpatient and acute care pathways, decisions are in real-time

(minutes or hours) at the bedside or in the clinic. (2)

Secondly, development using live data must be sandboxed and

so the clinical system responsible for care delivery is protected

(3) thirdly, privacy must be managed such that teams are able

to develop end-user applications that inevitably display patient

identifiable information (PII) alongside the model outputs: an

anonymous prediction is of little use to a clinician. (4)

Fourthly, attention must be paid to developer ergonomics.

Where development and deployment steps are separated

physically (the TRE paradigm) or functionally (via different

languages and technologies), ownership is often split between

two different teams. One team prepares the raw data and

develops the model, and another prepares the live data and

deploys the model. We argue instead that the same team
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should be able develop and deploy. This should accelerate

iteration, reduce cost and increase quality (22).

We illustrate this idea with a description of our local real-

world development platform in Figure 1, and provide an

extended description in the Supplementary Material.
2. ML-OPS (for health)

Hitherto in ML4H, the data and the algorithm have been

the “celebrity couple”. State-of-the-art models trained on RW-

Data deliver high profile publications (3, 4). But only a tiny

handful (fewer than 10 studies in a recent high quality

systematic review of nearly 2000 ML4H publications (23)),

were prospectively implemented. The standard offline “data-

to-modeler” (DTM) paradigm described above incurs a

significant but “hidden technical debt” that includes

configuration, data collection and verification, feature

extraction, analysis and process tools, compute and storage

resource management, serving infrastructure, and monitoring

(24). In fact, the code for the underlying ML model is

estimated to be at most 5% of the total code with the other

95% as additional code to make the system work. “Glue-

code”, “pipeline jungles”, and “dead experimental codepaths”

are some of the anti-patterns that make the transition into

production costly and hazardous.1

Agencies such as the FDA, EMA, and MHRA are working

toward safety standards for AI and machine learning, but the

majority of these efforts derive from medical devices

regulation. Treating Software as a Medical Device (SaMD) is

appropriate where the algorithms operate within a constant

and predictable environment (e.g. code embedded within a

cardiac pacemaker). But, as already argued, ML4H models

working with the EHR are likely to find themselves operating

in a significantly more complex landscape. This inconstant

environment where algorithms themselves may only have

temporary utility has parallels to the commercial environment

exploited so successfully by the tech giants.

These companies have cultivated an approach to model

deployment called “ML-Ops”. This combines the practices of

“DevOps” (a portmanteau of Software Development plus IT

operations) (22) that focuses on the quality and speed with

which software moves from concept to production, with

robust data engineering and machine learning. A typical ML-
1One infamous example from the financial services sector saw a firm lose

170, 000persecond(morethan400m in 45 min) when an outdated piece

of code leaked into production. The firm in question was fined a

further <$>12m for “inadequate safeguards” allowing “millions of

erroneous orders” (25).

Frontiers in Digital Health 03
Ops system monitors raw input data, checks for distribution

drift, provides a feature store to avoid train/serve skew and

facilitate collaboration between teams, and maintains an

auditable and monitored model repository (26). We present a

prototype implementation interacting with the EHRS in

Figure 2 (called FlowEHR).

This constant adjustment of algorithms based on their

continuously measured quality and performance needs a

workforce as well as a technology stack. Just as the safe

delivery of medicines to the bedside is the central activity of a

hospital pharmacy team, the safe delivery of algorithms will

require the development of similarly skilled and specialized

practitioners, and we should expect to see clinical ML-Ops

departments in the hospital of the future. Others have made

similar proposals and labeled this as “algorithmic

stewardship” or “AI-QI” (12, 27). Similarly, the FDA is now

proposing “automatic Algorithmic Change Protocols” (aACP)

and proposals have been advanced to guard against gradual

deterioration in prediction quality (“biocreep”) (28, 29).
3. Responsible AI in practice

Pillars 1 and 2 should engender well designed and well

engineered algorithms, but they do not protect against the

unintentional harm that AI may induce. Algorithms can only

learn from a digital representation of the world that

representation in turn cannot encode moral or ethical

standards. Unfair outcomes, discrimination against sub-

populations and bias are all reported shortcomings (30). In a

dynamic setting, risk can also arise in the form of degraded

predictive performance over time. Models that modify

clinician’s behavior alter patient profiles by design, but

predictive success today inevitably erodes future performance

by rendering obsolete the historical patterns that drove the

performance of the original model (31). Responsible AI in

practice requires a systems approach that preempts and safe-

guards against these potential risks to patients. We highlight

three promising responses to components of this challenge

that need to become part of the risk management approach

for ML4H.
3.1. Model explainability

We argue that model explainability (Explainable Artificial

Intelligence [XAI]) methods need to be prioritized to help

systematize and coordinate the processes of model

troubleshooting by developers, risk-management by service

providers, and system-checks by auditors (32–35). Most AI

models that operate as “black-box models” are unsuitable for

mission-critical domains, such as healthcare, because they

pose risk scenarios where problems that occur can remain
frontiersin.org
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FIGURE 1

Our real-world development is performed on the Experimental Medicine Application Platform (EMAP). EMAP is a clinical laboratory within which
ML4H researchers can iteratively build, test and gather feedback from the bedside. It unifies the data and the tools for off-line and online
development of ML4H models (see figure and the (numbers) in the following sentences that refer to objects in the figure). In brief, EMAP builds a
patient orientated SQL database from Health Level 7 version 2 (HL7v2) messages that are being exchanged between hospital systems. HL7v2
messages are ubiquitous in health care, and the de facto standard for internal communication. Rather than multiple pairwise connections
between different hospital electronic systems, an integration engine acts as a single hub that routes HL7 messages, and where necessary
translates to ensure compatibility. EMAP copies each message passing through the integration engine to a PostgreSQL database, the Immutable
Data Store (IDS) (1). A message reader (2) processes each live message to an interchange format so that downstream processing is insulated
from local HL7 implementation. Separately, the table reader (6) processes historical data (e.g. from the reporting database) to the same
interchange format. Live messages take priority over historical messages in a queue that feeds the event processor (3). This links each message
to a patient and a hospital visit, makes appropriate updates for out of order messages, and merges when separate identifiers are recognised to
represent the same patient. A full audit trail is maintained. Each event updates a second live PostgreSQL database, the User Data Store (UDS) (4).
The hospital hosts Jupyter and RStudio servers, and a Linux development environment is provided that allows docker deployment, installation of
analysis libraries and frameworks, exposes SSH and HTTPS services, and allows user verification against the hospital active directory. (5) A typical
workflow might include investigation and experimentation in a Jupyter Notebook with data from the UDS, then using a small network of docker
containers to run the development script, log outputs to a testing database, and report to users via email or a locally hosted web application or
dashboard. A fuller explanation is available in the Supplementary Material (Section 2: EMAP data flows).

Harris et al. 10.3389/fdgth.2022.939292

Frontiers in Digital Health 04 frontiersin.org

https://www.frontiersin.org/articles/10.3389/fdgth.2022.939292/full#supplementary-material
https://doi.org/10.3389/fdgth.2022.939292
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 2

Our ML-Ops platform is called FlowEHR. Moving from left to right across the figure, the system monitors raw input data including checks for
distribution shift, builds features with testable and quality controlled code, makes those features available to for both training and predictions to
avoid train/serve skew, and maintains an auditable and monitored model repository.

Harris et al. 10.3389/fdgth.2022.939292
masked and therefore undetectable and unfixable. We

acknowledge recent critiques (36, 37) of explainability

methods that argue the methods cannot yet be relied on to

provide a determinate answer as to whether an AI-

recommendation is correct. However, these methods do

highlight decision-relevant parts of AI representations, and

offer promise in measuring and benchmarking interpretability

(38, 39). They are particularly promising for risk management

as they can be used to structure a systematic interrogation of

the trade-off between interpretability, model accuracy and the

risk of model misbehavior.
3.2. Model fail-safes

Prediction models that map patient data to medically

meaningful classes are forced to predict without the option

to flag users when the model is unsure of an answer. To

address this problem, there is good evidence that methods

such as Bayesian deep learning and various uncertainty

estimates (40) can provide promising ways to detect and

refer data samples with high probability of misprediction for

human expert review (41–43). These fail safes, or selective

prediction approaches should be designed into support

systems to preempt and mitigate model misbehavior (29, 44–

47). Of note, the European Commission High-Level Expert

Group on AI presented guidelines for trustworthy AI in
Frontiers in Digital Health 05
April 2019 with such recommendations: for systems that

continue to maintain human-agency via a human-in-the-

loop oversight. This may even permit less interpretable

models to operate when implemented in conjunction with an

effective fail-safe system.
3.3. Dynamic model calibration

As discussed, models that influence the evolution of its own

future input data are at risk of performance deterioration over

time due to input data shifts (48). In such cases, continual

learning via calibration drift detection and model recalibration

(27, 49) provides a promising solution but remains a

challenging paradigm in AI. Recalibration with non-stationary

incremental data can lead to catastrophic forgetting when the

new data negatively interferes with what the model has

already learned (50), or a convergence where the model just

predicts its own effect and thus should not be updated (31).

On the other hand, models can propose poor decisions

because of the inherent biases found within the original

dataset. In this case, dynamic model recalibration is unlikely

to be sufficient and larger model revisions may be required.

Here Pillar 1 (RW-dev) with suitable audit and monitoring

via Pillar 2 (ML-Ops) will be required to overcome what

would otherwise be a learning process encumbered by

regulatory barriers (51).
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4. Implementation science

A well designed, safe, and responsible AI algorithm may still

be ineffective if it does not reach a modifiable target on the

clinical pathway (19). Unlike medications, algorithms can only

effect health by influencing the behavior of clinicians and

patients. This translational obstacle parallels the second arm

of translational medicine (T2): implementation science (15).

Behavior change, in most instances, will be via a modification

of the choice architecture (passive) (52, 53) or via interruptive

alerts (active) embedded in the EHR (53). Effective

implementation requires a multi-disciplinary approach

including human-computer interaction, behavioral science,

and qualitative analysis (54).

We strongly argue that this task will be more difficult if

done offline and in isolation. Pillar 1 crucially permits not

just tuning of the technical performance of the algorithm but

rapid build-test-learn cycles that directly involve the target

user and the clinical pathway in question. This approach will

reduce costs and improve impact, sometimes leading to trade-

offs which might appear surprising to those developing away

from the bedside (11, 20). This efficiency will again depend

on the problem space: where the algorithmic target depends

on information arising from the EHR rather than an isolated

device or image, and where the pathway involves multiple

end-users, then successful implementation will be near

impossible if done sequentially (development then

deployment) rather than iteratively (54, 55). Academic health

science centres must become design “laboratories” where

rapid prototyping at the bedside crafts the deployment

pathway for effectiveness (T2) rather than just efficacy (T1) (15).

Investigations to define how system can influence behavior

will need specialist support and tooling. This might require

tools embedded within the user interface to evaluate and

monitor user interaction, and capture user feedback (56), or

directed implementation studies (57).

Despite the oft cited risks of alert fatigue with Clinical

Decision Support Systems (CDSS) (58), there is good evidence

that well designed alerts can be impactful (53, 59, 60). Overt

behavioural modifications will need a mechanism to explain

their recommendation (as per XAI) or generate trust (see

Pillar 5) (61). Trust will possibly be more important where

behavior modification is indirect through non-interruptive

techniques (e.g. re-ordering preference lists or otherwise

adapting the user interface to make the recommended choice

more accessible).
5. Continuous clinical evaluation

Our analogy with translational medicine breaks down at the

evaluation stage. For drug discovery, evaluation is via a
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randomized controlled trial (RCT). Randomization handles

unanticipated bias and ML4H should hold itself to the same

standard but of 350,000 studies registered on

ClinicalTrials.gov in 2020, just 358 evaluated ML4H, and only

66 were randomized (62). As usual for ML4H, those RCTs

were not interacting with EHR data. They were evaluations of

algorithms supporting imaging, cataract screening,

colonoscopy, cardiotocographs and more (63–69).

Where the ML4H intervention delivers a novel biological

treatment strategy, then it is appropriate to reach for the full

paraphenalia used in Clinical Trials of Investigational

Medicinal Products (CTIMPs) (2). But in many cases,

algorithms will be used to optimize operational workflows and

clinical pathways. These pathways may be specific and

contextual rather than generalizable. Poor external validity is

not a critique: an algorithm that is useful or important in one

institution does not have to be relevant in the next (the

“myth of generalizability”) (70). Moreover, the algorithm is

not the same as the patented and fixed active ingredient in a

medicinal product. This is no single point in time nor single

host environment at which it can be declared enduringly

effective. This means that institutions deploying and relying

on these tools need a strategy for rapid continuous clinical

and operational evaluation.

This time the EHR may provide an advantage instead of just

additional complexity. Since ML4H algorithms must be

implemented through some form of direct or indirect CDSS,

then the next logical step is to randomize the deployment of

those alerts. This in itself is not novel. Randomized

deterministic alerts from CDSS are part of the standard

evaluation toolkit for quality improvement initiatives in at

NYU Langone (71), and for research elsewhere (72). At NYU

Langone, such tooling permitted a small team to deliver 10

randomized trials within a single year (71).

The final pillar in our CDE uses the same approach for the

probabilistic insights derived from ML4H. Excellent patient and

public involvement, and ethical guidance, will be required to

distinguish those algorithms that require per patient point-of-

care consent from those that can use opt-out or cluster

methods. But we think that latter group is large for two

reasons. Firstly, patients are exposed to varying treatment

regimes by dint of their random interaction with different

clinicians based on geography (the healthcare provider they

access) and time (staff holidays and shift patterns etc.). This

routine variation in practice is summarized as the 60-30-10

problem: 60% of care follows best practice; 30% is wasteful or

ineffective and 10% is harmful (6). Secondly, because the

intervention is informational, there is ethical precedent for

patient level randomization without consent (e.g. Acute

Kidney Injury alerts) (72). This hints at a larger and more

routine role for randomization in evaluation of algorithms.

This in turn is supported by a growing (52, 73, 74) but

sometimes conflicting (75) literature on opt-out consent in
frontiersin.org
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Learning Healthcare Systems (LHS). As such, progress will

require careful attention to a range of concerns.

At our own institution, we have extended this ethical and

safety case one step further, and we are piloting a study

design where the randomization is non-mandatory: a nudge

not an order (76). The clinician is explicitly invited to only

comply with the randomization where they have equipoise

themselves. Where they have a preference, they overrule the

alert (see Vignette 1 in the Supplementary Material).

Embedded randomized digital evaluation should permit

rapid evidence generation, and build the trust needed to

support the implementation described under Pillar 4.
Drug discovery parallels

We have described a template for a Clinical Deployment

Environment that supports the translation of ML4H

algorithms from bench to bedside. Although the requirements

differ, the objective is similar to that for drug development. A

similar approach to phasing has previously been proposed for

(biomarker) prediction models (77).

Most ML4H that derives value from the EHR is in the pre-

clinical phase. In drug development, the objective of this phase

is to identify candidate molecules which might make effective

drugs. Evaluation is conducted in vitro. Metrics used to

evaluate candidates, such binding affinity or other

pharmacokinetic properties, describe the properties of the

molecule (78). For ML, the objective is to identify candidate

algorithms, comprising of input variables and model

structures, which might make the core of an effective CDSS.

Evaluation is conducted offline on de-identified datasets.

Metrics used to evaluate candidates, such Area Under the

Receiver Operator Curve (AUROC), the F1 score and

calibration, describe the properties of the algorithm (79).

Phase 1 drug trials are the first time a drug candidate is

tested in humans. They are conducted in small numbers of

healthy volunteers. The aim of the trial is to determine the

feasibility of progressing to trials in patients by determining

drug safety and appropriate dosage. Drug formulation, the

processes by which substances are combined with the active

pharmaceutical ingredient to optimize the acceptability and

effective delivery of the drug, is also considered at this stage.

Phase 1 ML4H trials are the first time an algorithm candidate

is tested within the healthcare environment. The aim of the

trial is to determine the feasibility of progressing to trials of

efficacy by ensuring the algorithm implementation is safe,

reliable and able to cope with real-world data quality issues.

The development of a mechanism to deliver of algorithm

outputs embedded in the clinical workflow is also be

considered at this stage.

Phase 2 drug trials involve recruitment of small numbers

patients with the disease of interest, typically 50–200. The aim
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is to determine drug efficacy at treating the disease. Treating

clinicians are involved in so far as they must agree to

prescribe the drug for their patients. The trials are often too

short to determine long term outcomes, therefore surrogate

measures such biomarker status or change in tumour size are

used as endpoints (80). Phase 2 ML4H trials involve

recruitment of small numbers of clinicians making the

decision of interest, typically 5–10. The aim is to determine

the efficacy of the algorithm in improving their decisions.

Patients are involved in so far as they must agree to be on the

receiving end of these supported decisions and identifiable

data is required. Endpoints are markers of successful task

completion in all cases. Investigations to determine ways in

which the system could be more successful in influencing user

behavior are carried out at this stage. These include usability

analyses, considerations of how well the ML4H/CDSS is

integrated into the overall system and implementation studies

to identify how best to optimize end-user adoption and

engagement (57).

Phase 3 drug trials involve the recruitment of large numbers

of patients to determine whether a drug is effective in improving

patient outcomes. The gold standard of trial design is a double-

blinded randomized controlled trial (RCT). Phase 3 ML4H

trials will require integration of data from multiple centers for

algorithms acting on specific decisions but inevitably adapted

to their local data environment.

The phases of drug development are not meant to be

matched 1:1 to the pillars of the CDE described here: in fact,

our argument for “real-world” development deliberately seeks

to merge the steps. But the parallel is drawn to highlight the

effort necessary to see ML4H have an impact on the clinical

and operational decision making in the workplace. Heretofore

this effort has been hugely underestimated.
Conclusion

Even this analogy stops short of the full task of deployment.

With drug development, the universities and the

pharmaceutical industry go on to take advantage of a supply

chain to deliver the drug to the hospital with the necessary

quality control and monitoring. Those prescribing and

administering the drug have spent years in training, and are

supported by pharmacists and medication safety experts. And

even after the drug is administered, observation and long

term follow-up continue to identify side-effects and long term

hazards.

That network of expertise and infrastructure is largely in

place where software is within (not as) a medical device, but

is only just being envisioned where the data driving ML4H

comes from the EHR. This distinction needs to be made else

the disillusionment with the promise of ML4H will continue.

The technology does have the potential to change how we
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deliver health but the methodology alone is insufficient. The

impressive demonstrations of the power of AI and ML to

beat humans in games, and predict protein structures does

not mean that these tools are ready for wide spread

deployment.

But we should not be pessimistic. As per author William

Gibson, it is clear that “The Future Has Arrived — It”s Just

Not Evenly Distributed.” Beyond healthcare, machine learning

has already demonstrated that it can reliably create value (5).

It is now our responsibility to take those lessons and adapt

them for our patients.

The Five Pillars outlined here are a sketch of that

redistribution. They are born from our local experience

(Pillars 1, 2 and 5) and our wider observations (Pillars 3

and 4). They fundamentally are an argument for a

professionalization of ML4H, and a caution against the

“get-rich quick” headlines in the popular and scientific

press (1). We envision a future where each algorithm is

managed in a digital pharmacy with the same rigor that we

apply to medicines. But unlike drugs, some of these

algorithms will have their entire life-cycle, from

development to deployment, managed by the local

healthcare provider. Computer vision tasks that support

diagnostic radiology can be partially developed offline.

Components of sepsis prediction tools will transfer from

institution to institution but will need adapting to local

clinical workflows. But there will be opportunity and value

for ML4H to optimize operational tasks that are temporary

or specific to that institution. This means that some

development and much of the deployment will require a

suitably trained workforce, and an infrastructure perhaps

supported by these five pillars.
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