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Parkinson’s disease (PD) a�ects several domains of neurological function, from

lower-level motor programs to higher cognitive processing. As certain types

of eye movements (saccades) are fast, non-fatiguing, and can be measured

objectively and non-invasively, they are a promising candidate for quantifying

motor and cognitive dysfunction in PD, as well as othermovement disorders. In

this pilot study, we evaluate the latency (reaction time), damping (resistance to

oscillation), and amplitude of saccadic movements in two tasks performed by

25 PD patients with mild to moderate disease and 26 age-matched healthy

controls. As well as general increases in reaction time caused by PD, the

damping of saccadic eye movements was found to be task-dependent and

a�ected by disease. Finally, we introduce a proof-of-concept multivariate

model to demonstrate how information from saccadometry can be combined

to infer disease status.
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Introduction

The measurement of saccades, the rapid and ballistic movements made by both eyes

from one fixation point to another, can provide a highly precise and non-invasive means

of quantifying neurological function. A number of brain regions and interconnecting

pathways are required to generate appropriate saccades, meaning that tasks can be

designed to isolate and probe these structures (1–4). Previous studies have shown

characteristic patterns of deficits in these saccadic tasks in patients with movement

disorders such as Parkinson’s disease (PD), reflecting underlying dysfunction in the

neural networks required to generate appropriate saccadic responses. Large meta-

analyses have confirmed increased latencies to response in both the prosaccade (PS)

and anti-saccade (AS) tasks (see Figure 1) in patients with PD (5, 6). Additionally, more

recent findings suggest that latency and other metrics are sensitive to treatment (7–9)

and longitudinal change (10).

This body of research sets the stage for the development of robust and clinically

useful quantitative measures of motor and cognitive function in movement disorders

such as PD. Successful implementations could supplement existing clinical rating
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FIGURE 1

Saccadic paradigms (A) and commonly measured parameters (B). TF , foreperiod; ET , target eccentricity. Hypometria is observed in the trajectory

(B).

scales such as the Movement Disorder Society- Unified

Parkinson’s Disease Rating Scale (MDS-UPDRS), identify

subgroups among existing clinical phenotypes for better

stratification of participants in clinical trials, and potentially act

as screening tools if suitably specific for disease.

However, signals in saccade metrics can be weak and

sensitive to experimental conditions, leading to variability

between studies where protocols are insufficiently standardized

(5) and presenting a significant barrier to their implementation

in clinical practice. This can be addressed by three

approaches: standardization of protocols, the derivation

of new metrics which are more sensitive to the presence

and progression of disease, and multivariate approaches to

analysis which can identify subtle patterns of deviation across

many parameters.

To that end, standardized protocols have been developed

for delivering batteries of tasks under consistent experimental

conditions and measuring elicited saccades in high resolution

(11, 12). Additionally, with sufficiently high-resolution

measurement of saccadic trajectories, a number of new metrics

could be derived directly from existing datasets. For example,

although rarely used, a previous small cross-sectional study

identified saccadic damping as a potential sensitive indicator

of PD which may change with progression (13). Damping

quantifies the resistance of a system to oscillations, and in

the saccade generating system can thus regulate the balance

between spatial resolution in the terminal phase of the saccade

and temporal resolution. With lower damping, the trajectory of

the saccade crosses the target location earlier, while an increase

in damping minimizes retinal slip after the target is reached.

In this study we attempt to address each of the three

approaches described, using data from a large-scale prospective

cohort study. In order to evaluate the task- and disease-

dependence of saccadic damping, we calculated this directly

from raw data gathered in a high resolution during execution of

a standardized protocol. Additionally, we outline a multivariate

approach to analysis which aims to identify patterns of deviation

amongst our patient groups.
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Materials and methods

Participants

This work was conducted as part of the ongoing Oxford

Quantification in Parkinsonism (OxQUIP) study, a large-scale

prospective cohort study based at the John Radcliffe Hospital

(Oxford, UK). The study has been approved by the local ethics

committee (Research Ethics Committee reference 16/SW/0262),

and experiments were conducted in accordance with ICH Good

Clinical Practice guidelines and the Declaration of Helsinki.

We recruited 25 patients with Parkinson’s disease (13 male,

12 female), and 26 sex-matched healthy controls (13 male,

13 female). The groups were also age-matched (mean age of

groups 66 and 69 years respectively, two tailed t-test p = 0.14).

Patients in the PD group had clinically probable idiopathic PD

as determined by the UK Parkinson’s Disease Society Brain Bank

criteria (14), and at the time of testing, patients had a disease

duration of no more than 8 years since diagnosis. Patients

receiving deep brain stimulation were excluded from this study.

All testing of PD patients was carried out in a well-defined

‘on’ state, 60min after their usual dose of levodopa and other

antiparkinsonian medications.

Saccadometry

Saccadometry was conducted as per a previously published

internationally standardized protocol (11), implemented
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using a head-mounted device (Saccadometer Advanced; Ober

Consulting, Poznan, Poland). Targets were projected by

integrated lasers onto a plain, matte surface in a horizontal

line at 0◦ (fixation target) and ±10◦ (peripheral targets).

During each trial, the fixation target was illuminated for

a random foreperiod of 1.0–2.0 s drawn from a truncated

exponential distribution, followed by illumination of either the

left or right peripheral target (selected randomly with equal

probability). Onset of the peripheral target was synchronous

with offset of the fixation target (step paradigm; see Figure 1).

Saccades were detected online by the Saccadometer Advanced

and the lateral target was extinguished 200ms after the end

of a saccadic response to a trial. For prosaccade blocks,

participants were instructed to look at the new target position;

for antisaccade blocks, participants were instructed to look in the

opposite direction.

Saccades contaminated by eye blinks and head movements

were detected online and removed from analysis by the

Saccadometer Advanced. For all other saccades, calibrated

samples of eye position were recorded every 5ms, from 25ms

before initiation to 20ms after termination of the saccade,

with the saccade defined as the period of time for which

velocity exceeded 5◦/ s. Additionally, the direction, latency from
target presentation to initiation, amplitude, and peak velocity

were reported.

Pre-processing and sanitization

The data were processed using Python (version 3.9)

with the Pandas, NumPy, and SciPy packages. In addition

to those removed online during recording, all saccades

meeting any of the following criteria were excluded

from analysis due to likely recording error: latency

<100ms or >1,000ms, amplitude >40◦, peak velocity

> 1,000 deg/s.

Damping ratio estimation

Following themethod of Chen et al. (13), saccade trajectories

were fitted directly to the position profile of the step response

of a second-order system. Each saccade trajectory from

time of initiation onwards was fitted independently to the

analytic form of the position profile (Equation 1) by sum-of-

squares minimization:

where φ̂(t) is the estimated angular displacement at time

t, H is the Heaviside step function, A is the gain, σ is

the damping ratio, and ω0, natural frequency. The system is

underdamped when σ < 1, critically damped when σ = 1, and

overdampedwhen σ > 1. Observed trajectories were normalized

to amplitude 1 before fitting, and to compensate for the limited

resolution of the measuring instrument, time shifts δt of up to

±5ms were permitted for accurate estimation of the saccade

initiation time.

Single-parameter analyses

Statistical analysis was performed using R [(15), version

4.1]. As participants produced saccades with varying rejection

and directional error rates, and distributions of resulting

parameters can be highly nonnormal, a generalized linear

mixed model (GLMM) was deemed to be most appropriate
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to deal with these unbalanced data, with model parameters

informed by our data and the literature. All models included

fixed intercept effects of group (between subjects) and task

(prosaccade vs. antisaccade with correct response vs. antisaccade

with prosaccadic response; within subjects), a fixed group-

by-task interaction effect, and random intercept effects of

participant identity, with no specific structure imposed on the

covariance matrix.

For latency distributions, which are characteristically highly

skewed, a gamma GLMMwith identity link function was used in

line with previous analyses of reaction time data (16).

In the special case of the identity link function with a

Gaussian marginal distribution, the GLMM reduces to a

linear mixed model (LMM). These have been shown to be

robust to low-level violations of distributional assumptions,

including skewness, heteroskedasticity, and high degrees

of kurtosis with sufficient sample size (17, 18). As the

distribution of estimated damping ratios and amplitudes

has not been studied as extensively in the literature, this

model family was selected to analyze these variables, with

standard transformations applied where necessary. Saccades

where the damping ratio could not be estimated with suitable

precision (estimated standard error >0.5) were excluded

from analysis.

GLMMs were fitted to the data using the R package

lme4 (19), using all_fit to generate the best model fit using

a variety of optimizers. Model fits were evaluated by visual

inspection of heteroskedasticity, influence of observations,

collinearity of predictors and for normality of random

effects using the performance R package (20). For LMMs,

normality of Pearson residuals were additionally checked,

and skewness and kurtosis of Pearson residual distributions

are reported.

The significance of fixed effects was evaluated using

afex (21). For LMMs, the Kenward-Roger procedure was

used as it is robust at our sample sizes (18). For other

GLMMs, the likelihood ratio test was used to compare the

full model to models with dropped factors; χ2 test statistics,

p-values, and the difference between the Akaike information

criteria (AICs) of the two models are reported. Where

effects were significant (p < 0.05), emmeans (22) was used

to make post hoc pairwise between-group and between-task

comparisons, with a Bonferroni correction to false discovery

rate 0.05.

The directional error rate in the AS task was compared

between groups using a Mann–Whitney U-test.

Classifiers

In order to assess the utility of different metrics and

provide proof of concept for a multivariate predictive model, we

evaluated the performance of two machine learning models on

these data.

For each participant, the median, lower quartile, upper

quartile, interquartile range, skewness, and kurtosis of

the distributions of PS and AS second-order system fit

mean squared error, damping ratio, latency, amplitude,

and peak velocity were calculated. Additionally, the

directional error rate in the AS task was included. Erroneous

prosaccades made during execution of the AS task were

excluded during calculation of all features except the AS

error rate.

One model was a logistic regression model, with a L2

regularization term to prevent overfitting. Inputs to the model

were transformed using a Yeo-Johnson transformation (23)

and scaled to mean 0 and variance 1. Logistic regression

models are simple and readily interpretable and perform well

when classes are linearly separable. However, they do not

perform intrinsic feature selection, so we implemented forward

feature selection by residual mutual information, an algorithm

described fully by Schaffernicht et al. (24). Feature selection was

terminated when the cross-validation area under the receiver

operating characteristic curve (ROC-AUC) on the training

data peaked.

This was compared with a random forest model,

with 400 estimators, which are known to achieve good

performance while being robust to noise and avoiding

overfitting. Additionally, the random forest model can learn

nonlinear decision boundaries and performs feature selection,

facilitating comparison between the two models in terms of

feature importance.

A large discrepancy between the performance of the two

models in favor of the random forest would suggest that

the decision boundary is nonlinear due to the existence of

different phenotypes within the groups, and that future analyses

should avoid using linear models unless these phenotypes

are identified.

Classifier evaluation

Both classifiers were implemented in Python (version 3.9)

using Scikit-learn [(25), version 1.0].

A receiver operating characteristic (ROC) curve

for each classifier was produced using rankings

generated by tournament leave-pair-out cross-validation

(TLPO-CV) (26), and the area under the curve

was evaluated.

TLPO-CV produces a near-unbiased estimate of the true

ROC-AUC of the classifier by comparing the ordering of

probability estimates between every possible combination of

2 data points when a model is fitted to all remaining data

points. For our data, this procedure involved a total of

1,275 model fits, each using 49 trials (participants), for each
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FIGURE 2

Latency to response across groups and tasks. Gray points represent mean latency for one participant in a given task. Black points and lines

represent estimated marginal group means.

classifier tested. However, a method for generating accurate

confidence intervals for this form of cross-validation remains

to be developed (26). Thus, head-to-head tests for differences

in ROC-AUC between the two classifiers were conducted

using the 5 × 2 cross-validation combined F test first

described by Alpaydm (27). This test evaluates differences in

performance when 50% of the data are randomly allocated to

training and test sets respectively, for 5 different allocations.

Thus, the two classifiers were tested for a difference in

ROC-AUC using the 5 × 2 cross-validation combined F-

test (27).

When training logistic regression models, transformation,

scaling, and the 5-fold cross-validation used in feature

selection was nested within the TLPO cross-validation

such that the algorithm was completely naïve to the

testing data.

Finally, the 10 most important features selected by

each model are reported. Seventy-five overlapping subsets

of 2/3 of participants were generated randomly, and

both models were trained on each subset. For logistic

regression, features were ranked by the proportion of fitted

models in which the feature was selected. For random

forest models, features were ranked by mean decrease

in impurity.

Results

Parkinson’s disease increases response
latency

In total, 9,729 saccades were analyzed, with the PD group

contributing 4,509 (46%).

An adequate fit was obtained in the gamma GLMM for

latency. Likelihood ratio tests using restricted models revealed

significant fixed effects of group (1AIC = 2.1, χ2
1 = 4.08,

p = 0.043), task (1AIC = 2,856.6, χ2
2 = 2,861, p < 0.0001),

and group-by-task interaction (1AIC = 20.4, χ2
2 = 24.4, p

< 0.0001).

Post-hoc comparisons were conducted for pairwise within-

and between-group differences. Both groups had significant

increases in latency from prosaccades, to erroneous prosaccades

during the antisaccadic task, to correctly executed antisaccades

(all p < 0.0001 two-tailed after Bonferroni correction). As

seen in Figure 2, the differences in latency between AS errors

and correct prosaccades were small (PD 13.9ms, control

14.6ms) compared to the differences between correct AS

and correct PS (PD 147.1ms, control 120.9ms), supporting

previous suggestions that these errors arise from a failure

of inhibition of a reflexive prosaccade. After Bonferroni
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FIGURE 3

Estimated damping ratios. Gray points represent mean estimated damping ratio for one participant in a given task. Black points and lines

represent estimated marginal group means.

correction, there were significant differences in latency between

groups in correctly executed antisaccades (PD c. 45ms slower,

p < 0.0001 two-tailed) and correctly executed prosaccades

(PD c. 19ms slower, p = 0.046 two-tailed). The effect

size for AS errors was similar to that for correct PS but

was not significant at the 0.05 level after correction (p =
0.069 two-tailed); it is likely that an underlying effect was

present but this study did not have sufficient power in

this case.

Variations in damping between saccadic
tasks

The residual distribution was somewhat positively skewed

(skewness 1.09) and leptokurtic (excess kurtosis 7.8). The LMM

was chosen for its robustness to non-normal distributions at

sufficient sample sizes (17, 18), but under-dispersion of residuals

indicates the analysis may have lost some power.

Using the Kenward–Roger procedure, damping ratio

(Figure 3) was significantly affected by task (F2,9401 = 98.5, p

< 0.0001), and there was a significant group-by-task interaction

(F2,9401 = 7.85, p = 0.0004). The fixed effect of group was

not significant (F1,49.3 = 3.43, p = 0.07), but was in the same

direction as the effect reported by (13).

In post hoc comparisons, damping ratio again increased

from prosaccades to antisaccades (PD 0.09 greater; control

0.06 greater; both groups p < 0.0001 two-tailed after

Bonferroni correction). Interestingly, in PD patients the

AS errors were more similarly damped to prosaccades

(correct vs. error AS 0.07 greater, p < 0.0001; error AS

vs. correct PS 0.02 greater, p = 0.25), while they were

more similar to antisaccades in controls (correct vs. error

AS 0.02 greater, p = 0.13; error AS vs. correct PS 0.03

greater, p < 0.0001).

Relative hypometria in antisaccades

A good fit was obtained for the LMM modeling the

square root of saccadic amplitude (residual skewness 0.4, excess

kurtosis 1.55).
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FIGURE 4

Amplitude of saccadic response, back-transformed from model of square root of amplitude. Gray points represent amplitude for one participant

in a given task. Black points and lines represent estimated marginal group means.

FIGURE 5

Receiver operating characteristics of the two models on the dataset generated by TLPO-CV. Left, logistic regression. Right, random forest.

There were significant effects of task (F2,9706 = 110, p

< 0.0001) and group-by-task interaction (F2,9706 = 2.63, p

< 0.0001).

Post-hoc comparisons showed that the amplitude of correct

antisaccades was greater than both AS errors and correct

prosaccades in both patients and controls (p< 0.0005 two-tailed
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FIGURE 6

The top 10 features in each classifier. Top, logistic regression. Bottom, random forest.

after Bonferroni correction in all comparisons), but did not

detect a difference between erroneous and correct prosaccades

in either group.

As seen in Figure 4, PD patients did not exhibit a

global hypometria (no significant fixed effect of group,

F1,49.6 = 2.63, p = 0.11), but instead had a relative

hypometria in correct antisaccades, where controls overshot

the target location and patients did not (back-transformed

control mean 12.31◦, PD mean 10.52◦). Back-transformed 95%

confidence intervals for estimated marginal means included

10 deg in all cases except for correct antisaccades from

healthy controls.

Antisaccadic error rate

The antisaccadic directional error rate did

not differ between groups (Mann–Whitney test,

U = 243.5, nPD = 25, nHC = 26, p = 0.13

two-tailed).

Classification performance and feature
rankings

The logistic regression classifier achieved ROC-AUC=0.65,

and the random forest classifier achieved ROC-AUC = 0.73 in

TLPO-CV (Figure 5). There was no difference in performance

at the 0.05 level of significance (5 × 2CV combined F-

test; F = 4.27, p = 0.06). However, this test reduces the

size of training datasets far more than TLPO-CV, so a

subsequent analysis on a larger dataset should be conducted to

establish whether random forest model outperforms the logistic

regression model.

While features selected by the logistic regression model were

variable, both models recognized features of the antisaccadic

Frontiers inDigital Health 08 frontiersin.org

https://doi.org/10.3389/fdgth.2022.939677
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org


Bredemeyer et al. 10.3389/fdgth.2022.939677

damping ratio as important discriminators between groups

(Figure 6).

Discussion

This is a proof-of-concept study evaluating saccadic

metrics, measured in patients with PD and healthy controls.

We introduce two multivariate predictive classifiers to

differentiate between patients with PD and controls using only

saccadometric data.

Our initial analysis, focusing on variations in saccadic

metrics between groups, replicates previous findings frommeta-

analyses. Latency, the time between peripheral target onset

and saccade initiation, increased significantly from pro- to

anti-saccades in both PD and HC groups. Prosaccadic and

antisaccadic latencies in the PD group were both increased

compared to those of HC, an established finding in published

literature (5, 6). Our results do not show evidence of saccadic

hypometria in PD patients compared to controls except in

erroneous antisaccades, despite several previous studies having

identified this (7, 28, 29). The reasons for this will be investigated

in a future study and compared against video oculography to

assess the possibility of calibration inconsistencies.

We evaluated the performance of two machine learning

models on our data. The top 10 most important features for

both the logistic regression and random forest models are

shown in Figure 6. There is a degree of overlap, with quantiles

of the antisaccadic damping ratio being the most frequently

selected feature in the logistic regression model and the 3rd

most important in the random forest model. A study by Chen

et al. (13) identified damping ratios as a sensitive variable to

differentiate between PD and HC groups. However, this has not

commonly been calculated or studied in interim studies. This

study adds to the currently small body of evidence suggesting

damping ratios (calculated as per subsection Damping ratio

estimation) can be used to help differentiate between patient

groups, in this case in the antisaccadic task. To our knowledge,

this study is the first to describe task-related changes in

oculomotor damping, and suggests that the effects of PD on

this phenomenon should be interpreted in context of the task.

We did not replicate the effect observed by Chen et al. (13)

in prosaccades at the 0.05 level of significance. Aside from the

use of conservative multiple comparisons corrections in our

study, there are a number of factors that could contribute to

this. Firstly, the infrared oculography equipment used here has

an average linearity error of 1.4◦ over the ±15◦ range within

which our tests took place, which may affect measured damping

ratios directly, and had a sampling rate 2.5 times lower than

the electro-oculography system described in the previous study.

Secondly, recording was terminated 20ms after the velocity

dropped below 5◦/s, which prevented late oscillations (visible

for c. 100ms beyond this point in the data presented by Chen

et al.) from contributing to our calculation of the damping

ratio.

Further analyses on longitudinal datasets will allow us

to investigate the possibility of using damping ratios to

assess disease progression and the effects of aging, as is

indicated given the cross-sectional analysis by Chen et al.

(13). Specifically, antisaccadic damping should be investigated

longitudinally in PD patients to strengthen the evidence and

further characterize these effects. Future analyses using feature

selection algorithms in machine learning models also have the

potential to identify additional kinematic parameters which

could be more sensitive for disease differentiation than those

traditionally used, including generalized fatigue-like effects

which cause long-term intra-individual variability during the

performance of a task (30). Additionally, future studies should

consider similar parameters in vertical as well as horizontal

saccades, as pathology affects the two systems differently and

results from horizontal saccades may not necessarily generalize

(31, 32).

More important than single features alone are the

combination of features used to predict disease status. Both

models used a multitude of features ranging from amplitude

and acceleration to duration and fit error (in both pro-

and anti-saccades) as input discriminators. The recently

developed TLPO-CV method used to estimate the ROC-AUC

of the classifiers has not yet been shown to generate accurate

confidence intervals, so a 5 × 2 cross-validation combined

F-test was used to calculate differences between the models,

and did not find that the difference in performance between

the two models was significant. However, caution should

be taken given the small effective sample sizes in this cross-

validation method, and it is possible that future analyses

will show that the random forest algorithm outperforms

logistic regression.

Standardization amongst experimental conditions

remains central to the notion of reproducible science.

Saccadic metrics, due to the rapid nature of movement

within a noisy environment, can often be weak and have

complex relationships with experimental conditions. Though

internationally recognized protocols exist to measure specific

saccadic metrics (for example antisaccadic error rates), novel

methodologies such as those outlined in this study, can help in

two ways.

Firstly, multivariate analyses enable a more precise

identification of non-linear patterns of deviation

amongst saccadic metrics. Secondly, the high-resolution

measurement of a saccadic trajectory would allow a

larger number of informative features to be extracted

from each movement. This raw data could also be

present but not yet analyzed within existing datasets,

allowing new metrics to be compared to existing metrics

under identical experimental conditions, minimizing

inter-study biases.
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As shown in this study, the damping ratio was an

important metric in both logistic regression and random

forest models. These results were in keeping with a small

cross sectional study from 1998 (13). Recent evidence

suggests that PD comprises a more heterogeneous set of

phenotypes than previously hypothesized (33). Metrics such

as the damping ratio have the potential not only to help

differentiate between PD and HC with greater accuracy,

but additionally to allow for more precise definitions of

differing clinical phenotypes amongst those with PD. This has

numerous clinical benefits, such as the ability to offer tailored,

phenotype-dependent treatment regimes, or even to shift the

disease diagnosis entirely.

Saccades are easily measurable, non-invasive biomarkers

which have been investigated for nearly two centuries (34).

Using multivariate analyses on pre-existing, and future, datasets

enables researchers to transform these data into robust and

objective clinical decision tools. This in turn will benefit the

diagnosis of patients, the tracking of disease progression and the

monitoring of treatment effectiveness.

This pilot study outlines a novel methodology to analyze

saccades, laying the foundation for future studies using

larger datasets to offset current limitations imposed by

the intrinsic low signal-to-noise ratio. Studies applying

machine learning techniques to larger datasets have the

potential to both establish a hierarchy of significance

of known metrics, and to use unsupervised learning

techniques to identify novel saccadic metrics hidden

within trajectories.

We plan future analyses using additional machine learning

approaches to try to differentiate between clinical phenotypes

of PD. Unsupervised clustering approaches may shed light

on distinct clinical phenotypes, which may well be a limiting

factor in the performance of current models. We hope

that analyses such as these will allow us to identify and

stratify patients by their clinical phenotype in a more precise,

accessible, and reproducible manner, improving the feasibility

of advancing candidate treatments through clinical trials.

Future analyses, focusing on inter-group variability, would

enable researchers to investigate this in detail, adjusting

for saccadic metric, current group status and additional

variables such as age of onset, medication benefit, and

disease course.
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