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Multiple reporting guidelines for artificial intelligence (AI) models in healthcare
recommend that models be audited for reliability and fairness. However, there
is a gap of operational guidance for performing reliability and fairness audits in
practice. Following guideline recommendations, we conducted a reliability
audit of two models based on model performance and calibration as well as
a fairness audit based on summary statistics, subgroup performance and
subgroup calibration. We assessed the Epic End-of-Life (EOL) Index model
and an internally developed Stanford Hospital Medicine (HM) Advance Care
Planning (ACP) model in 3 practice settings: Primary Care, Inpatient
Oncology and Hospital Medicine, using clinicians’ answers to the surprise
question (“Would you be surprised if [patient X] passed away in [Y years]?”) as
a surrogate outcome. For performance, the models had positive predictive
value (PPV) at or above 0.76 in all settings. In Hospital Medicine and
Inpatient Oncology, the Stanford HM ACP model had higher sensitivity (0.69,
0.89 respectively) than the EOL model (0.20, 0.27), and better calibration
(O/E 1.5, 1.7) than the EOL model (O/E 2.5, 3.0). The Epic EOL model
flagged fewer patients (11%, 21% respectively) than the Stanford HM ACP
model (38%, 75%). There were no differences in performance and calibration
by sex. Both models had lower sensitivity in Hispanic/Latino male patients
with Race listed as “Other.” 10 clinicians were surveyed after a presentation
summarizing the audit. 10/10 reported that summary statistics, overall
performance, and subgroup performance would affect their decision to use
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the model to guide care; 9/10 said the same for overall and subgroup calibration. The
most commonly identified barriers for routinely conducting such reliability and
fairness audits were poor demographic data quality and lack of data access. This audit
required 115 person-hours across 8–10 months. Our recommendations for
performing reliability and fairness audits include verifying data validity, analyzing
model performance on intersectional subgroups, and collecting clinician-patient
linkages as necessary for label generation by clinicians. Those responsible for AI
models should require such audits before model deployment and mediate between
model auditors and impacted stakeholders.

KEYWORDS

model reporting guideline, electronic health record, artificial intelligence, advance care planning,

fairness, audit
Introduction

Concern about the reliability and fairness of deployed artificial

intelligence (AI) models trained on electronic health record (EHR)

data is growing. EHR-based AI models have been found to be

unreliable, with decreased performance and calibration across

different geographic locations and over time; for example, an

Epic sepsis prediction algorithm had reduced performance when

validated by University of Michigan researchers (1) and acute

kidney injury models have shown worsening calibration over

time (2). AI models have also been found to be unfair, with

worse performance and calibration for historically marginalized

subgroups; for example, widely used facial recognition

algorithms have lower performance on darker-skinned females

(3); and widely used health insurance algorithms underrate the

disease status of Black patients compared with similar White

patients (4). Despite lacking evidence of reliability and fairness,

algorithms are still being deployed (5).

To promote improved reliability and fairness of deployed EHR

models, at least 15 different model reporting guidelines have been

published (6–20). Some commonly included items related to

reliability in these guidelines include external validation (6, 8–10,

14–17, 19); multiple performance metrics such as Area Under

Receiver Operating Curve (AUROC) (6, 8–12, 14–18), positive

predictive value (PPV) (9–12, 14, 16–18), sensitivity (8–12, 14,

16–18), and specificity (8–12, 14, 17, 18); confidence intervals or

another measure of variability of the performance (6, 8–12, 15,

18–20); and calibration plots (6, 8–10, 12, 14). Some commonly

included items related to fairness include summary statistics (10,

11, 15, 17, 18, 20), like the distribution of demographics such as

sex (11, 15, 17, 20) and race/ethnicity (15, 17, 20), as well as

subgroup analyses that investigate how a model performs for

specific subpopulations (7, 9, 11–13, 15, 18, 20). Nevertheless,

many of these items are infrequently reported for both published

(21) and deployed EHR models (22).

Several efforts seek to address this reporting gap. For

example, there is an existing auditing framework that supports

AI system development end-to-end and links development
02
decisions to organizational values/principles (23). There is also

currently an open-source effort to better understand,

standardize and implement algorithmic audits (24).

In this work, we illustrate a reliability/fairness audit of 12-

month mortality models considered for use in supporting team-

based ACP in three practice settings (Primary Care, Inpatient

Oncology, Hospital Medicine) at a quaternary academic medical

center in the United States (25–27) (Figure 1). We (1) design

and report a reliability/fairness audit of the models following

existing reporting guidelines, (2) survey decision makers about

how the results impacted their decision of whether to use the

model, and (3) quantify the time, workflow and data

requirements for performing this audit. We discuss key drivers

and barriers to making these audits standard practice. We

believe this may aid other decision makers and informaticists in

operationalizing regular reliability and fairness audits (22, 23).

Note: we use recorded race/ethnicity in the EHR as a way to

measure how models may perform across such groupings, as

recommended (15, 21). Importantly, race/ethnicity is not used

as an input for any of the models and we do not use it as a

“risk factor” for health disparities (28–30). We recognize race/

ethnicity has widely varying definitions (31) and is more a

social construct (32) than a biological category (30). We also

caution that studies have found poor concordance of race/

ethnicity data as recorded in the EHR with the patient’s self-

identification (33, 34). However, performance by race/ethnicity

subgroups is a recommended analysis in reporting guidelines.
Background on advance care
planning and model usage

Much of care for patients at the end of their lives is not goal-

concordant, i.e. not consistent with the patients’ goals and values.

For example, a survey (35) of Californians’ attitudes towards

death and dying found that 70% would prefer to die at home.

Despite this, only 30% of all deaths happened at home in 2009.

Meanwhile 60% occurred in a hospital or nursing home (26).
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FIGURE 1

Overview of audit process. Results and plots listed are for the Epic End-of-life Index Low Threshold for Primary Care. The “labeling question” under
Summary Statistics is “Would you be surprised if this patient passed away in 2 years?”.
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In 2018 the Stanford Department of Medicine began

implementation of Ariadne Labs’ Serious Illness Care Program

(SICP) (36) to promote goal-concordant care by improving

timing and quality of advance care planning conversations. By

following best practices (37), the Stanford SICP trained and

supported clinicians in using the structured Serious Illness

Conversation Guide (SICG) in their practice.

Through the duration of this audit, Primary Care and Inpatient

Oncology were developing implementation plans, while Hospital

Medicine had an active implementation after SICG training of key

physicians and staff members using a 12-month mortality model

to generate patient prognoses that were shared with the entire

clinical team (25). Two models were considered: (1) the 12-month

mortality model which runs only on currently hospitalized patients

only and is currently used by the Hospital Medicine SICP team

(HM ACP), and (2) the Epic End-of-life (EOL) Index, which

unlike HM ACP, runs for all patients receiving care in the health

system, not just hospitalized patients.

We assessed these models by performing a reliability audit

(model performance and calibration) and fairness audit

(summary statistics, subgroup performance, subgroup

calibration) to ascertain whether the Epic EOL Index

appropriately prioritize patients for ACP in Primary Care, and

which of the two models appropriately prioritizes patients for

ACP in Inpatient Oncology and Hospital Medicine.
Methods

Wefirst provide details on the twomodels and then summarize

the processes required to complete the fairness and reliability audit.

We describe the metrics that comprised the quantitative aspect of

the audit. We then describe the methods we used to identify and

gather the data needed to complete the audit, including

calculating the minimum sample size of ground truth labels

required for model evaluation, obtaining those ground truth

labels by clinician review, and merging those labels with patient

records to create the audit dataset. Lastly, we describe the

methods used to compute the audit metrics, and how we

presented the results of the audit to clinicians to obtain feedback.
AI models

We audited two models currently deployed at Stanford

Health Care: the Epic EOL Index model and Stanford HM

ACP model (Table 1).

The Epic EOL Index model (38) is a logistic regression model

that predicts risk of 12-month mortality (Table 1). It takes in 46

input features including demographics (e.g., age, sex, insurance

status), labs (e.g., albumin, RDW), comorbidities (e.g., such as

those relating to cancer, neurological diagnoses, cardiologic

diagnoses, and more), and medications. While organizations using
Frontiers in Digital Health 04
the Epic EHR software are able to set any threshold for converting

the model output into a flag to indicate an action is recommended,

two thresholds are pre-specified by Epic: a low threshold of 0.15

selected based on sensitivity (38), and a high threshold of 0.45

selected based on positive predictive value (38). We decided to

audit the Epic EOL Index with the low threshold in Primary Care

(given lower patient acuity) and with the high threshold in

Inpatient Oncology and Hospital Medicine. We retrieved scores on

16 November 2021 for Primary Care, 14 June 2021 for Inpatient

Oncology and 31 January 2022 for Hospital Medicine.

The Stanford HMACPmodel is a gradient boosted tree model

(39) that predicts risk of 3–12 month mortality (Table 1). It takes

13,189 input features including demographics (e.g., age, sex), lab

orders (e.g., complete blood count with differential, arterial blood

gas) and procedure orders (e.g., ventilation, respiratory nebulizer)

for all hospitalizations within the last year and is run daily on

patients admitted to the Hospital. Patients with a model output

probability above 0.25 are flagged in a “Recommended for

Advance Care Planning” column in Epic available to all clinicians

at Stanford (25, 26). On a retrospective cohort involving 5,965

patients with 12-month mortality labels (prevalence of 24%), this

model flagged 23% of patients and had a PPV of 61% (25). For

Inpatient Oncology and Hospital Medicine, we retrieved scores for

patients on the day of the clinician’s label for that patient.
Audit metrics

In previous work (22) we synthesized items that were

suggested for reporting by model reporting guidelines to

identify the most relevant items for reliability and fairness.

To quantify model reliability, we computed sensitivity,

specificity and PPV as these estimate a model’s diagnostic

capabilities. We computed 95% confidence intervals for each of

these metrics using the empirical bootstrap (40) with 1,000

bootstrap samples. We also assessed model calibration using

calibration plots and the Observed events/Expected events (O/E)

ratio (see details below in the section titled Performing the Audit).

To quantify model fairness, we computed summary

statistics across subgroups, defined by sex, race/ethnicity, and

age as well as the intersection of race/ethnicity and sex. We

also evaluated the model’s performance metrics and

calibration in each of these subgroups (see details below in

the section titled Performing the Audit).
Gathering the data required for the audit

Sample size calculation
We calculated a minimum necessary sample size for

external validation of the two prediction models, based on a

desired level of calibration (41). We measured calibration as

O/E and used the delta method for computing a confidence
frontiersin.org

https://doi.org/10.3389/fdgth.2022.943768
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


TABLE 1 Model information for each setting.

Setting Primary Care Inpatient Oncology Inpatient Oncology Hospital Medicine Hospital Medicine

Model Epic EOL – Low Threshold Epic EOL – High Threshold Stanford HM ACP Epic EOL – High Threshold Stanford HM ACP

Features Demographics (Age, Sex,
Insurance status),
Labs (Albumin, RDW),
Comorbidities (Cancer,
Neuro., Psych.,… Cardio.,
Resp.,… ),
Medications (many)

Demographics (Age, Sex,
Insurance status),
Labs (Albumin, RDW),
Comorbidities (Cancer,
Neuro., Psych.,… Cardio.,
Resp.,… ),
Medications (many)

Demographics (Age, Sex),
Lab/Procedure Orders
(done in the last year)

Demographics (Age, Sex,
Insurance status),
Labs (Albumin, RDW),
Comorbidities (Cancer,
Neuro., Psych.,… Cardio.,
Resp.,… ),
Medications (many)

Demographics (Age, Sex),
Lab/Procedure Orders
(done in the last year)

# Features 46 46 13,189 46 13189

Model Type Logistic Regression Logistic Regression Gradient boosted Tree Logistic Regression Gradient boosted Tree

Output One-year Mortality Risk One-year Mortality Risk One-year Mortality Risk One-year Mortality Risk One-year Mortality Risk

Predictions
Available
For:

All adult patients within health
system

All adult patients within health
system

All currently hospitalized
adult patients

All adult patients within health
system

All currently hospitalized
adult patients

Threshold 0.15 (Low) 0.45 (High) 0.25 (HM Implementation
Threshold)

0.45 (High) 0.25 (HM Implementation
Threshold)

Source of
Model
Information

Epic Cognitive Computing
Model Brief: End of Life
Index (Galaxy, PDF)

Epic Cognitive Computing
Model Brief: End of Life
Index (Galaxy, PDF)

AI ACP Technical Details Epic Cognitive Computing
Model Brief: End of Life
Index (Galaxy, PDF)

AI ACP Technical Details

Time of Model
Predictions

11/16/2021 6/14/2021 8/15/2021–3/19/2022 1/31/2022 2/21/2022, 2/23/2022, 3/1/
2022, 3/4/2022, 3/7/
2022, 3/14/2022, 3/21/
2022

Notes on Time
of Model
Predictions

Daily predictions are
performed, but were not
available to be extracted or
retrospectively pulled, so we
only used a one-time pull on
11/16/2021

Daily predictions are
performed, but were not
available to be extracted or
retrospectively pulled, so we
only used a one-time pull on
6/14/2021

Daily predictions were
performed and the most
recent model prediction
on or before the date of
the clinician label was
used.

Daily predictions are
performed, but were not
available to be extracted or
retrospectively pulled, so we
only used a one-time pull on
1/31/2022

Daily predictions were
performed and were
stored before sending
out email requesting
clinicians to label.

Location of
Model
Predictions

Box Folder: Epic EoL Index
Validation

Box Folder: Epic EoL Index
Validation

shahlab secure server:
/data4/AI-ACP/
predictions/ngb_hist

Box Folder: Epic EoL Index
Validation

shahlab secure server:
/data4/AI-ACP/
predictions/ngb_hist
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interval for O/E (41). Assuming a perfect O/E value being 1.0,

we aimed for a 95% confidence interval width of [0.74, 1.34].

Based on clinician feedback, in Primary Care, we assumed a

20% prevalence of the positive label; in Inpatient Oncology,

we assumed a 70% prevalence of the positive label. In

Hospital Medicine, we assumed a 40% prevalence of the

positive label.

Obtaining ground truth labels
We used a validated instrument, the surprise question (42), to

assign ground truth labels for patients. The surprise question asks

“Would you be surprised if [patient X] passed away in [Y years]?”

An answer of “no” to the surprise question for a given patient

constitutes a positive label (for example, if the treating physician

would not be surprised if a patient died in 1 year, we assume that

the patient is at high risk of dying and should be labeled as

“recommended for advance care planning”). A recent meta-

analysis (43) found that among 16 studies, the 6-to-12-month

surprise question’s sensitivity (using records of 12-month

mortality as ground truth) ranged from 12% to 93%; specificity

ranged from 14% to 98%, PPV ranged from 15% to 79%, and c-

statistic ranged from 0.51 to 0.82. In other words, we used the
Frontiers in Digital Health 05
answer to the surprise question as a proxy for Y-year mortality in

our patient population, because waiting the Y years to ascertain

whether patients passed away would have greatly extended the

timeframe required to complete the audit. Our audit thus

assessed model performance based on concordance of model

predictions with clinician-generated assessments of patient

mortality via the surprise question.

We specified Y = 1 year for the surprise question for

Inpatient Oncology and Hospital Medicine patients and Y = 2

years for the Primary Care setting, given lower acuity of

patients in Primary Care clinics (Table 2).

To obtain answers to the surprise question for Primary Care

patients, we first selected from patients who had a visit with a

provider between 7 October 2021 and 7 January 2022. We

then randomly sampled 5 unique patients to generate a list

for each provider; if there were fewer than 5 unique patients,

all patients were kept in the provider’s list. We then sent

personalized messages using our EHR’s messaging system to

each provider asking them to answer the surprise question for

each randomly selected patient (Table 3, Supplementary

Figure S1). For Hospital Medicine, we identified providers

who were on service between 21 February 2022 and 21 March
frontiersin.org
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TABLE 2 Clinician label information.

Setting Primary Care Inpatient Oncology Inpatient Oncology Hospital Medicine Hospital Medicine

Model Epic EOL – Low Threshold Epic EOL – High Threshold Stanford HM ACP Epic EOL – High Threshold Stanford HM ACP

Clinician
Label

2-year Surprise Question 1-year Surprise Question 1-year Surprise Question 1-year Surprise Question 1-year Surprise Question

Time of
Clinician
Labels

2/11/2022–3/7/2022 8/15/2021–3/19/2022 8/15/2021–3/19/2022 2/21/2022–3/22/2022 2/21/2022–3/22/2022

Clinician
Population

All Primary Care clinician
faculty at Department of
Primary Care and
Population Health

2 Oncology attending
physicians/faculty at
Stanford’s (ARK, KR)

2 Oncology attending
physicians/faculty at
Stanford’s (ARK, KR)

Every Hospital Medicine
attending physician on
service during 2/21/2022–
3/22/2022

Every Hospital Medicine
attending physician on
service during 2/21/2022–
3/22/2022

Blinding of
Clinicians
to Model
Predictions

Clinicians were blinded to
Epic EOL (the model
predictions were not
available in the EHR).
However, clinicians were
not specfically blinded
from the Stanford HM
ACP model (which was
available as a flag in Epic).

Clinicians were blinded to
Epic EOL (the model
predictions were not
available in the EHR).
However, clinicians were
not specfically blinded
from the Stanford HM
ACP model (which was
available as a flag in Epic).

Clinicians were blinded to
Epic EOL (the model
predictions were not
available in the EHR).
However, clinicians were
not specfically blinded
from the Stanford HM
ACP model (which was
available as a flag in Epic).

Clinicians were blinded to
Epic EOL (the model
predictions were not
available in the EHR).
However, clinicians were
not specfically blinded
from the Stanford HM
ACP model (which was
available as a flag in Epic).

Clinicians were blinded to
Epic EOL (the model
predictions were not
available in the EHR).
However, clinicians were
not specfically blinded
from the Stanford HM
ACP model (which was
available as a flag in Epic).

Unit of Data
Set

A clinician’s Surprise
Question Label for a
randomly selected patient
within the clinician’s
panel who had a recent
visit with the clinician
within the last 3 months

A physician’s Surprise
Question Label for a
patient they are
responsible for while they
are on service

A physician’s Surprise
Question Label for a
patient they are
responsible for while they
are on service

A physician’s Surprise
Question Label for a
patient they are
responsible for on the day
of solicitation

A physician’s Surprise
Question Label for a
patient they are
responsible for on the day
of solicitation
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2022, and sent them a message once a week during that period

requesting them to answer the surprise question for the patients

they had been responsible for during their shifts in that period

(Table 3, Supplementary Figure S2). For both Primary Care

and Hospital Medicine, we incentivize providers to answer the

surprise question by offering chocolates to those who received

the message. For Inpatient Oncology we selected patients who

were seen by either co-author ARK or KR between 15 August

2021 and 19 March 2022. ARK and KR answered the 1-year

surprise question for all patients they were responsible for

while on hospital service during that period (Table 2).

Note that the physicians were blinded to Epic EOL Index

model predictions, but they were not blinded to the Stanford

HM ACP Flag as the flag was available in Epic and in active

use at the time of the audit. Co-author ARK reported

occasionally referencing the flag when answering the surprise

question for patients with rarer cancers. While we recognize

this biases our results in favor of the Stanford HM ACP

model, we also did not have the ability to suppress the flag

just for those clinicians.
Creating the audit data set
Each patient’s surprise question ground truth labels were

linked with their corresponding patient records from our

clinical data warehouse (44), which included patient

demographics (sex, date of birth, race, ethnicity), and with the

two models’ output predictions (Figure 1).
Frontiers in Digital Health 06
We excluded all patients where their provider had not

answered the surprise question during the response period. For

Inpatient Oncology, we also excluded all patients for which a

medical record number was not available. The number of

patients excluded for these reasons are provided in the Results.

Finally, we converted patient demographic data into one-hot

encoded columns. For sex, we assigned this value based on

biological sex (45) (and did one-hot encodings of the potential

values). For age, we computed the patient’s age at the time of the

clinician’s surprise question assessment by subtracting their date

of birth; we then generated age subgroups by decade of life, e.g.,

(10, 20], (20, 30], etc. For ethnicity/race, we pulled the ethnicity

variable and the race variable, both based on Office of

Management and Budget variables (46). We then performed

one-hot encoding of the ethnicity and race variables separately,

and used a logical AND to generate the ethnicity/race variable:

e.g., a Hispanic or Latino, White patient. Lastly, for ethnicity/race

and sex, we created intersectional combinations using a logical

AND to identify all observed permutations of these variables.
Performing the audit

After we generated the audit data set, we first computed

summary statistics. Specifically, for each demographic variable

(sex, age, ethnicity/race, and the intersection of ethnicity/race

and sex), we computed the counts of each subgroup within
frontiersin.org
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TABLE 3 Solicitation of clinician labels.

Setting Primary Care Inpatient
Oncology

Inpatient
Oncology

Hospital Medicine Hospital Medicine

Model Epic EOL – Low Threshold Epic EOL – High
Threshold

Stanford HM ACP Epic EOL – High Threshold Stanford HM ACP

Sample Size Required to
achieve calibration
95% O/E CI of [0.74,
1.34] (assuming true
O/E = 1)

176 assuming prevalence of 20% 19 assuming prevalence
of 70%

19 assuming
prevalence of 70%

66 assuming prevalence of
40%

66 assuming prevalence of
40%

Solicitation of Clinician
Labels

Epic Staff Message sent 2/11/2022 N/A (Physician
answered surprise
question for all
patients responsible
for each morning
on service)

N/A (Physician
answered surprise
question for all
patients each
morning on
service)

Secure Emails sent 2/21/2022,
2/23/2022, 3/1/2022, 3/4/
2022, 3/7/2022, 3/14/2022,
3/21/2022

Secure Emails sent 2/21/2022,
2/23/2022, 3/1/2022, 3/4/
2022, 3/7/2022, 3/14/2022,
3/21/2022

Generation of
Solicitations

1. Link visits at a primary care
visit site since 09/2021 with
patient demographics

2. Filter to visits after 10/72/2021
3. For each provider: filter to

visits with the provider that
were with patients within their
panel

4. Remove visits for providers on
days where that provider had
more than 30 visits (assume
this is artifact of data base)

5. Randomly sample 5 patients of
remaining

N/A N/A 1. For each attending
physician on service,
generate an email asking
them to answer the
surprise question for all
patients they are
responsible for that day

1. For each attending
physician on service,
generate an email asking
them to answer the
surprise question for all
patients they are
responsible for that day

Example Solicitation Link N/A N/A Link Link

Announcement of
Solicitation

Slide in Division Meeting N/A N/A Email at week start Email at week start

Incentive with
Solicitation

Bag of Ghirardelli Chocolates
personally addressed, thanking
for answering the surprise
question

N/A N/A Bag of Ghirardelli Chocolates
personally addressed,
thanking for answering the
surprise question

Bag of Ghirardelli Chocolates
personally addressed,
thanking for answering the
surprise question

Location of Code to
Generate Solicitations

shahlab secure server: /data4/jhlu
/EOL/[2022-02-01 using
concept] pcph_merge_visits_
generate_validation_lists_and
_plausibility_lists.ipynb

N/A N/A shahlab secure server: /data4/
jhlu/hm-surprise-
gathering/PROD

shahlab secure server: /data4/
jhlu/hm-surprise-
gathering/PROD

# Clinicians Solicited 79 N/A N/A 22 22

Size of Solicitations 386 N/A N/A 545 545
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that demographic, as well as the % of the count within the entire

data set, and the number and % of positive ground truth labels.

We also computed a 95% confidence interval on the positive

ground truth label prevalence in each subgroup, using the

Clopper-Pearson interval (47) and determined if it overlapped

with the confidence interval of the overall positive label

prevalence; this evaluated whether ground truth labels were

consistent across different demographic subgroups.

We next evaluated model performance. With the ground

truth labels and model flags, we computed the following
Frontiers in Digital Health 07
metrics: number of flagged patients, PPV, sensitivity, and

specificity. For completeness, we also include the AUROC and

Accuracy in the Supplementary Results, but do not focus on

these in the main text as the other metrics were considered

more clinically and diagnostically relevant. We computed 95%

confidence intervals on the performance metrics using the

empirical bootstrap: we generated 1,000 bootstrap samples of

the data set. For each sample, we computed the performance

metrics, and computed the difference between each metric

from the bootstrap sample and that from the overall study
frontiersin.org
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group. (Note the metric on the bootstrap sample may have been

null due to dividing by zero, e.g., for PPV if there were no

patients that were flagged by the model) We used these

differences to generate a distribution of 1,000 bootstrap

differences, computed the 2.5th and 97.5th percentiles of the

differences (excluding null values), and subtracted these from

each metric to generate the empirical bootstrap confidence

interval for each metric.

We also evaluated model performance for the subgroups

defined by the demographic variables above by computing

PPV, sensitivity, and specificity. We computed 95%

confidence intervals for each subgroup as above, replacing

“overall study group” with the subgroup. We then check if the

confidence intervals overlap. Note that resulting confidence

intervals had values in some cases that were above 1 or below

0, due to large differences resulting from wide variation in the

metric over the bootstrap sampling (40).

We evaluated the models’ calibration using calibration plots.

A calibration plot provides a visual assessment of how well

predicted risk probabilities are aligned with observed

outcomes. To generate the calibration plots, we grouped

predicted probabilities into quintiles, and within each quintile,

computed the average of the predicted risks. We then plotted

the averaged predicted risk for each quintile on the x-axis and

proportion of positive ground truth labels for each quintile on

the y-axis (6, 8–10, 12, 14). We also computed the Observed

events/Expected events ratio O/E, which measures the overall

calibration of risk predictions, which is computed as the ratio

of the total number of observed to predicted events. We

computed O/E by dividing the total number of positive

ground truth labels by the sum of model output probabilities

and used the delta method for computing a 95% confidence

interval on O/E (50). The ideal value for O/E is 1; a value <1

or >1 implies that the model over or under predicts the

number of events, respectively (41).

We evaluated subgroup calibration by generating

calibration plots and by computing the O/E for each

subgroup, again using the delta method to compute a 95%

confidence interval on O/E (50). Note: because this method’s

standard error formula for ln(O/E) has O in the

denominator, the interval is undefined if O = 0.
Presenting audit results to decision
makers

We presented the results of our audit to decision makers in

Primary Care (co-authors AS, WT), Inpatient Oncology (co-

authors ARK, WT, SC, KR, MG), and Hospital Medicine (co-

authors SW, LS, RL), in a separate presentation for each

setting. Each presentation first gave context to the audit,

including sharing previous findings that AI models have been

unreliable (5, 48) or unfair (4), as well as that race/ethnicity
Frontiers in Digital Health 08
data in the EHR is known to have inaccuracies (33). Then, we

shared the summary statistics, model performance, model

calibration, subgroup performance and subgroup calibration.

We also designed a survey for the decision makers to

complete at the end of each presentation (Supplementary

Methods). In the survey, we assessed their understanding of

reliability/fairness by asking “What does it mean to you for a

model to be reliable/fair?” and “What are the first thoughts

that came to your mind on seeing the results of the reliability

and fairness audit?” We also assessed whether specific

components of the reliability/fairness audit would or would

not affect decision making, and asked if there would be any

other information they believe should be included in the

audit. Example surveys were shared with several decision

makers (co-authors WT, SW, AS), informaticists (co-authors

AG, AC) and the director of operations of an AI research &

implementation team (co-author MS) for feedback prior to

giving the survey.

After we received the survey responses, we reviewed and

summarized the most common structured responses. We also

read the free text responses, identified themes (ensuring that

every response had at least one theme represented) and

categorized responses by the themes. JL was the sole coder,

and performed inductive thematic analysis to generate codes.
Results

Reliability and fairness audit

We report the reliability and fairness audits below. For

simplicity, all confidence intervals are listed in the tables.

Also, only statistically significant results are listed in the

tables; full results including those without statistically

significant differences are listed in the Supplementary Tables.

Primary Care
We calculated we would need a sample size of 176 to

achieve an O/E 95% confidence interval of [0.74, 1.34],

assuming a 20% prevalence of the positive label. We solicited

79 clinicians for 386 labels of their patients (2-year surprise

question answers). 70 clinicians responded with 344 labels

(89% response rate). Six of the response labels were “Y/N” or

“DECEASED” and were filtered out, leaving 338 labels fitting

the schema.

Epic EOL Low Threshold in Primary Care
The final data set size for the Epic EOL – Low Threshold model

in Primary Care was 338 with 68 positive labels after we linked

the 338 clinician labels fitting the schema with Epic EOL model

predictions and patient demographics (Table 4).

The overall prevalence was 0.2. There was significantly

higher prevalence for Age: (80, 90] at 0.55. There was
frontiersin.org
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TABLE 4 Processing and final data sets.

Setting Primary Care Inpatient
Oncology

Inpatient
Oncology

Hospital
Medicine

Hospital
Medicine

Model Epic EOL – Low
Threshold

Epic EOL – High
Threshold

Stanford HM ACP Epic EOL – High
Threshold

Stanford HM ACP

Location of Gathered Clinician Labels Box file Box file Box file Box folder Box folder

# Clinicians Responding 70 2 2 18 18

Size of Clinician Labels (raw) 344 225 225 413 413

Clinician Labels/Solicitations (%) 89% N/A N/A 76% 76%

Missing Clinician Labels 42 N/A N/A 132 132

Size of Clinician Labels Fitting Schema 338 202 202 409 409

# Outcomes in Clinician Labels Fitting
Schema

68 136 136 178 178

% Outcomes in Clinician Labels Fitting
Schema

20% 67% 67% 44% 44%

Clinician Labels not fitting schema 4 – “Y/N”
2 – “DECEASED"

23 – Not linked to
numerical MRN

23 – Not linked to
numerical MRN

2 – “TRANSFERRED”
2 – “Maybe”

2 – “TRANSFERRED”
2 – “Maybe”

Final Data Set Size (has Clinician Label,
Model Prediction, and Demographics)

338 150 115 305 225

# Outcomes in Final Data Set 68 105 79 133 99

% Outcomes in Final Data Set 20% 70% 69% 44% 44%
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significantly lower prevalence for Age: (20, 30] at 0 and

Age: (30, 40] at 0. There were no significant differences

in prevalence found by Sex, Ethnicity/Race, or the intersection

of Ethnicity/Race and Sex (Table 5, Supplementary

Tables S1–S4).

The model flagged 30 patients out of 338 (9%), exhibiting low

sensitivity (0.37), high specificity (0.98), and high PPV (0.83). The

model also underpredicted events relative to clinicians by a factor

of O/E = 4.1. There was significantly lower sensitivity for Age: (60,

70] at 0.1 and Age: (70, 80] at 0.07. The model also underpredicted

events more for Age: (60, 70], by a factor of O/E = 9.3 (Table 5).

For several other groups, there were statistically significant

differences in prevalence, performance or O/E, but these

subgroups had less than 10 patients to calculate the metric for,

making results inconclusive (Table 5).
Inpatient Oncology
We calculated we would need a sample size of 19 to achieve

an O/E 95% confidence interval of [0.74, 1.34], assuming a 70%

prevalence of the positive label. Two clinicians (ARK, KR)

completed 225 labels for patients they saw while on service (1-

year surprise question answers). Note: each data point

corresponds with a unique patient encounter (some patients

were included multiple times due to re-hospitalization). Of the

225 labels, 23 did not have a numerical MRN associated and

were filtered out, leaving 202 clinician labels fitting the schema.
Frontiers in Digital Health 09
Epic EOL High Threshold in Inpatient Oncology
The final data set size for the Epic EOL – High Threshold model

in Inpatient Oncology, was 150 with 105 positive labels after we

linked the 202 clinician labels fitting the schema with Epic EOL

model predictions and patient demographics (Table 4).

The overall prevalence was 0.7. There was significantly

lower prevalence for younger patients (0.23 for Age: (20, 30]).

There were no significant differences in prevalence by Sex,

Ethnicity/Race, and the intersection of Ethnicity/Race and Sex

(Table 6).

The model flagged 32 patients out of 150 (21%) with a

sensitivity of 0.27, specificity of 0.91, and PPV of 0.88. The

model predicted many fewer events relative to the number of

positive clinician labels, with an O/E ratio of 3. Sensitivity for

Hispanic or Latino patients with Race “Other” (0.09) was

significantly lower than the model’s overall sensitivity (0.27).

This was also true for Hispanic or Latino Males with Race

“Other” specifically, for which the model’s sensitivity was

0. The model significantly underpredicted events for both

subgroups relative to clinicians, with O/E ratios of 6.9 and 9,

respectively. Several other subgroups exhibited statistically

significant differences in model performance or O/E, but these

subgroups had less than 10 patients to calculate the metric

for, making such claims inconclusive. See Table 6 for details.

Stanford HM ACP in Inpatient Oncology
The final data set size for the Stanford HM ACP model in

Inpatient Oncology was 114 with 79 positive labels after we

linked the 202 clinician labels fitting the schema with
frontiersin.org
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Stanford HM ACP model predictions and patient demographics

(Table 4).

The overall prevalence was 0.69. There were no significant

differences in prevalence amongst the demographic subgroups

considered.

The Stanford HM ACP model flagged 85 patients out of 114

(75%) with sensitivity 0.89, specificity 0.57, and PPV 0.82. The

model moderately underestimated events relative to clinicians,

with an O/E of 1.7. Model performance and O/E appeared to

differ for some subgroups, but these subgroups had less than

10 patients to calculate the metric for, making any associated

claims inconclusive. See Table 7 for details.

Model comparison in Inpatient Oncology
Comparing model performance in Inpatient Oncology, the

Stanford HM ACP model flagged more patients (75% vs.

21%), had significantly higher sensitivity (0.89 vs. 0.27), and

exhibited similar PPV (0.82 vs. 0.88, 95% confidence intervals

overlap). The Epic EOL High Threshold model had

significantly higher specificity (0.91 vs. 0.57). Comparing

model calibration, the Stanford HM ACP model had

significantly better calibration in terms of O/E (1.7 vs. 3).

Hospital Medicine
We calculated we would need a sample size of 66 to achieve

an O/E confidence interval of [0.74, 1.34], assuming a 40%

prevalence of the positive label. We solicited 22 clinicians for

545 labels of their patients seen while they were on service (1-

year surprise question answers). 18 clinicians responded with

413 labels (76% response rate). Note: each data point

corresponds with a unique patient encounter (some patients

were included multiple times due to long hospital stays). Four

of these were “Maybe” or “TRANSFERRED” and were filtered

out, leaving 409 clinician labels fitting the schema.

Epic EOL High Threshold in Hospital Medicine
The final data set size for the Epic EOL – High Threshold model

in Hospital Medicine, was 305 with 133 positive labels after we

linked the 409 clinician labels fitting the schema with Epic EOL

model predictions and patient demographics (Table 4).

The overall prevalence was 0.44. Prevalence did not differ by

sex, but was significantly higher for older patients (0.76 for Age:

(80, 90] and 0.94 for Age: (90, 100]) and significantly lower for

younger patients (0.12 for Age: (20, 30] and 0.15 for Age: (30,

40]). Prevalence was also significantly higher for Non-

Hispanic Asian patients (0.68) but significantly lower for

Hispanic or Latino patients with Race “Other” (0.18) and, in

particular, Hispanic or Latino Males of Race “Other” (0.14).

The model flagged 34 out of 305 patients (11%). The model

demonstrated a sensitivity of 0.2, specificity of 0.95, and PPV of

0.76. The model underpredicted events relative to clinicians

(O/E ratio of 2.5). There was significantly lower sensitivity for

Age: (50,60] at 0. The model significantly underestimated
Frontiers in Digital Health 12
events relative to clinicians for Non-Hispanic White Females

(O/E = 3.7). Differences in performance and O/E were

statistically significant for other subgroups, but these

subgroups had less than 10 patients to calculate the metric

for, preventing conclusive statements regarding disparate

performance. See Table 8 for details.

Stanford HM ACP in Hospital Medicine
The final data set size for the Stanford HM ACP model in

Hospital Medicine, was 225 with 99 positive labels after we

linked the 409 clinician labels fitting the schema with

Stanford HM ACP model predictions and patient

demographics (Table 4).

The overall prevalence was 0.44. Prevalence was significantly

higher for older patients (0.8 for Age: (80, 90], 0.92 for Age: (90,

100]) and significantly lower for younger patients (0.11 for Age:

(30, 40]). Prevalence was also significantly lower for Hispanic or

Latino patients with Race “Other” (0.16) and significantly

higher for Non-Hispanic Asian patients (0.7), especially Non-

Hispanic Asian Males (0.81).

The Stanford HM ACP model flagged 85 out of 225 patients

(38%), with sensitivity 0.69, specificity 0.87, and PPV 0.8.

Relative to clinicians, the model underestimated events by a

factor of O/E = 1.5. For patients Age: (90, 100], this

underestimation was even more substantial with an O/E ratio

of 2.5. Specificity was lower (0.57) for Age: (70, 80]. Relative

to the model’s overall PPV, the PPV for Hispanic or Latino

patients with Race “Other” was significantly lower (0.29 vs.

0.8). Model performance disparities in other subgroups were

inconclusive given they had less than 10 patients to calculate

the metric for. See Table 9 for details.

Model comparison in Hospital Medicine
Comparing model performance in Hospital Medicine, relative

to the Epic EOL – High Threshold model the Stanford HM

ACP model flagged more patients (38% vs. 11%), had

significantly higher sensitivity (0.69 vs. 0.2), similar specificity

(0.87 vs. 0.95, 95% confidence intervals overlap), and similar

PPV (0.8 vs. 0.76, 95% confidence intervals overlap).

Comparing model calibration, the Stanford HM ACP model

had significantly better calibration in O/E (1.5 vs. 2.5).

Supplemental analysis with class balancing
We also performed a supplemental analysis of the

reliability/fairness audits after using random oversampling to

achieve class balance (see Supplementary Results). Overall,

model sensitivity and specificity stayed the same for all

settings. Model PPV increased when class balancing increased

the prevalence (Primary Care, Hospital Medicine), and

decreased when class balancing decreased the prevalence

(Inpatient Oncology). Model calibration in O/E had

inconsistent changes after class balancing. The differences in

performance and calibration between the Epic EOL High
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TABLE 11 Survey responses to “what does it mean to you for a model
to be fair?”.

Theme Example Response Response
Count

Similar Model Performance
across demographics

“It doesn’t over or under flag
patients based on race,
ethnicity, age or sex”

6

Lu et al. 10.3389/fdgth.2022.943768
Threshold model and the Stanford HM ACP model stayed the

same in each setting in the class balance analysis. Some of the

subgroup differences in prevalence, performance and

calibration were maintained in the class balance analysis.

Overall, interpretation of the results after class balancing is

difficult given that class balancing can lead to poorly

calibrated models (49, 50).

Similar Model Performance

across demographics:
Race/Ethnicity

“The model would treat all
people the same, regardless of
sex or race”

4

Similar Model Performance
across demographics:
Sex

“Performance is not
preferentially high or low
based on race, sex, etc.”

4

Depends on How Model is
Used

“I’m not sure a model is
inherently fair or not fair, it
seems to me that the way the
model is used could be fair or
unfair. In one context, being
more sensitive for patients of
a certain group could be good
(fair) for those patients, in

2

Survey of decision makers

After the presentations, we administered a survey about

how the audit impacted decision makers’ decision to use the

model. We gathered 10 responses: 2 for Primary Care, 5 for

Inpatient Oncology and 3 for Hospital Medicine. 7 responses

were from Attending Physicians, 1 was from a Physician

Assistant, and 2 were from the Lead for the Serious Illness

Care Program.

another context it could be
bad (unfair).”

Similar Model Performance
across demographics:
Age

“To not over or under flag
patients based on race,
ethnicity, age or sex”

2

Similar Model Performance
across demographics:
Intersectional

“Outputs are fair across
subpopulations and
intersectionality”

1

Representative Patient Data “Was the patient data
representative”

1

Considers Socioeconomic
Factors

“Takes into account
socioeconomic factors,
insurance factors”

1

Understandings of reliable/fair models
Decision makers used themes of Accurate (9/10) and

Consistent (5/10) when asked to describe what it meant to

them for a model to be reliable (Table 10). For example, one

response said: “not brittle (doesn’t give really weird answers if

some data are missing).”

When asked to describe what it meant to them for a model

to be fair, they tended to use themes of Similar Model

Performance across demographics (6/10) often specifically

citing Race/Ethnicity (4/10) and Sex (4/10) (Table 11).

Another common theme was Depends on How Model is

Used (2/10). For example, one response said: “… In one

context, being more sensitive for patients of a certain group

could be good (fair) for those patients, in another context it

could be bad (unfair).”

Decision makers used a variety of themes to describe their first

thoughts on seeing the results of the reliability and fairness audit

(Supplementary Table S21). In Primary care, the decision
TABLE 10 Survey responses to “what does it mean to you for a model
to be reliable?”.

Theme Example Response Response
Count

Accurate “How well it predicts what is trying to
be predicted”

9

Consistent “Will the model change over time” 5

Accurate: Identifies
Appropriate patients

“That it never identifies patients who
are not appropriate for our
intervention. Once it does that, then
users will stop finding it useful”

3

Accurate: Across
subpopulations

“Consistent outputs across time and is
accurate across different
subpopulations”

2
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makers used Excitement and Trust to Use the Model For

Intended Purpose (2/2), whereas in Hospital Medicine, they

used Interesting (3/3). In Inpatient Oncology, 2 of 5 responses

referred to Low Sample Size, for example “… There may be

some signals of differences based on age and race/ethnicity groups,

but I wonder if this is in part limited by low power.”

Audit components affecting decision making
Decision makers felt that every component of the audit

would affect their decision to deploy the model, including

Summary Statistics, Performance, and Subgroup Performance

(10/10); and Calibration and Subgroup Calibration (both 9/

10). When asked for any other information they would want

included in the audit to support their decision on whether to

deploy a model (Supplementary Table S22), decision makers

most commonly responded with more reliable race data in

EHR (2/10).

Drivers and barriers for audits and AI model use
Decision makers identified Findings that AI models

are not fair (10/10), Findings that AI models are not
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reliable (9/10), and Academic medicine’s push toward

racial equity (9/10) as key drivers to making reliability

and fairness audits standard practice (Supplementary Table S23).

For key barriers, they tended to identify Poor demographic data

quality (8/10), Poor data quality (6/10), and Lack of data access

(5/10) (Supplementary Table S24).

Decision makers largely saw Helps triage patients and

identify who would benefit the most (10/10) and Shared

understanding of patients for our whole care team (9/10) as

key advantages of using AI to support their work

(Supplementary Table S25). When asked what cons they see

in using an AI model to support their work, decision makers

tended to respond with Lack of transparency of the model

(5/10) and Takes effort to maintain (4/10) (Supplementary

Table S26).
TABLE 12 Time and requirements to generate reliability and fairness audits.

Average across
3 Settings
(estimated

person-hours)

Primary Care
(estimated
person –
hours)

Inpatient
Oncology
(estimated

person-hou

Sample Size Calculation 15 25 10

Pull Epic Model
Predictions

1 1 1

IRB for Clinician-
Patient Linkage in
Primary Care

9 9 N/A

Clinician Label-
Gathering:
Solicitation

24 25 N/A

Clinician Label-
Gathering: Chocolate
Incentive

24 26 N/A

Clinician Label-
Gathering: Responses

7 6 8

Clinician Label-
Gathering: Recording
Responses

3 2

Processing & Analysis 48 41 58

Presentation 1 1 2

Survey 8 8 8

TOTAL TIME 115 145 88

TIME OF ITERATION
(Code Iterating for
Sample Size
Calculation &
Reliability/Fairness
Audit, and Iterating
on Presentation)

40 45 45

TOTAL TIME
WITHOUT
ITERATION

75 100 43
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Time and resources required to perform
audit

We documented the main tasks, persons performing each

task, and estimated time required to perform each task in

Supplementary File S1, summarizing in Table 12. Note: we

estimated response time per clinician using the median time

per surprise question from our decision maker survey

responses: 1 min for Primary Care and for Hospital Medicine,

and 2 min for Inpatient Oncology.

Averaged across the three settings, we spent 115 h on the

audit. Some of the most time-intensive tasks involved

processing and analysis of the data (48 person-hours),

soliciting clinician labels (24 person-hours), designing and

implementing an incentive program to support gathering
For further detail, see Supplementary File S1.

rs)

Hospital
Medicine
(estimated

person-hours)

Primary
Care (date
range)

Inpatient
Oncology

(date range)

Hospital
Medicine

(date range)

10 8/12/2021–
11/8/2021

8/24/2021–11/8/
2021

8/24/2021–11/
8/2021

1 11/16/2021 6/14/2021 1/31/2022

N/A 12/7/2021–1/
14/2022

N/A N/A

22 11/19/2021–
2/23/2022

N/A 2/15/2022–3/
21/2022

22 1/26/2022–2/
14/2022

N/A 1/26/2022–2/
20/2022

7 2/11/2022–3/
7/2022

8/15/2021–3/19/
2022

2/21/2022–3/
22/2022

3 2/11/2022–3/
7/2022

8/15/2021–3/19/
2022

2/21/2022–3/
22/2022

44 10/31/2021–
4/21/2022

11/22/2021–4/
21/2022

3/30/2022–4/
21/2022

1 3/21/2022 3/25/2022, 3/29/
2022

3/30/2022

8 3/3/2022–4/
23/2022

3/3/2022–4/23/
2022

3/3/2022–4/23/
2022

111 8/12/2021–4/
23/2022

6/14/2021–4/23/
2022

8/24/2021–4/
23/2022

30

81
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clinician labels (24 person-hours), and calculating the

required sample size (15 person-hours). Notably, the

actual responses by the clinicians and recording of

responses by the clinicians required less time (9 person-

hours), as did designing and implementing the survey (8

person-hours) and presenting to the decision makers (1

person-hours).

Of the 115 h, we classified 40 (35%) of these hours as

iteration time – time that JL spent mainly on iterating on

writing code (e.g., for calculating required sample sizes and

estimating model performance for each subgroup) or

drafting presentation material. If we were to do the same

study again at this point, presuming we could bypass the

iteration time, the audit could likely be done in 75 h (65% of

total hours).

In calendar time, the audits were completed 8–10 months

from the start, underscoring the need for balancing competing

priorities amongst both study designers and participants,

building relationships among team members to enable the

project, and waiting for clinicians to respond.

Lastly, we emphasize key requirements in two categories:

stakeholder relationships and data access. On stakeholder

relationships, physicians’ understanding of the best way to

communicate with their colleagues and designing appropriate

incentives (e.g., chocolate) were crucial to ensure a high

response rate. On data access, there were multiple data

sources with different access requirements. Some required

healthcare system employees to use their privileged access.

For example, KS had to extract Epic model predictions

from our EHR for us to perform the audit. Similarly,

multiple IT subunits had to coordinate to deliver patient
FIGURE 2

Summary of fairness audit findings, for Hispanic patients for the Epic EOL Hig
significant difference in prevalence for Hispanic patients. (B) Subgroup perfo
was especially low for Hispanic male patients. (C) Subgroup calibration reveale
Hispanic female patients and especially for Hispanic male patients. Note: we r
“Sig.” stands for “statistically significant”.

Frontiers in Digital Health 19
panels for us. Alternatively, other data sources could be

accessed using existing data infrastructure. Crucially, our

patient demographics and patient visits were already

available in a common data format (OMOP-CDM) (44).

This allowed iterative querying and refinement to ensure we

were pulling the most relevant patients and patient

information. Having existing access to a daily hospital

census feed and having query access to the hospitalist

attending schedules were critical in enabling our hospital

medicine clinician labeling workflow (26).
Discussion

We operationalized reliability and fairness audits of

predictive models in ACP, with the best attempt to adhere to

model reporting guidelines (22). We highlight key insights

and themes across audits below and conclude with

recommendations for informaticists and decision makers.
Key insights from model fairness
audits

We use the Epic EOL High Threshold’s performance for

Hispanic patients in Inpatient Oncology as an illustrative

example (Figure 2) to show the value of reporting summary

statistics, subgroup performance and subgroup calibration.

(Note: the specific group is Hispanic/Latino patients with

Race listed as Other, but we denote them as “Hispanic”

patients here for simplicity).
h Threshold in Inpatient Oncology. (A) Summary statistics revealed no
rmance revealed decreased sensitivity on Hispanic patients and that it
d significantly greater miscalibration for Hispanic patients, including for
efer to Hispanic patients with Race listed as Other as Hispanic patients.
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First, summary statistics revealed no significant differences

in prevalence of the outcome label for Hispanic patients,

including after disaggregating by the intersection of race/

ethnicity and sex (Figure 2A). Assuming no systematic

differences in mortality risk or appropriateness of ACP for

Hispanic patients vs. Non-Hispanic patients, this reassured us

that our surrogate outcome exhibited no obvious signs of bias.

Second, despite insignificant differences in clinician label

prevalence, the Epic EOL – High Threshold revealed reduced

sensitivity (0.09) for Hispanic patients (Figure 2B). The

model only flagged 2 of 22 positive patients identified by

clinician review. Disaggregation by the intersection of race/

ethnicity and sex revealed that the model had significantly

reduced sensitivity (0.0) for Hispanic male patients

specifically, flagging 0 of 13 positive patients. This

demonstrates the value of analyzing model performance for

different subgroups (51) and intersectional subgroups (3).

Third, subgroup calibration revealed significant

underprediction of events (O/E: 6.9) for Hispanic patients

(Figure 2C), especially Hispanic male patients (O/E: 9.0). The

subgroup calibration shows that the model was systematically

giving lower scores to Hispanic patients relative to clinicians,

which is potentially linked to the model’s lower sensitivity for

those groups. Again, this shows how subgroup calibration aids

understanding algorithms’ impacts on different groups (4).

Differences in the Epic EOLmodel’s sensitivity for Hispanics

vs. Non-Hispanics and themodel’s O/E ratio relative to clinicians

for this subgroup also highlights one of the key challenges in using

surrogate outcomes (e.g., clinician responses to the surprise

question) for reliability and fairness audits. Was the Epic EOL

model’s sensitivity low for Hispanic Males because it

underestimated true risk, or was it that clinicians overestimated

risk for those Hispanic Male patients that the model did not

flag? Given the consistency of clinician labels across subgroups,

we lean toward the former interpretation, but it is impossible to

saywith certainty in the absence of an objective ground truth label.

Lastly, in all three cases, reporting numerators and

denominators put the metrics in context. There were many

otherwise seemingly significant results that were marred by low

number of patients to calculate the metric for (e.g., for sensitivity,

there may be few patients with the positive label). This is especially

true for intersectional subgroups that have low representation in

the data set (e.g., American Indian or Alaska Native Males).
Consistent themes across audits

Considering the summary statistics of the data sets, there

were generally no differences in prevalence of clinician-

generated positive labels by sex, race/ethnicity or race/

ethnicity and sex. Out of 5 data sets considered, 4 showed

either significantly higher prevalence of positive labels for

older patients (Age: (70, 80], Age: (80, 90], Age: (90, 100]) or
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significantly lower prevalence for younger patients (Age: (20,

30], Age: (30, 40]). This is consistent with the older patients

having worse prognosis than younger patients and thus was

not a cause for concern with respect to label bias. However, it

was surprising that for the two Hospital Medicine data sets,

there was a higher prevalence of positive labels for non-

Hispanic Asian patients (including specifically for those of

Male sex) and lower prevalence for Hispanic patients for

whom Race was listed as Other (including specifically those of

Male sex).

Considering the model performance and calibration, in

every setting, all models had high PPV at 0.76 or above;

several of our clinicians considered this the most important

metric, roughly corresponding to “would a clinician agree if

the model flagged a patient?”. In Hospital Medicine and

Inpatient Oncology, the Epic EOL model at High Threshold

tended to flag fewer patients (11%, 21% respectively) than the

Stanford HM ACP model (38%, 75%). Meanwhile, the

Stanford HM ACP model had higher sensitivity (0.69, 0.89 vs.

0.20, 0.27), and better calibration (O/E 1.5, 1.7) than the Epic

EOL model (O/E 2.5, 3.0).

Beyond that, the models often had low sensitivities or PPVs

or high rate of underprediction (O/E) for several patient

subgroups that had less than 10 patients to compute the

metric for in the data set. We emphasize that there is a need

to increase representation for these groups so that accurate

values can be obtained. Such subgroups include Native

Hawaiian or Other Pacific Islander patients, American Indian

or Alaska Native patients, Hispanic or Latino patients with

race “White” or “Other”, and Black or African American

patients, among others.

Decision makers overall felt every component of the audit

would affect their decision to turn on the model. They most

often responded with themes of Accurate and Consistent for

“What does it mean to you for a model to be reliable?”. They

most often responded with Similar Model Performance

across demographics, especially for Race/Ethnicity and Sex

for “What does it mean to you for a model to be fair?”. The

most commonly identified key barriers for making reliability

and fairness audits standard practice were Poor demographic

data quality, Poor data quality, and Lack of data access.

Recommendations for informaticists
Invest in checking and improving data validity
Our audit was influenced by multiple unreliable data cascades

(52) that hindered our ability to draw decisive conclusions

regarding model fairness and reliability. Firstly, it is likely that

the race/ethnicity variables were inaccurate, given widespread

low concordance with patients’ self-identified race/ethnicity

found in one of our family medicine clinics (33) and other

data sets (34). Thus, a prerequisite for reporting summary

statistics and model subgroup performance, as recommended

by many model reporting guidelines (9, 11–13, 15, 17, 18, 20,
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53), would be better collection of race/ethnicity data. We also

again emphasize that race/ethnicity is more a social construct

than fixed biological category (32) and the goal of the fairness

audit is to understand the demographics of who is

represented in data sets and how models impact them.

Another data cascade we experienced was large loss of

clinician labels after linking these to model predictions and

patient demographics (25%–27% for the Epic EOL and 44%–

45% for the Stanford HM ACP, in Inpatient Oncology and

Hospital Medicine).

Lastly, it is important to verify the validity of source data in

detail i.e., via manual inspection of the raw data, summary

statistics, and metadata for all variables used in the audit. For

example, the Sex variable we used from the patient demographic

table came from a column called “gender_source_value”;

OMOP-CDM documentation (45) clarified “The Gender domain

captures all concepts about the sex of a person, denoting the

biological and physiological characteristics. In fact, the Domain

(and field in the PERSON table) should probably should be called

‘sex’ rather than ‘gender’, as gender refers to behaviors, roles,

expectations, and activities in society.” Relatedly, we found

hundreds of visits on a single day for two of the Primary Care

providers in the visits table. Our frontline clinicians advised this

was likely an artifact given the unrealistic number (AS, WT), so

we filtered those two days out.

Perform intersectional analyses
Intersectional analyses proved crucial as they often lended

greater clarity to specific subgroups that were being impacted.

For example, in Inpatient Oncology, the Epic EOL-High

Threshold had low sensitivity (2/22) for Hispanic patients and

when disaggregated, specifically had a sensitivity of 0% (0/13)

for Hispanic male patients. This would not have been

recognized if only looking at sex or race/ethnicity individually.

This phenomenon has been discussed in Kimberlé Crenshaw’s

pioneering intersectionality research to specifically address

discrimination against Black women, who often face distinct

barriers and challenges relative to White women or Black

men (15, 54).

Intersectional subgroup analyses are not difficult to

perform, as generating intersectional demographics from one-

hot encoded columns only requires performing a logical

intersection operation between demographic one-hot encoded

columns. However, care must be taken in interpretation of

these subgroup analyses as many intersectional subgroups will

have poor representation even in large overall sample sizes.

Below, we discuss strategies to aid in interpreting results from

less frequently represented subgroups.

Contextualize small sample sizes by calculating
confidence intervals and reporting metrics as fractions
Small sample sizes of certain subgroups should not be a

reason to not consider the subgroups. Proper interpretation
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of subgroup audit results can be supported by (1) using

confidence intervals (e.g., via the bootstrap or exact

analytical approaches) to appropriately capture sampling

variation and (2) reporting metrics with the involved whole

numbers (e.g., numerator and denominator, or number of

patients) so that if values are extreme, they can be considered

in context. For example, several of our bootstrap confidence

intervals did not have any width due to there only being

one data point from which to resample. [In future work, we

would use analytical methods to calculate exact confidence

intervals for small sample sizes, such as the Clopper-Pearson

interval (47)].

It is especially important to not ignore small sample sizes as

doing so can contribute to understudying patient subgroups,

especially those that are underrepresented in healthcare data

sets due to societal inequities and structural racism. For

example, Indigenous peoples have regularly been excluded

from COVID-19 data (55) and American Indian and Alaska

Native Peoples have often been ignored in data sets due to

aggregate analyses (56). Devising sampling strategies in

advance to account for known underrepresented populations

can help mitigate these issues (e.g., by oversampling

underrepresented minorities or increasing sample sizes so that

tests for model performance discrepancies between subgroups

are adequately powered).

Provider-Patient linkages are necessary data to perform
audits using expert-generated labels
Before performing the audit, we did not realize how important it

was to be able to generate a list of relevant patients for whom

the clinicians would feel comfortable answering the surprise

question. Concretely, our clinician annotators felt most

comfortable providing labels (the “surprise question”) for

patients that they had cared for recently. For Primary Care,

this required finding recent visits (available in our OMOP-

CDM infrastructure) and linking that with patient panels

(which we retrieved from business analysts). For Hospital

Medicine, this required linking a daily hospital census feed

that had assigned treatment teams, with attending- treatment

teams. Informatics teams should view clinician-patient linkage

as necessary to perform audits in cases where clinician-

generated labels are required.

Recommendations for decision makers
Acknowledge limits on data quality for
evaluation
Decision makers should recognize the limitations of data

quality when performing audits. Race/ethnicity data is likely

inaccurate unless proven otherwise given the widespread

low concordance with patients’ self-identification, as found

in our and other data sets (33, 34). Surrogate clinician-

generated outcomes used may also be imperfect: our clinician

surprise question (a surrogate outcome for appropriateness
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of an ACP consultation) did not include blinding to the

Stanford HM ACP model because it was actively in use as an

Epic column as part of the Hospital Medicine SICP

implementation. Moreover, while our clinician surprise

question generally did not exhibit any obvious differences

across ethnicity/race, other studies have found that using

surrogate outcomes (e.g., health spending as a proxy for

health risk) can exacerbate existing disparities in health (e.g.,

by estimating that Black patients are at lower health risk

because health spending for Black patients has historically

been lower than for White patients) (4). Lastly, there were

many dropped patients due to lack of an associated model

prediction which, if not missing at random, could affect the

reliability of our audit.

Require reliability and fairness audits of models before
deployment
Our work demonstrates that it is feasible to do thorough

reliability and fairness audits of models according to model

reporting guidelines, despite low adherence to such guidelines

for many deployed models (22). In particular, beyond

the usual aggregate model performance metrics, it is

straightforward to perform pre-study sample size calculations

(41), to report confidence intervals on performance metrics

(e.g., using bootstrap sampling), to report summary statistics

of the evaluation dataset by subgroup, to share calibration

plots and calibration measures, and to do subgroup and

intersectional subgroup analyses (3, 15). 90% of our decision

makers felt that summary statistics, model performance, model

calibration, model subgroup performance and model subgroup

calibration affected their decision on whether to turn on

the model.

Such audits can be performed by internal organizational

teams responsible for deploying predictive models in

healthcare (23, 57), with the caveat that internal audits may

have limited independence and objectivity (23). Alternatively,

regulators may conduct such audits, such as the Food and

Drug Administration (FDA)’s proposed Digital Health

Software Precertification Program which evaluates real world

performance of software as a medical device (58). A more

likely scenario is the emergence of community standards (59)

that provide consensus guidance on responsible use of AI in

Healthcare. We propose that the cost of performing such

audits be included in the operating cost of running a care

program in a manner similar to how IT costs are currently

paid for, with a specific carveout to ensure audits are

performed and needed resources are funded.

Enable audits via connecting impacted stakeholders and
informaticists
Our decision makers facilitated relationships with their

colleagues in Primary Care, Inpatient Oncology and Hospital

Medicine that enabled generation of sufficient clinician labels
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for us to perform our external validation with excellent

response rates. This shows the value of interdisciplinary teams

and how important it is to honor the trust that comes with

personal connections (27, 60, 61). Without this strong

relationship, we would have been unable to perform our

analysis.
Interpret fairness audits in context of the broader
sociotechnical system
Fairness is not solely a property of a model but rather

encopmpases the broader sociotechnical system in which

people are using a model (62). As one of the decision makers

noted, “I’m not sure a model is inherently fair or not fair,…

In one context, being more sensitive for patients of a certain

group could be good (fair) for those patients, in another

context it could be bad (unfair).” Furthermore, fairness is not

just a mathematical property, but it involves process, is

contextual, and can be contested (62). Thus, we note that a

fairness audit depicting a model in a favorable light does not

by itself prevent unfair treatment of patients nor guarantee

that use of the model will reduce health disparities.
Conclusion

Despite frequent recommendations by model reporting

guidelines, reliability and fairness audits are not often

performed for AI models used in health care (21, 22). With

respect to reliability, there is a gap in reporting external

validation with performance metrics, confidence intervals, and

calibration plots. With respect to fairness, there is a gap in

reporting summary statistics, subgroup performance and

subgroup calibration.

In this work, we audited two AI models, the Epic EOL Index

and a Stanford HM ACP model, which were considered for use

to support ACP in three care settings: Primary Care, Inpatient

Oncology and Hospital Medicine. We calculated minimum

necessary sample sizes, gathered ground truth labels from

clinicians, and merged those labels with model predictions

and patient demographics to create the audit data set.

In terms of reliability, all models exhibited a PPV of 0.76 or

above in all settings, which clinicians identified as the

most important metric. In Inpatient Oncology and Hospital

Medicine, the Stanford HM ACP model had higher

sensitivity and calibration. Meanwhile, the Epic EOL model

flagged fewer patients than the Stanford HM ACP model.

In terms of fairness, the clinician-generated data set exhibited

few differences in prevalence by sex or ethnicity/race. In

Primary Care, Inpatient Oncology, and Hospital medicine the

Epic EOL model tended to have lower sensitivity in Hispanic/

Latino Male patients with Race listed as “Other”. The

Stanford HM ACP model similarly had low sensitivity for
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this subgroup in Hospital Medicine but not in Inpatient

Oncology.

The audit required 115 person-hours, but every component

of the audit was valuable, affecting decision makers’

consideration on whether to turn on the models. Key

requirements for the audit were (1) stakeholder relationships,

which enabled gathering ground truth labels and presenting

to decision makers, and (2) data access, especially establishing

linkages between providers and patients under their care. For

future audits, we recommend recognizing data issues upfront

(especially race/ethnicity data), handling small sample sizes by

showing confidence intervals and reporting metrics as

fractions, and performing intersectional subgroup analyses.

Above all, we recommend that decision makers require

reliability and fairness audits before using AI models to guide

care. With established processes, the 8–10 month calendar

time can be compressed to a few weeks given that actual

person hours were approximately 3 weeks of effort.
Contribution to the field statement

Artificial intelligence (AI) models developed from electronic

health record (EHR) data can be biased and unreliable. Despite

multiple guidelines to improve reporting of model fairness and

reliability, adherence is difficult given the gap between what

guidelines seek and operational feasibility of such reporting.

We try to bridge this gap by describing a reliability and

fairness audit of AI models that were considered for use to

support team-based advance care planning (ACP) in three

practice settings: Primary Care, Inpatient Oncology, and

Hospital Medicine. We lay out the data gathering processes as

well as the design of the reliability and fairness audit, and

present results of the audit and decision maker survey. We

discuss key lessons learned, how long the audit took to

perform, requirements regarding stakeholder relationships and

data access, and limitations of the data. Our work may

support others in implementing routine reliability and fairness

audits of models prior to deployment into a practice setting.
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