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Introduction: Digital health interventions are an effective way to treat
depression, but it is still largely unclear how patients’ individual symptoms
evolve dynamically during such treatments. Data-driven forecasts of
depressive symptoms would allow to greatly improve the personalisation of
treatments. In current forecasting approaches, models are often trained on
an entire population, resulting in a general model that works overall, but
does not translate well to each individual in clinically heterogeneous, real-
world populations. Model fairness across patient subgroups is also frequently
overlooked. Personalised models tailored to the individual patient may
therefore be promising.
Methods: We investigate different personalisation strategies using transfer
learning, subgroup models, as well as subject-dependent standardisation on
a newly-collected, longitudinal dataset of depression patients undergoing
treatment with a digital intervention (N = 65 patients recruited). Both passive
mobile sensor data as well as ecological momentary assessments were
available for modelling. We evaluated the models’ ability to predict
symptoms of depression (Patient Health Questionnaire-2; PHQ-2) at the end
of each day, and to forecast symptoms of the next day.
Results: In our experiments, we achieve a best mean-absolute-error (MAE) of
0.801 (25% improvement) for predicting PHQ-2 values at the end of the day
with subject-dependent standardisation compared to a non-personalised
baseline (MAE = 1.062). For one day ahead-forecasting, we can improve the
baseline of 1.539 by 12% to a MAE of 1.349 using a transfer learning
approach with shared common layers. In addition, personalisation leads to
fairer models at group-level.
Discussion: Our results suggest that personalisation using subject-dependent
standardisation and transfer learning can improve predictions and forecasts,
respectively, of depressive symptoms in participants of a digital depression
intervention. We discuss technical and clinical limitations of this approach,
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avenuesforfutureinvestigations,andhowpersonalisedmachinelearningarchitecturesmaybe
implemented to improve existing digital interventions for depression.
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1. Introduction

Depressive disorders are very common in the general

population, with twelve month prevalence estimates ranging

from 5.9–7.7% (1–4). They are associated with a vast array of

negative consequences for the individual and society,

including increased disability (5), loss of quality of life (6, 7),

suicidality (8, 9), excess mortality (10, 11), as well as large

economic costs (12, 13). By 2030, depression is estimated to

become the leading cause of disability-adjusted life years in

high-income countries (14, 15). Thus, the development and

widespread dissemination of effective treatments for

depressive symptoms constitutes a public health priority.

Research documents a substantial treatment gap among

individuals who suffer from depression. Even in high-income

countries, depression treatment rates are often below 30% (16, 17).

It has been found that structural barriers, but also attitudinal

factors such as preference to self-manage or personal stigma may

play a role in the limited utilisation of existing services (18). Digital

interventions have therefore been discussed as an instrument to

increase help-seeking (19, 20), since such interventions are easily

accessible and can provide greater anonymity. Digital interventions

can be provided to everyone with Internet access and are highly

scalable. Therefore, they may also allow to address structural

barriers in the health care system (21).

Digital interventions have been found to be an effective

treatment for a broad range of mental disorders (22), including

depression (23). However, it is still largely unknown for whom

these interventions work, and why (24). Overall, treatment non-

response remains a pervasive issue in major depressive disorder

(MDD) patients, with approximately 37% achieving remission

after the first course of evidence-based treatment (i.e.,

pharmacotherapy, psychological interventions, or combination

therapy), and 67% after trying out several courses of treatment

(25). “Sudden losses” and relapse remain a frequent

phenomenon within or following depression treatments (26, 27).

These findings underline the potential of a more

personalised treatment approach, particularly with respect to

methods that allow for an early detection of symptom

changes. Current digital interventions typically follow a “one

size fits all” approach that is very limited in its capability to

react adaptively to patients’ individual trajectory. Therefore,

data-driven methods are increasingly discussed as a method

to open up the “black box” of psychological treatment, and

thus building the basis for tailored interventions (21, 28).

Interventions based on digital applications may be particularly
02
suited for data-driven tailoring, since they allow to capture an

unprecedented amount of potentially meaningful symptom and

process information. This could allow, for example, to provide

targeted behavioral prompts, ecological momentary interventions

(29), and additional human guidance when patients experience

symptom spikes during treatment; or to exploit predicted

improvements by encouraging patients to reflect on potential

behavior changes they have since implemented.

There are several data sources by which data-driven models

of symptom trajectories have been developed in previous

research. In an emerging research field known as “Personal

Sensing” (30) or “Digital Phenotyping” (31, 32), scientists are

using mobile sensor data as created by commercially available

smartphones or wearables to measure high-level indicators of

individuals’ mental health (e.g., sleep patterns, stress, or

depressed mood). This type of research has established that

passive sensor data can be used to predict various symptoms

of mental disorders or mental health problems (23, 33–38), as

well as their future development [e.g., (39)].

A related research field involves the use of “Ecological

Momentary Assessment” [EMA; (40)], in which patients’

behaviors and experiences are repeatedly sampled in situ, often

using (e.g., digitally administered) self-report questionnaires. EMA

is frequently used to gain a personalised understanding of the

temporal dynamics of mental disorders, and their influences (41).

However, EMA data has also been successfully used to predict the

development of symptoms within treatments [e.g., (42)].

Currently, most data-driven approaches employ “general”

models to predict current or future mental health symptoms.

This means that one model capturing overall patterns across

patients is derived from the training set, which allows to

generate individualised predictions conditional on provided

data. However, it has been recognised that the inherent

clinical heterogeneity associated with mental disorders may

necessitate a greater focus on inter-individual differences to

ensure generalisability to unseen cases (39, 43, 44). With

respect to passive sensor data, for example, a large-scale study

by (45) demonstrated that depression prediction accuracies

using a heterogeneous student sample (n ¼ 57) did not

generalise once models were applied to a more representative,

heterogeneous sample (n ¼ 5, 262).

Therefore, personalised models are progressively explored as

a promising approach to predict mental health in heterogeneous

real-world datasets (39, 46, 47). In a personalised learning

approach, an idiographic model is developed for each

individual or a smaller patient subset, often while retaining a
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“backbone” infrastructure that captures common features across

subjects. Most of the personalisation approaches can be assigned

to one of the following three areas: (1) user-specific, (2)

similarity-based, as well as (3) enrolment-based approaches.

The first group represents a user-dependent method that

depends on data of the user for whom the model will be

personalised (46, 48). Busso et al. (49), for example, propose a

user-dependent personalisation approach for speech

applications using speaker-dependent feature normalisation.

Other methods of user-dependent personalisation are

approaches that have a common backbone model trained on

the whole population, which is extended with personalised

layers per subject (46, 48). Similarity-based and enrolment-

based methods are user-independent and can be applied even

if no longitudinal data of participants is available (50–52).

Dividing patients into subgroups makes it possible to train a

separate model for each cluster using similarity-based

personalisation. By subsequently assigning new patients to the

group they are most similar to, the model can learn

subgroup-specific characteristics, often leading to an improved

performance compared to general trained models. Li and

Sano (51), for example, found that user-dependent models

perform better in comparison to user-independent

approaches. Finally, enrolment-based strategies attempt to

adapt to new users using only a limited number of enrolment

samples for which the ground-truth label is available (52).

Overall, personalisation may also allow to address frequently

overlooked issues concerning the fairness of prediction models

across patients. Predictive models, especially general ones, often

work better in one subgroup of the population than in others.

Such biases may further reinforce existing disparities in health

care, for example with respect to gender or minority status (53).

Model personalisation may also be an auspicious approach to

meet this challenge, by allowing to pay greater attention to the

variation of predictive accuracies between and within individuals.

In addition to group-level fairness, individual fairness arises

in several tasks where the target manifests itself differently in

distinct (human) subjects. This ranges from the expression of

fatigue in runners (54), to stress and emotion in voice (55,

56), and, crucially, mood prediction from wearable sensors

(46). We note that the standard individual fairness

formulation proposed by Dwork et al. (57), which purports

that similar individuals should receive similar outcomes, is

not applicable in our work. This is because Dwork et al. (57)

applied their framework to tasks where each individual is

assigned once to a particular class (e.g., in recidivism cases);

however, we apply our models several times to each individual

to predict their PHQ-2 scores over time.

In this study, we therefore examine the utility of different

personalisation strategies in providing daily predictions and

forecasts of depressive symptoms. We focus on a real-world

sample of patients suffering from clinically relevant levels of

depression who provided mobile sensor and EMA data while
Frontiers in Digital Health 03
participating in a digital depression intervention. In this

context, we also assess the group- and individual-level fairness

of the developed approaches. Even though individual fairness

emerges in several prior works, there is no widely-accepted

metric to quantify it. Therefore, we attempt to bridge this gap

by proposing a set of indices motivated by related fields.
2. Methods

2.1. Data

In this section, we introduce the novel “Mobiler

Alltagstherapieassistent mit interaktionsfokussierter künstlicher

Intelligenz bei Depression” (MAIKI; german translation for

“Mobile Therapy Assistant for Daily Life with Interaction-

focused Artificial Intelligence for Depression”) dataset. The

MAIKI dataset was collected as part of a prospectively

registered feasibility trial within the MAIKI project (German

Clinical Trials Register; DRKS00024718). The study

procedures have been approved by the ethics committee of the

Friedrich-Alexander-University Erlangen-Nuremberg (385_20B).

Figure 1 displays a Consolidated Standards of Reporting

Trials [CONSORT; (58)]-type flow diagram of the MAIKI

trial. Between May 2021 and September 2021, a total of

N ¼ 65 patients were recruited for the study. Individuals were

eligible for the study if they showed elevated symptoms of

depression, defined by a score of �16 on the 20-item German

version of the Center for Epidemiological Studies’ Depression

Scale [CES-D; (59)]. Furthermore, participants were required

to have access to an Android smartphone. Patients were

assessed at baseline and post-test (8 weeks after treatment

assignment), resulting in a study period of approximately 8

weeks for each individual. At baseline, the Structured Clinical

Interview for DSM-5® Disorders [SCID; 5th Edition; (60)] was

conducted by trained psychologists via telephone to determine

if patients fulfilled the diagnostic criteria of a manifest

depressive disorder. While the SCID-5 is intended to be

delivered face-to-face, interviews conducted via telephone have

been found to show only slightly inferior reliability,

supporting their use for research purposes (61). Participants

were then assigned to “HelloBetter Depression Prävention,” a

digital depression application. The intervention is based on

“GET.ON Mood Enhancer,” a program that has been

evaluated in multiple randomised controlled trials (62–64).

As part of the intervention, participants installed two mobile

companion applications: (1) the “HelloBetter MAIKI” diary and

symptom tracking app, developed for this study; and (2) the

“Insights” smartphone application (65). Using this technical

setup, active EMA ratings as well as passive sensor and location

data could be recorded during the 8-week intervention period.

Therefore, we categorise our data collection into two classes:

active data, which requires an interaction with the participant
frontiersin.org
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FIGURE 1

Flow diagram of the “MAIKI” study.
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and passive data, which is collected automatically without a

conscious interaction of the participant. The various data

streams as well as the feature extraction methods are outlined in

more detail below. Since MAIKI is a real-world dataset, there

are also days when no data was collected of some individuals,

either due to non-response or due to technical issues; section

2.3 describes the missing data handling and what criteria were

applied to ensure data quality.

2.1.1. Actively collected data
Active data collection took place in four different ways.

First, at the beginning of the study, audio data were recorded

during the SCID interview with a trained psychologist.

Second, before treatment assignment, a comprehensive
Frontiers in Digital Health 04
baseline assessment was conducted. This included

sociodemographic information, as well as psychometrically

validated measures of behavioral activation [Behavioral

Activation for Depression Scale-Short Form; BADS-SF; (66)],

anxiety symptoms [Generalized Anxiety Disorder 7; GAD-7;

(67)] and quality of life [Assessment of Quality of Life;

AQoL-8D; (68)]. A comprehensive list of all administered

questionnaires is presented in the trial registration (cf. section

2.1). Symptom inventories were again administered at post-

test (8 weeks after treatment assignment). Third, ecological

momentary assessments were collected using the mobile

companion application. Three times a day, participants were

able to rate their affect by assessing to which extent they felt

“happy” and “active” (positive affect) as well as “tense” and
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“sad” (negative affect). Ratings were provided on a scale from 0

(strongly disagree) to 6 (strongly agree). We derived these affect

items from previous personalized sensing studies [which used

the circumplex model of emotion as basis; (69, 70)] and a

review of affect measurement in previous EMA studies (71),

to increase the comparability with existing literature.

Additionally, participants were instructed to fill out a “daily

diary” at end of each day, which included a selection of items

adapted from psychometric questionnaires: the Personality

Dynamics Diary [PDD; agentic/communal reward, workload;

(72)], CES-D scale (item 5, 7, 20), Pittsburgh Sleep Quality

Index [PSQI; item 6; (73)], BADS-SF (item 1, 5, 7), as well as

the PHQ-2 depression inventory [Patient Health

Questionnaire, two items version; (74)]. Fourth, each patient

underwent a weekly screening, in which depression [Patient

Health Questionnaire, 9 item version; PHQ-9; (75)], anxiety

symptoms (GAD-7), as well as perceived stress [Perceived

Stress Scale, short version; PSS-4; (76)] were assessed.

2.1.2. Passive mobile phone and sensor data
Using mobile phones and sensors, data was also passively

collected to obtain the following information: Insights into

(1) patient movement patterns through GPS data, (2)

communication behaviour based on previous calls, (3) phone
TABLE 1 Features extracted from the passively collected MAIKI data.

Feature type Name

GPS Location variance The logarithm of the sum of the stati

Location entropy The variability of the time that partic

Normalised location entropy The location entropy divided by the

Time at home Home is defined as the most frequent
at home is defined as the percentage

Total distance The total distance covered by a parti

Communication Total calling frequency The number of times that a participa

Total calling duration The total time in minutes that a part

Non-working time calling
frequency

The number of times that a participa

Non-working time calling
duration

The total time that a participant answ

Number of missed calls The number of calls that are marked

Number of contacts The number of contacts a participan

Calling entropy The variability of calling durations a

Normalised calling entropy Calling entropy divided by the logari

Phone usage Phone usage frequency The number of times that a participa

Phone usage duration The total time in minutes that partic

User activity Lock screen duration The total time in minutes that partic

Number of used apps The number of applications that a pa

Midnight app usage The number of applications that a pa

Sleep time Sleep time [min] is considered to be b
2 am if available) and the first time a

Four types of features have been derived: GPS, communication, phone usage as wel

Frontiers in Digital Health 05
usage behaviour, and (4) user activity data. This exploratory

feature list was selected based on technical feasibility, as well

as on associations with mood symptoms found in previous

studies (38). For GPS, we extracted features, such as the

location variance or the daily distance travelled. Furthermore,

information on spent time at home and time at specific

location clusters is included. For the location clustering, the

three different cluster approaches DBSCAN (77), k-means

(78), and time-based clustering were used. Communication

includes information about the calling patterns of study

participants, e.g., how much time they spent each day making

phone calls or the number of missed calls, which represent

information about the frequency and entropy of calls. Phone

usage contains information on typical usage behaviour in the

form of frequency of phone use and total time spend on the

mobile phone per day. The last group – user activity – relates,

e.g., to the app usage behaviour, which provides information

about the frequency of app usage. In addition, features on

sleep behaviour were extracted based on the mobile phone

usage data, including sleep duration and app usage behaviour

during the night.

Table 1 lists all features that were extracted from the passive

data of the MAIKI dataset. In total, 19 features were extracted,

based on the four groups GPS, communication, phone usage,
Description

stical variances in the latitude and the longitude of all GPS coordinates in the day

ipants spend in significant places in the day

logarithm of the number of significant places

significant place where a participant spent the most time between 0 to 6 am; time
of time a participant spent at home relative to other significant places

cipant during the day

nt answers and makes phone calls during a day

icipant spends each day answering and making phone calls (in min)

nt answers and makes phone calls at times other than 8 to 6 pm during a day

ers and makes phone calls at times other than 8 to 6 pm during the day (in min)

as missed during the day

t answers and makes phone calls during the day

participant spends in contacts during the day

thm of the number of contacts during the day

nt interacts with their phone during a day

ipants spend each day interacting with their mobile phones

ipants lock their mobile phones during the day

rticipant uses during the day

rticipant uses between 0 to 5 am during the day

etween the last time an app was used in the previous day (or in the same day before
n app was used after 5 am

l as user activity features.
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and user activity. For our experiments, we use both, all active

and passive data.
2.2. Data exploration

In this section, we outline the presented MAIKI dataset in

more detail. A total of 65 people have participated in the

study (intention to treat sample). However, a considerable

percentage of the study participants only provided a small

amount of data. This means that data was either only

provided over a short period of time or the data was provided

over a longer period of time but included many missing

values. In section 2.3, we explain our pre-defined data quality

criteria and how we handle missing data. Table 2 shows both

statistics of the dataset: information about all participants as

well as exclusively about the participants who meet our

quality criteria that we use in our analyses.

The 2- and 9-item Patient Health Questionnaires (PHQ) are

two psychometrically valid and commonly used measures of

depressive symptom severity (74, 75). Both measures are well

established in clinical practice, and are therefore well suited as

prediction and forecasting targets. For this reason, we choose

these labels as targets for our experiments as well. Figure 2

shows the PHQ-2 label distribution in the MAIKI dataset.

For model building, we use a broad range of active and

passive data. To get an impression of which features have the

greatest influence on prediction and forecasting, a random

forest regressor with 50 decision trees was trained as part of

the dataset exploration for predicting the PHQ-2 value. Based

on this, the relevance of the different features is determined.

Figure 3 shows the 10 highest variable importances of all

available features identified. The analysis indicates that the

EMA data in particular make a considerable contribution to

the prediction result. In addition, sleep time as part of the

user activity features as well as several GPS features are
TABLE 2 Statistics of the MAIKI dataset. For PHQ-2, PHQ-9 and the
age of the participants, we report the (M)ean value as well as the (S)
tandard (D)eviation.

Variable All study
participants

Quality-assured
participants

M (SD) (%) N M (SD) (%) N

PHQ-2 2.35 (1.61) 65 2.42 (1.62) 16

PHQ-9 10.94 (5.12) 65 11.81 (5.19) 16

Age 34.6 (11.3) 65 32.8 (8.4) 16

Female 84.6 55 81.2 13

Male 15.4 10 18.8 3

For the gender, we report the percentage of all participants. N corresponds to

the absolute number of participants. All study participants are all participants

that have been enrolled at the beginning of the study. Quality-assured

participants are all patients that meet our pre-defined quality criteria and

therefore can be used for further analyses.

Frontiers in Digital Health 06
among the most relevant features. A detailed overview with

descriptive statistics of all actively- and passively-collected

data is included in the supplementary material.
2.3. Preprocessing

As described in section 2.2 MAIKI is a real-world dataset

and therefore contains missing data. To deal with all missing

values, we define and apply the following strategy and data

quality criteria: (1) Each day with available features of one

participant is only considered as valid if the data missing rate

over all features is less than 20%. (2) A participant’s PHQ

entry is only considered if the patient provides at least five

days of valid data in the week prior to the corresponding

PHQ label date, taking into account criterion 1 as valid data

criterion. (3) Each study participant needs to provide at least

10 valid entries for PHQ-2 and 5 for PHQ-9 respectively,

considering criterion 2. These criteria were imposed to

maximize the number of participants who contribute

information, while trying to minimize the risk of biased

results due to large amounts of missing data on a person level.

If features for one day are missing, but the missing rate is

less than 20%, we perform statistical imputation by calculating

the mean value of the missing feature based on all available

days in the week prior to the corresponding label of the

participant. Criterion 3 is necessary as we need data from

each participant in the training set, development set as well as

test set to be able to apply our personalisation approach.
2.4. Baseline model

Based on our pre-defined quality criteria, we have at least

five days of data for every PHQ label of every patient. To

consider the sequential order of this data and to process it in

the best possible way, we use a recurrent neural network (RNN)

with gated recurrent units (GRUs) as a baseline model. GRUs

are an improved version of a standard recurrent neural network

which improve on its vanishing gradient problem using so-

called update and reset gates (79). These gates are represented

by vectors and can be trained to preserve long-term information

without losing important parts that are relevant for prediction.

The model consists of two GRU layers with a hidden size of 30,

one fully connected layer with 30 neurons as well as an output

layer with one neuron. Further, we use a Rectified Linear Unit

(ReLU) as an activation function and apply a dropout of 20%

after the fully connected layer.

We use the same baseline model for predicting depression at

the end of the day as well as for one day ahead forecasting, both

based on data up to 7 days before the corresponding label. This

time frame was chosen so that training instances encompass

each day of the week.
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FIGURE 2

Distribution of daily self-assessed PHQ-2 ratings (scale: [0–6]) within the MAIKI study.

FIGURE 3

The 10 most important of all available features for PHQ-2 prediction. Determined by a Random Forest Regressor with a number of 50 different
decision trees. In particular, the EMA data have a great influence on the prediction result: Center for Epidemiological Studies’ Depression Scale
(CESD), negative affect, Behavioral Activation for Depression Scale-Short Form (BADSSF), Personality Dynamics Diary (PDD).

Kathan et al. 10.3389/fdgth.2022.964582
2.5. Personalisation methods

We experiment with three different personalisation methods:

First, a transfer learning approach, where we have both shared

common layers as well as personalised layers for each subject.

Second, we use the same architecture of the baseline model,

but instead of subject-independent standardisation, we apply

a subject-dependent standardisation technique. As a third

personalisation method, we experiment with separate

subgroup models for female and male study participants. All

personalisation strategies are outlined in more detail below.

Figure 4 shows a simplified overview of our baseline model as

well as of all three personalisation approaches.
2.5.1. Transfer learning with shared common
layers

Following the approach of Rudovic et al. (48) and Taylor

et al. (46), we use a similar architecture by combining a

common backbone model with personalised layers for each
Frontiers in Digital Health 07
subject. In our experiments, we train at first the baseline

model with data from all study participants of the train set.

Afterwards, we use the two layer GRU-RNN of the pretrained

model as backbone model. As personalised layers, we use the

fully-connected layer with 30 neurons as well as the output

layer of the baseline model, which we fine-tune separately on

every individual participant, resulting in a unique model for

each patient.
2.5.2. Personalised subgroup models
Similar to Rudovic et al. (48), we also experiment with

personalised subgroup models for depression prediction and

forecasting. As criterion for subgroup models, we choose the

gender information which is provided in the MAIKI dataset

as shown in table 2.

For modelling of each subgroup, we use the same

architecture as for the baseline model, resulting in two

separate models, each trained only on data from one gender.
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FIGURE 4

Simplified overview of our (B)aseline model as well as of the three personalisation approaches used in our experiments: (T)ransfer (L)earning with
shared common layers, (S)ubject-(D)ependent (S)tandardisation, and (S)ubgroup models.
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2.5.3. Personalisation with subject-dependent
standardisation

Finally, we experiment with subject-dependent

standardisation. In doing so, we use the same model as for

the baseline but changed the standardisation process: In all

other approaches, we apply standardisation in one step for all

participants in the dataset, using the statistics of the entire

training population. With subject-dependent standardisation,

in contrast, we apply standardisation of the data for each

subject separately, resulting in one common model for all

participants, but each with a personalised data standardisation.
2.6. Experimental setup

We design two tasks for depression prediction and

forecasting: The first task is to predict the PHQ-2 score at the

end of the day based on the data of the last 7 days. The

second task is one day ahead forecasting of the PHQ-2 value

using the data of up to the last 7 days.

For evaluating our experiments, we use 3-fold cross

validation (CV). To be able to personalise a model to all

participants, we need subject-dependent data splits. This

means that we need, in all datasets (train/development/test),

data from each patient. Therefore, we split the data from each

participant in 3 folds. For the overall 3-fold CV, we use

always from each participant one hold-out fold as test set,

80% data of the remaining two folds as train set, and 20% of

the remaining data as development set, respectively.

Furthermore, we use the mean-absolute-error (MAE) as

evaluation metric as it is more robust to outliers compared to

metrics such as mean-squared-error (MSE). In addition, we

evaluate our results with Spearman’s r correlation, which

measures how well models are able to predict the correct

ordering of instances—thus enabling medical practitioners to

detect the most severe cases.
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All models were trained for 100 epochs with a batch size of

8 and a learning rate of 0.01, by gradient descent and using the

Adam optimiser. The final model state was selected on the basis

of validation set performance. As loss function, the MAE loss is

applied.
2.7. Fairness metrics

A critical consideration for digital health applications is

fairness, which requires that model predictions do not show

biases for certain protected attributes like race, biological sex,

or age (80). In this section, we describe the metrics we use in

our experiments for analysing the fairness of personalisation

methods compared to non-personalised approaches.

2.7.1. Group-level fairness
With regard to fairness at group-level, we focus on

biological sex as this is the only relevant, group-level variable

available in our study. There is no clear definition on how to

measure fairness for regression tasks, but most approaches try

to achieve an equal average expected outcome for the different

populations (55, 81). We adopt a similar formulation and

measure fairness with two scores: the sex fairness scores and

the sex fairness bias (55). These metrics are computed as

follows:

Sex fairness score ¼ MAE female �MAEmale, (1)

Sex fairness bias¼ ŷ female� y female� ŷmale� ymale, (2)

where MAEmale=female is the MAE for all male/female samples in

the test set, ŷmale=female are the predictions for all male/female

samples, ymale=female the truth values for all male/female

samples, and (�) denotes the mean. The first measures the

difference in MAE performance for the two sexes; a higher
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positive/negative score indicates a higher MAE, and thus lower

performance, for males/females. The second shows whether the

model systematically over- or under-predicts PHQ-2 for one of

the groups (accounting for potential differences in the ground

truth label distribution); a higher positive/negative bias shows

that the model is systematically predicting higher PHQ-2

scores for males/females, thus showing one of the two groups

as being “more depressed.” The ideal values for both metrics

would be 0 – indicating a complete lack of bias in either

direction.
TABLE 3 PHQ-2 (scale: [0–6]) prediction and forecasting results,
reported as mean-average-error (MAE) and Spearman’s r correlation
using the four methods: (B)aseline-GRU without personalisation, (T)
ransfer (L)earning, (S)ubgroup models, and (S)ubject-(D)ependent (S)
tandardisation.

Method Prediction Forecasting

MAE r MAE r

B 1.062 0.604 1.539 0.105

TL 0.990 0.668 1.349 0.349

S 0.978 0.666 1.465 0.271

SDS 0.801 0.728 1.496 0.254
2.7.2. Individual-level fairness
A complementary fairness constraint is to ensure equal

outcomes on an individual basis (55). This is important for

ensuring that a depression detection system does not favour

certain individuals over others. Furthermore, we expect

personalisation approaches to generally improve individual-

level fairness. However, there is no widely-accepted metric to

quantify individual fairness. To fill this gap, we propose a set

of indices motivated by related fields.

The first such index is the Gini Coefficient (GC), a typical

measure of (in)equality used in the field of economics to

quantify income inequality. This metric can be broadly used

to quantify the diversity within a set of values; we thus co-opt

for our machine-learning scenario, where we compute the GC

for the individual-level performances. This essentially shows

the extent to which some participants yield much higher

MAE scores than others with

Gini Coefficient (CG) ¼
Pn

i¼1

Pn
j¼1 jMAEi �MAE jj
2n2MAE

, (3)

with MAEi being the performance of participant i and n the

number of participants. As GC goes towards 0, the

performance is mostly balanced; as it goes towards 1, a few

speakers get much higher MAE scores than others.

However, GC provides only a coarse quantification of

inequality. Moreover, in the present study we are primarily

interested in comparing different approaches; the fact that one

approach might have a lower GC than others means only that

the differences amongst participants are low, but says nothing

on whether the approach is overall more beneficial to those

participants.

We satisfy this second criterion by computing the distance

to the median participant-level MAE separately for

participants with a lower/higher MAE than the median. Our

rationale is as follows: The median serves as the performance

that the “average” participant should expect. This divides the

group of participants to a set of “winners” and “losers”; those

for which performance is higher, and those for which it is

lower. When comparing the sum of distances of each group

to the median, we get how much each group benefits from
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the proposed approach. Concretely, these two indices are

computed as follows:

Distance-to-Median Lower Index (DMLI)

¼
X

jMAEi � gMAEj,
i [ [1, n] :MAEi , gMAE

(4)

and

Distance-to-Median Upper Index (DMUI)

¼
X

jMAEi � gMAEj,
i [ [1, n] :MAEi . gMAE,

(5)

where MAE and n are again the performance per participant

and the number of participants, respectively.

The use of DMLI and DMUI allows for a more nuanced

selection between different methods. For example,

practitioners might select to optimise for DMUI (the lower

the better)—thus capping the worst-case scenario. Others

might choose to optimise for DMLI (the higher the better)—

thus boosting performance for those participants for which

the system works satisfactorily. This choice (which is

reminiscent of the precision-recall tradeoff) is context-

dependent.
3. Results

3.1. Prediction of daily PHQ-2 scores

Table 3 shows the results of the performed experiments. In

the case of PHQ-2 prediction, the personalised models clearly

outperform the non-personalised baseline. The best result is

obtained using subject-dependent standardisation which yields

a MAE of :801 and Spearman’s r correlation of 0:728

compared to the non personalised model that achieves 1:062

and :604, respectively. The other two personalisation methods

also improved the result, although not quite as strongly as the
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subject-dependent standardisation method. In addition to the

global Spearman’s r correlation coefficient, the local

Spearman’s r also improved from 0:431 using the baseline to

an average of 0:473 across the different personalisation

strategies. In depression prediction, e.g., predicting PHQ-2

with heterogeneous health data, personalisation can therefore

add value and improve performance compared to non-

personalised approaches.
3.2. One day ahead-forecasting of
PHQ-2 scores

In one day ahead forecasting of PHQ-2 scores, the different

personalisation methods improve the baseline result as well.

Table 3 shows the results for PHQ-2 forecasting. The best

MAE and Spearman’s r is obtained using the personalised

transfer learning approach with a shared common backbone

model and personalised layers with a result of 1:349 and

0:349 compared to the baseline which yields 1:539 and 0:105,

respectively.
3.3. Group-level fairness

Table 4 presents the sex fairness score as well as the sex

fairness bias for each method. The baseline shows a high bias

for both tasks; the performance for females is consistently

higher than for males (i.e., the Sex Fairness Score is negative)

while females are being systematically predicted as having

higher PHQ-2 scores (i.e., the Sex Fairness Bias is negative).

Collectively, these two metrics show that males are predicted

more wrongly with a bias towards negatives—causing a lot of

high PHQ-2 cases to be mispredicted as having low PHQ-2

scores. Notably, personalisation methods most often improve

on both metrics, with subgroup-models showing the best

performance for prediction (where the bias is almost

completely eliminated), and transfer learning with shared

layers performing best for forecasting (where the performance

still remains higher for females but there are no systematic

over-/under-predictions).
TABLE 4 Sex-Fairness-(S)core and Sex-Fairness-(B)ias of the different
methods for PHQ-2 prediction and forecasting: (B)aseline-GRU
without personalisation, (T)ransfer (L)earning, (S)ubgroup models,
and (S)ubject-(D)ependent (S)tandardisation.

Method Prediction Forecasting

S B S B

B �0.460 0.576 �0.369 0.630

TL �0.291 0.066 �0.279 0.051

S 0.055 �0.065 �0.449 �0.081

SDS �0.112 0.127 �0.330 0.275
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3.4. Individual-level fairness

Similar to Wagner et al. (55), we present the individual-level

fairness by considering the MAE performance separately for

each subject in the first step. This is done by computing MAE

using the samples of each participant. The outcome is

visualised in figure 5. Performance shows big fluctuations

across different participants. For example, for the prediction

task with transfer learning, it ranges between [0.000, 1.519]—a

large difference which means that the system works much

better for some individuals over others. Interestingly, there is

sometimes disagreement as to where the system works well

(e.g., for forecasting, participant #4 is ranked as the best

performing one for all methods except the baseline). This is

an aspect of the underspecification exhibited by machine

learning architectures, where different models trained on the

same data show different behaviours on distinct subpopulations

of it (55, 82).

Table 5 shows all three indices proposed in section 2.7.2:

GC, DMLI, and DMUI. We note that the baseline model is

already showing good behaviour with respect to GC; in fact,

it comes first for forecasting with a GC of 0:161 and

second for prediction with a GC of 0:166 (following

subgroup models with 0:148). This shows that our proposed

personalisation approaches increase the diversity of

performance within individual participants, thus seemingly

increasing inequality. However, the other two indices show a

different pattern. DMLI is consistently higher when

personalisation is used, while DMUI is consistently lower—

this shows that “winners” further diverge from the median

while “losers” come closer to it. Overall, this leads to a trend

where all participants gain by having improved MAE scores.

The fact that GC decreases is side-effect of the fact that DMLI

increases more than DMUI decreases (on average). This

means that all three personalisation methods favour “winners”

(participants who fare better than the median). This leads to

a bigger divergence between those on the upper and those on

the lower end.

As the choice of optimising for DMUI or DMLI is context-

dependent, we avoid marking one of the approaches as “best”:

transfer learning shows better behaviour for DMLI, whereas

the other two work better for DMUI.
4. Discussion

In this study, we investigated the performance benefits of

different personalisation strategies (transfer leaning, subgroup

models, subject-dependent standardisation) in predicting

individuals’ (future) depressive symptom severity as measured

by the PHQ-2. Our experiments were based on a novel

dataset that was collected while patients with elevated
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FIGURE 5

Individual-based MAE performance for PHQ-2 prediction (left) and forecasting (right) using the (B)aseline model as well as the three personalisation
methods: (T)ransfer (L)earning, (S)ubgroup models, and (S)ubject-(D)ependent (S)tandardisation. The MAE values are calculated using the samples of
each participant of the study. The participants are sorted from best to worst performance of the baseline model.
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depressive symptoms received a digital intervention under

routine care-like conditions. In a subset of patients who

provided sufficient active EMA as well as passive mobile

sensor data, we found that all investigated personalisation

strategies lead to improved predictions of the end-of-day

depressive symptom severity (MAE ¼ 0:801 to 0:990),

compared to a general RNN model (MAE ¼ 1:062). A similar

pattern was found for forecasts of patients’ depressive

symptoms the next day (MAE ¼ 1:349 to 1:496; baseline

model: MAE ¼ 1:539). We also examined the models’ fairness

with respect to patients’ self-reported biological sex, which is

a crucial desideratum in digital mental health applications.

We found that personalisation was able to reduce the bias

inherent in the initial baseline model (in our case favoring

females). Similarly, we found that all patients obtain improved

predictions via personalisation, although not all benefit

equally. This result is in line with previous findings by

Jacobson and colleagues (39), who found that the perfomance

of idiographically weighted models in predicting depressed

mood varied substantially between individuals. Our findings

also corroborate the results of Taylor et al. (46), who report

that personalized Multitask Learning (shared common layers

neural network, multi-kernel learning using support vector

machines, and hierarchical Bayesian models with a common
TABLE 5 Individual-level fairness captured by the Gini Coefficient
(GC), Distance-to-Median Lower Index (DMLI), and Distance-to-
Median Upper Index (DMUI). GC serves as a coarse marker of
inequality, with DMLI and DMUI further elucidating whether the
benefits are reaped by those in the lower or upper end of individual-
level performance.

Method Prediction Forecasting

GC DMLI DMUI GC DMLI DMUI

B 0.166 1.451 2.311 0.161 1.704 3.890

TL 0.188 1.910 2.136 0.224 2.664 3.798

S 0.148 1.859 1.374 0.179 2.497 3.248

SDS 0.203 1.611 1.730 0.182 3.377 2.800
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Dirichlet process prior) improved prediction accuracies by 11–

21% over non-personalized models. However, in contrast to

aforementioned study, we only found that two personalisation

strategies (Subject-Dependent Standardisation and Transfer

Learning) resulted in substantial benefits compared to the

non-personalised baseline RNN.

Revisiting the hypothesis of Taylor and colleagues (46), one

potential reason why model personalisation may provide

benefits over “traditional” machine learning methods is

because this allows to deal with heterogeneity, a feature that is

characteristic both of depression and the way patients respond

to treatment (83, 84). Personalisation allows models to learn

patterns that may be specific to the symptomatology of each

patient, which could explain why performance benefits arise.

From a clinical perspective, the ability to generate tailored

forecasts of the depressive symptom severity is very helpful.

This could allow to react pre-emptively to short-term

symptom changes during treatment [e.g., sudden gains or

depression spikes; (85, 86)], for example by providing

personalised feedback, therapeutic recommendations, or direct

contact to health care professionals.

Several limitations and challenges should be considered.

First, due to missing values, only a subset of patients in the

MAIKI dataset could be included in our experiments. This is

a common finding in studies based on real-world data,

particularly if mobile sensor features are included [see, e.g.,

(34, 35)]. Seamless recording of sensor data proved to be

technically challenging in many cases, given that all patients

used their privately owned smartphone device. Some

individuals, for example, reported difficulties installing and

navigating the companion tracking app. Seamless tracking of

passive features could not be ensured on some devices due to

software issues. These problems might be mitigated in future

studies by providing participants with mobile devices or

wearables; however, this could compromise the ability to

implement developed models into routine care, where

provision of standardised devices is typically not possible.

Second, in our exploration of variable importances, we found
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that most of the important features were based on actively

assessed data. In a related study, it could be shown that

reasonable depressive symptom severity forecasts could also

be generated using actively obtained EMA data only (47).

Therefore, focusing on actively assessed data may be a way to

provide personalised depression forecasts at greater scale,

given the lower technical requirements. Structured self-

monitoring is a common feature in cognitive-behavioural

treatments for depression (87), and EMA ratings may

therefore serve a twofold objective: providing therapeutic

feedback to patients, while at the same time allowing to build

a personalised forecasting model of the individual’s

symptomatology.

Another limitation is that some of the personalised models

investigated in this study require that several weeks of individual

training data are available. This represents a constraint in

clinical practice, since forecasts may only become available a

few weeks into treatment. Future studies may examine how

much the “burn-in” phase for individual patients can be

shortened while still retaining appreciable forecasting

performances. Alternatively, general models may be used

initially, switching to a personalised model once sufficient

patient data has been collected. It is also important to note

that a wide variance of PHQ values must be collected from

each participant during this time—otherwise, the personalised

model may tend to overfit. To further counteract this, we also

propose methods that incorporate features from the whole

population, such as transfer learning with shared common

layers, as well as models that are personalised on smaller

subgroups rather than just a single individual.

In sum, our findings provide preliminary evidence that

model personalisation, based on EMA ratings and supported

by passive mobile data, can be used to improve daily forecasts

of depressive symptom severity in real-world patient

populations, as well as their fairness. Our experiment follows

a broader research trend, found both in affective computing

and clinical psychology, in which greater emphasis is put on

individual patterns and dynamics of psychopathology [see,

e.g., (41, 46, 88)]. Further research is needed to corroborate

our results in larger samples, and to develop model

personalisation strategies that can be implemented into digital

mental health care at scale.
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