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The emergence of the coronavirus pandemic resulted in the heightened need
for digital health literacy among the youth of school-going age. Despite the
relevance of digital health literacy among the general public (including
students), it appears the measurement of digital health literacy is still a
challenge among researchers. Recently, Dadackinski and colleagues adapted
existing digital health literacy measures to fit the COVID-19 situation. Since
this development, the instrument has been widely used with few validation
studies with none in Africa and specifically, in Ghana. The purpose of the
study was to assess the validity of the digital health literacy instrument (DHLI)
for secondary school students in Ghana using the polychoric factor analysis.
We sampled 1,392 students from secondary schools in Ghana. The digital
health literacy instrument was administered to the respondents, thereof. The
study confirmed the four latent structure of the DHLI. Further, sufficient
validity evidence was found regarding the construct validity of the DHLI. The
findings from the study support the validity of the DHLI and its utility within
the Ghanaian context. With the growing need for digital health literacy
among younger people globally, the DHLI provides sufficient grounds for
scaling them based on their level of literacy. There is a need for the
instrument to be adapted and re-validated in Ghana and among different
populations to widen its reproducibility.
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Introduction

The COVID-19 pandemic has affected several lives and

sectors of the economy, including education. During the

period, students experienced huge psychological consequences

threatening their health and well-being (1–7). The sudden

onset of COVID-19 was accompanied by an “infodemic”,

overabundance of valid and invalid health-related information

on COVID-19 (8–12). A recent study revealed that the

“infodemic” is so prevalent that 82% of the text ratings

examined (i.e., 1,856 of the 2,276 reports) were classified as

being “false” (13). During the pandemic, the internet and

social media platforms have become important sources of

health-related information on the disease and its protective

behaviours (11, 14, 15). Conversely, this has led to an

explosion of unchecked information and the spread of

misinformation (8, 16–19). Recent studies have found that

adolescents and young adults (including students) are

frequent users of these types of digital media (20, 21),

however, they found it challenging dealing with the vast

amount of COVID-19 related information as a result of

difficulties in seeking, discovering, understanding, judging,

and utilising reliable COVID-19 related online information

(11, 22–24).

The “infodemic” on the internet and social media could

affect students’ protective behaviours and mental health. It

could also imperil the government and health authorities’

efforts to manage the pandemic-related setbacks. Accordingly,

for students to effectively navigate the complex information to

remain healthy and take relevant precautions using the

information available, they would need a high level of digital

health literacy (DHL). DHL is the ability to seek, discover,

understand, critically appraise health information from

electronic sources and apply the knowledge gained to

addressing or solving a health problem (25–27). DHL reflects

the specific degree of skills and abilities necessary to use

digital health technology and services (28, 29). DHL

incorporates interactivity across web-based platforms

including social media (27). Amid the COVID-19 pandemic,

DHL has become an indispensable resource in promoting

mental health and psychological well-being among students

(27, 30). DHL is a key competence to navigating web-based

COVID-19–related information and service environments and

addressing the challenges of online health information and

services (11, 22).

Despite the relevance of DHL among the general public

(including students), it appears the measurement of DHL is

still a challenge among researchers. In recent years, several

instruments have been developed to measure DHL (31). One

of the prominent inventories is the eHealth Literacy Scale

(eHEALS) (26, 32). However, the eHEALS has several

limitations. First, it focuses on measuring the search for and
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evaluation of online information, but it does not address

critical and interactive health literacy. Second, its validity is

unclear and does not consider the new tools provided by the

internet and technologies (27, 32, 33). Due to continuous

changes in media and technologies, extant researchers

advocated for a new instrument for DHL that considers a

broad spectrum of applications (27, 34). Subsequently, van

der Vaart and Drossaert (27) developed the Digital Health

Literacy Instrument (DHLI). DHLI aims to incorporate the

skills necessary to use the broad spectrum of applications

offered by the internet and communication technologies and

give valid information about people’s actual competence level.

The DHLI includes interactivities on the web, so-called “e-

Health 2.0 Skills”. DHLI is composed of seven subscales (i.e.,

operational skills, navigation skills, information searching,

evaluating reliability, determining relevance, adding self-

generated context, and protecting privacy), each including

three items to be answered on a 4-point Likert scale ranging

from 1 (very difficult) to 4 (very easy).

Based on this questionnaire, Dadackinski and colleagues

proposed the DHLI in relation to COVID-19 (i.e., COVID-

HL) (14, 22, 35). Although DHLI was developed during the

COVID-19 period, it can be implemented or used in other

conditions. Dadackinski and colleagues adapted DHLI in the

context of the COVID-19 pandemic from van der Vaart and

Drossaert (27). To generate the COVID-19 DHLI, five out of

the seven original subscales were included and modified with

respect to COVID-19: searching the web for information on

COVID-19 (DHLIsearch); adding self-generated content on

COVID-19 (DHLIcont); evaluating the reliability of COVID-

19-related information (DHLIrely); determining personal

relevance of COVID-19-related information (DHLIrelev); and

protecting privacy on the internet (DHLIpriv) (14, 22, 35).

Each of these dimensions contains three questions. The

internal consistencies (Cronbach α) of the first four subscales

were acceptable to good (0.70 < α < 0.83). Due to low

reliability, the protecting privacy subscale (α = 0.46) was

omitted from COVID-HL.

Since the adaptation of COVID-HL from DHLI, researchers

have adapted and validated COVID-HL to ascertain its

psychometric properties, factor structure and functionality in

different jurisdictions such as Portugal (36), Spain (37), Italy

(38) and Korea (39). These validation studies confirmed the

four-factor structure and demonstrated good validity and

reliability of the scale. For example, in Italy, the Italian DHLI

showed good psychometric characteristics. However, the

protecting privacy subscale was excluded given the criticalities

presented in the validation process. CFA confirmed the four-

factor structure (i.e., information searching, evaluating

reliability, personal relevance, and self-generated content, (38).

Also, in Portugal, Martins et al. (36) discovered that a four-

factor structure of the instrument (i.e., information searching,

self-generated content, evaluating reliability, and personal
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relevance) was supported by confirmatory factor analysis and

had good internal consistencies. Similar findings have been

reported in Korea (COVID-HL-K; 39) and in Spanish-

speaking countries like Spain, Puerto Rico, and Ecuador

(COVID-HLI-S; 37). The authors of the validation studies

recommended representative studies to shed light on different

target groups and their COVID-19–related DHLI. Aside these

validation studies, the scale (COVID-HL) has been used by

other researchers to assess the level of DHL among university

students without examining its psychometric properties, factor

structure and functionality in other geographical locations

such as the UK (40), US (41), Germany (22, 24), Portugal

(42), Slovenia (11), China (43), Korea (44), Pakistan (45) and

Vietnam (15).

Despite several validation studies on DHLI across several

western societies, there is no documented study evaluating the

reliability, validity and applicability of the instrument in

assessing COVID-19 health-related information during the

pandemic period in the sub-Saharan African region. Due to

the vulnerability of the youth and their widespread use of the

internet through diverse web-based tools (e.g., Facebook,

Twitter, Youtube, WhatsApp), secondary school students were

targeted as the normative reference group for the current

study. In Ghana, the educational system is grouped into three

parts: 9 years of Basic education (i.e., early childhood

education [kindergarten], primary and junior high school), 3

years of secondary education (i.e., senior high school/

vocational and technical schools) and 3–4 years tertiary

education (i.e., academic university, technical university,

colleges of education and nursing training colleges). Besides,

most of the previous validation studies used university

students (36–39). This makes it difficult to ascertain the

utility and applicability of the DHLI among secondary school

students. Additionally, the only DHLI validation study which

investigated gender differences, revealed that males had higher

levels of DHL as compared to their female counterparts (37).

Although this study in question was conducted among

university students, it provides a prompt for recent studies to

investigate the issue of gender invariance which this present

study did.

The issue of health literacy (HL) has been a serious

concern for stakeholders in Ghana and has recently been

shown to be important for improving universal health

coverage (UHC) in Ghana (46). HL is associated with health,

well-being and quality of life (47, 48). Conversely, there is

no nationwide assessment of health literacy. However, some

researchers have examined aspects of health literacy among

specific groups. For example, using the adapted Health

Literacy Knowledge and Experience Survey Instrument

(HLKES), Koduah et al. (49) established that health literacy

(HL) knowledge was generally low among student nurses

and practicing nurses, with student nurses having

significantly lower scores than practising nurses. Similarly,
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low or limited HL was found among university students

(50), street youth (i.e., people between ages 12 and 24 years)

(51, 52) and the general population (including students) (46,

47) and women living with breast cancer (48). These studies

on HL in Ghana mostly adapted European Consortium for

Health Literacy Questionnaire (HLQ-EU-16) (47, 50) and

HLKES (49). These instruments (i.e., HLQ-EU-16 and

HLKES) are widely used to measure HL, however, they

present some limitations such as lack of clear psychometric

properties, interactive health literacy and digital health

information. Accordingly, this calls for a new scale or

instrument to measure Ghanaian’s DHL since we are in the

digital world. Hence, the overall purpose of the study was to

assess the validity of the DHLI for secondary school students

in Ghana, using the polychoric factor analysis. Three

objectives guided the conduct of the study: (i) to identify the

factor solution of the DHLI, (ii) to assess the construct

validity of the DHLI, and (iii) to evaluate the measurement

invariance of the DHLI based on gender. The outcome of

this investigation would be valuable in the development of

related policies aiming to increase DHL and compliance with

the policies meant to control COVID-19. It would also help

to plan and prepare effective communication interventions

for this sub-population.
Materials and methods

Study setting and participants

This study forms part of the multi-national study by the

COVID-19 Digital Health Literacy Network (https://covid-

hl.orghttps://covid-hl.eu/). The study setting covered

secondary school (senior high school) students within the

northern zone of Ghana. This area was the primary focus of

this research because of the distinct characteristics

possessed by the inhabitants. Particularly, students who had

not schooled and/or stay within the region for 10 years or

over were excluded. Several reports emerging from the

northern belt of Ghana have indicated that more than 40

percent of the inhabitants are living in poverty with 8–9

people out of every 10 persons are living below the poverty

line according to the Ghana poverty reduction strategy

document (53). Additionally, Ofori-Boateng and Bab (53)

indicated that the study setting is characterized by low

school completion rates, school drop-out, late start of

school and other challenges like working and schooling at

the same time. It is not surprising that this present study

found young adults between 18 and 25 years who were still

in secondary school. A report by the World Bank (54) also

mentioned that the populace in the northern zone of Ghana

has little chance of breaking out of poverty regardless of the

kind of employment they engage in.
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This study adopted the descriptive cross-sectional survey

design to sample one thousand, three hundred and ninety-two

(1,392) secondary school students from the Northern regions

of Ghana using a multi-stage sampling technique. The simple

random technique was first used to select two regions in the

northern part of Ghana. Secondly, five schools from each

region were sampled using cluster sampling. Then, the

individual students in the schools were purposefully recruited

based on whether they had resided in the region for more

than 10 years. Seven hundred and two (n = 702, 50.4%) of the

participants were males while six hundred and fifty-four (n =

654, 47.0%) were females and thirty-six (n = 36, 2.6%) having

diverse sexes. The ages of participants ranged from 14 years

to 25 years (Mean age = 18.90; SD = 1.95). Through a random

procedure, 500 cases out of the 1,392 were used for the first

part of the analyses (exploratory factor analysis, EFA) based

on the recommendations of Dimitrov (55) who established

that a sample of 400 is appropriate, even in instances where

the correlation among the items are low. To improve a more

accurate estimate, we added 100 cases for the EFA making a

total of 500 as earlier indicated (56). The confirmatory factor

analysis (CFA) was conducted with 792 cases which were

deemed appropriate for four factors considering the low

correlations and high power (57, 58).
Measures

Digital health literacy instrument (DHLI)

The DHLI which was originally developed by van der Vaart

and Drossaert (27) with 7-subscales and 21-items and later

adapted by Dadaczynski et al. (14, 22, 35) to the context of

COVID-19 was assessed to determine its factor solution,

construct validity, and measurement invariance for gender

among secondary school students in Ghana. The study made

use of the most current validated form of DHLI (38) with 4-

subscales with each having 3-items measured on a 4-point

Likert type scale where 1 (Very easy), 2 (Easy), 3 (Difficult),

and 4 (Very difficult). The 4-subscales include; Information

Searching (e.g., “when you search the Internet for information

on coronavirus or related topics, how easy or difficult is it for

you to find the exact information you are looking for”?), Self-

generated Content (e.g., “when typing a message (on a forum

or social network) about coronavirus or related topics, how

do you express your opinion, thoughts or feelings in

writing”?), Reliability (e.g., “when you search the internet for

information on coronavirus or related topics, how easy or

difficult is it for you to check different websites to see

whether they provide the same”?), and Determining Relevance

(when you search the Internet for information on the

coronavirus or related topics, how easy or difficult is it
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applicable to you?). The reliability coefficient values of the

four subscales were acceptable to good (0.70 < α < 0.83) (59).
Procedure

This survey procedure was officially endorsed by the

University of Education, Winneba’s Ethical Review Board

(ERB) with a reference number DAA/P.1/Vol.1/39. Further

approval was sought from headmasters of all secondary

schools in the Northern region who took part in the study.

Regardless of one’s tribe, every secondary school student who

had attended school and lived in any part of the Northern

regions for more than 10 years and could read fluently,

comprehend and write in the English language was eligible to

be involved in the study. Twelve (12) research assistants were

trained and taken through the survey instrument from

beginning to end with each instruction and item thoroughly

explained to them to help with data collection after seeking

their voluntary consent to assist in the data collection process.

The researchers then began the recruitment process by

visiting the secondary schools involved with the research

assistants to establish a good rapport and discuss the rationale

of the study with both teachers and students. Additionally,

each item on the survey instrument was discussed and

explained in detail to all students during which there was an

opportunity for further clarifications on any item if need be.

Prior to collecting the data, all the participants were asked to

sign written informed consent forms to declare their readiness

and willingness to be involved in the study. Participants were

also told that involvement in the study was purely voluntary

and that they had the liberty to continue responding to the

items or withdraw at will. Moreover, they were assured of the

confidentiality of the responses they would provide.

Anonymity was also ensured by asking participants not to

provide their names on the survey instruments. All COVID-

19 safety protocols were adhered to by providing nose masks

and hand sanitizers to each participant. Water, liquid soap

and tissue papers were also provided to ensure that the

process did not expose any participant to the risk of COVID-

19 infection.

Following adherence to all ethical considerations, the DHL

survey instruments were distributed to the participants in

their various classrooms during their free periods with the

help of the research assistants to respond to the survey items.

Translation of items on the survey instrument was deemed

unnecessary because participants could all read fluently and

comprehend the English language. The content of the

instrument was explained to the study participants.

Responding to the survey items took about 15–20 minutes

after which all answered questionnaires were retrieved and

sealed in brown envelopes for safe keeping. The entire data

collection process lasted for approximately two (2) months.
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Statistical analyses

The data were first screened for missing data; however, none

was found. Primarily, the data were analyzed using EFA and CFA

to address the objectives of the research. Both the EFA and CFA

were performed based on the polychoric approach to factor

analysis. Before the major analyses, the data were screened for

data entry errors, outliers and any abnormalities. Descriptive

statistics and item analyses were performed by exploring the

association between the items (polychoric correlation), median,

skewness and kurtosis of the items. Statistics on item location

and adequacy indicators were also assessed to decide whether

some items were adequate to be used in the EFA. Three

indices were considered (i.e., Quartile of Ipsative Means

(QIM), Relative Difficulty Index (RDI), and Measure of

Sampling Adequacy (MSA) based on the recommendations of

Lorenzo-Seva and Ferrando (60). Regarding QIM, in a normal

range test, a few of the item estimates should be found in the

extreme positions in the quartiles and the majority should be

found in the middle quartile. For RDI, which evaluates the

position of the items, nearly 75% of item values should fall

between 0.40 and 0.60, and for MSA, items with estimates

below 0.50 should be removed as they measure the same

domain as the rest of the items.

The polychoric correlation matrix was performed based on

the Bayes Modal Estimation using Monte Carlo simulation

(61). The EFA was, therefore, conducted using optimal parallel

analysis based on minimum rank factor analysis (62). The use

of optimal parallel analysis suggests that the focus of the EFA

is to identify major factors. The Promin approach (i.e., oblique

rotation method) was used for the factor rotation. The EFA

was performed using the FACTOR computer programming

software (Version 12.1) (63). This research proposed 4-factor

model which was strictly first-order and this is because there

was no evidence from previous studies that the DHLI lends

itself to the second-order model (36–39). The CFA was further

conducted in the R-studio environment using the lavaan

package (64) with the diagonally-weighted least squares

(DWLS) approach to estimation. With the sample size of more

than 400 cases, the DWLS was found appropriate although the

weighted least squares- mean and variance (WLSMV) could

also equally provided better fit indices (65). The following

indices were used to judge the model fit of the specified

models: Standardized Root Mean Square Residual (SRMR <

0.08), Goodness-of-Fit Index (GFI, > 0.90), Root Mean Square

Error of Approximation (RMSEA < 0.10), Comparative Fit

Index (CFI > 0.90) and Tucker-Lewis Index (TLI > 0.90) (66).

As a preliminary analysis, the covariance error matrix was

inspected and it came out that there is no covariance error

structure.

The ordinal alpha reliability estimate was used for judging

the reliability of the DHL dimensions. This reliability
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estimation approach which was proposed by Zumbo et al.

(67) has been found to accurately estimate the reliability

coefficient compared to Cronbach’s alpha. The ordinal alpha

uses the polychoric correlation matrix for estimating the

reliability coefficient involving ordinal data (68). The

confidence intervals for the reliability estimates were also

computed to guide the interpretations. A measurement

invariance test was also conducted using the multiple

indicators of the distinct models based on gender. The diverse

gender group was removed from the measurement invariance

analysis because they were quite small and this might have

affected the results of the invariance test.
Results

Item analysis statistics

The descriptive statistics for the items, which include the

item-correlation, median, skewness and kurtosis among

others, are presented in Table 1.

The associations among items under the same factor were

found to be fairly moderate (69). For example, the “search”

construct domain yielded correlation coefficients between 0.40

to 0.57. Similarly, the “express” sub-scale had coefficients

ranging between 0.40 to 0.62. The median values ranged from

1.99 to 2.59 (see Table 1). Whereas the skewness values

ranged from 0.06 to 0.36, the values for the kurtosis estimate

were between −1.48 to −1.20. Both the skewness and kurtosis

values were within acceptable limits (70). Furthermore, the

QIM, RDI and MSA values showed that all the items were

appropriate and sufficient for the EFA (60). Although the

correlation coefficients for some of the items were low ( <

0.20), these items were maintained for two reasons. First, the

sample size for the analyses was selected to take into

consideration the low correlation coefficients. Secondly,

simulation studies (71) have advised against removing items

based on low correlations when those items have sufficient

factor loadings in a CFA analysis.
Adequacy of polychoric correlation
matrix and model fit

The determinant of the polychoric correlation matrix was

found to be appropriate, with a value of 0.008. The Kaiser-

Meyer-Olkin (KMO) test also showed a good estimate of

0.898 which was greater than 0.60 (72). Further, Bartlett’s

statistic showed a significant test result, χ2 (66) = 6741.0, p <

0.001, reflecting that the EFA was appropriate (69). The

RMSR was less than 0.08 (SRMR = 0.019) showing model

adequacy.
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TABLE 1 Polychoric matrix, median, skewness and kurtosis of the items.

Domain Search Express Evaluate Relevance

Items 1 2 3 4 5 6 7 8 9 10 11 12

1 1.00

2 0.40 1.00

3 0.44 0.56 1.00

4 0.52 0.37 0.37 1.00

5 0.43 0.58 0.56 0.49 1.00

6 0.44 0.53 0.55 0.40 0.62 1.00

7 0.54 0.45 0.38 0.57 0.47 0.45 1.00

8 0.47 0.48 0.50 0.46 0.57 0.56 0.56 1.00

9 0.39 0.49 0.54 0.34 0.57 0.57 0.41 0.53 1.00

10 0.20 0.25 0.24 0.23 0.20 0.27 0.17 0.16 0.16 1.00

11 0.10 0.14 0.15 0.07 0.17 0.14 0.03 0.12 0.17 0.41 1.00

12 0.10 0.12 0.12 0.02 0.12 0.13 0.06 0.05 0.15 0.31 0.49 1.00

Median 2.43 2.51 2.56 2.40 2.53 2.51 2.37 2.59 2.70 1.99 2.07 2.24

Skew 0.11 0.08 −0.06 0.166 0.02 0.02 0.17 0.052 −0.26 0.36 0.24 0.10

Kurt −1.48 −1.33 −1.39 −1.42 −1.26 −1.43 −1.41 −1.26 −1.34 −1.20 −1.13 −1.31

QIM 3 3 3 3 3 3 3 3 3 1 2 2

RDI 0.61 0.63 0.64 0.60 0.63 0.63 0.59 0.65 0.67 0.50 0.52 0.56

MSA 0.92 0.93 0.93 0.89 0.92 0.93 0.89 0.93 0.93 0.79 0.68 0.66
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Factor solution of DHLI

With the data satisfying the adequacy assumptions, the

EFA was performed to assess the number of factors of the

DHLI. The outcome of the optimal parallel analysis is

presented in Table 2.

The results from the optimal parallel analysis revealed a

four-factor structure of the DHLI (see Table 2). The

analysis further showed that the four factors accounted for

about 70.13% of the variances in DHL of secondary school
TABLE 2 Output from optimal parallel analysis based on Minimum rank fact

Variable Real-data % of
variance

Mean of random % of
variance

Var
per

1 47.1214a 16.9402 3

2 15.9443a 15.1695 1

3 13.6344a 13.5382 1

4 11.9833a 11.9727 9

5 9.5304 10.4158

6 8.1841 8.9546

7 7.0064 7.5178

8 5.6477 6.0790

9 3.1033 4.6335

10 2.6344 3.1046

11 1.6630 1.6741

aNumber of factors retained.
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students. The factor determinacy index was also found to

be adequate with all the factors having an estimate greater

than 0.80.
Confirmatory factor analysis

The construct validity of the DHLI was assessed using the

following indicators: factor loadings, average variance

extracted (AVE), and reliability coefficient from the CFA model.
or analysis.

iance
cent

Cumulative common
variance%

Factor determinacy
index

7.26 37.26 0.862

2.61 49.87 0.952

0.78 60.65 0.901

.48 70.13 0.939
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Model fit

The model fit of the specified model (4-factor structure, 12-

items) was acceptable. The results showed the following model

fit for the CFA: χ2 (48) = 375.168 (p < 0.05), GFI = 0.986, CFI =

0.982, TLI = 0.976, SRMR = 0.057, and RMSEA = 0.070. Except

for the chi-square indicator, all the others had adequate

model fit indices.
Construct validity

The details of the analysis are presented in Table 3.

The outcome of the analysis in Table 3 showed that, for the

information sharing domain, the factor loadings ranged from

0.643 to 0.711, with an AVE of 0.470 and ordinal alpha

reliability of 0.743, CI(0.712, 0.774). The AVE value for the

information searching domain failed to meet the

recommended cut-off of > 0.5; this could be due to low item
TABLE 3 Factor loading, AVE, and reliability coefficient.

Label Dimension

SE=∼ Information searching
When you search the Internet for information on coronavirus or related
topics, how easy or difficult is it for you to …

SE1 Make a choice from all the information you find?

SE2 Use the proper words or search query to find the information you are
looking for?

SE3 Find the exact information you are looking for?

EX =∼ Self-generated content
When typing a message (on a forum, social network) about coronavirus or
related topics, how easy or difficult is it for you to …

EX1 Clearly formulate your question or health-related worry?

EX2 Express your opinion, thoughts, or feelings in writing?

EX3 Write your messages as such, for people to understand exactly what you
mean?

EV=∼ Reliability
When you search the Internet for information on coronavirus or related
topics, how easy or difficult is it for you to …

EV1 Decide whether the information is reliable or not?

EV2 Decide whether the information is written with commercial interests (e.g., by
people trying to sell a product)?

EV3 Check different websites to see whether they provide the same?

DR=∼ Determining Relevance
When you search the Internet for information on the coronavirus or related
topics, how easy or difficult is it for you to…

DR1 Decide if the information you found is applicable to you?

DR2 Apply the information you found in your daily life?

DR3 Use the information you found to make decisions about your health (eg, on
protective measures, hygiene regulations, transmission routes, risks and their
prevention)?

LLCI, Lower limit confidence interval; ULCI, Upper limit confidence interval.

*loadings significant at p <0.001.
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variances in explaining the construct as well as the number of

items. For the self-generated content sub-scale, the loadings

were from 0.624 to 0.778, with an AVE of 0.518 and ordinal

alpha reliability of 0.906, CI(0.879, 0.934). Similarly, the

reliability domain, as well as the determining relevance

dimension, also had items with factor loadings of 0.702 to

0.741 and 0.718 to 0.824, respectively. The reliability estimate

based on the omega ω reliability procedure showed

coefficients ranging between 0.720 to 0.799. These two

dimensions also had AVE values greater than 0.50 and

reliability estimates higher than 0.70 (73). For all the items,

the loadings were sufficient (74). Except for the “information

searching” dimension, the other dimensions showed a

sufficient level of AVE indicating an adequate level of

construct validity (75).
Inter-factorial correlations

The inter-factorial correlation is presented in Table 4.
Factor
loading

Std.
Err

AVE Ordinal alpha
(LLCI, ULCI)

Omega ω
(LLCI, ULCI)

– – 0.470 0.743 (0.712, 0.774) 0.756 (0.724,
0.787)

0.643* 0.020

0.701* 0.017

0.711* 0.017

– – 0.518 0.906 (0.879, 0.934) 0.799 (0.772,
0.826)

0.624* 0.020

0.778* 0.014

0.748* 0.014

– – 0.524 0.901 (0.873, 0.929) 0.782 (0.754,
0.811)

0.729* 0.018

0.741* 0.015

0.702* 0.017

– – 0.582 0.881 (0.848, 0.914) 0.720 (0.686,
0.754)

0.743* 0.030

0.718* 0.030

0.824* 0.027
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TABLE 4 Inter-factorial correlations.

Information
searching

Self-generated
content

Reliability

Information
searching

1

Self-generated
content

0.68 1

Reliability 0.45 0.42 1

Determining
relevance

0.52 0.54 0.55

Agormedah et al. 10.3389/fdgth.2022.968806
As presented in Table 4, the correlation coefficients ranged

between 0.68 and 0.42. For instance, the relationship between

self-generated content and information searching was 0.68

whereas the relation between reliability and self-generated

content is 0.42 (also see Figure 1).
Measurement invariance for gender

The study tested for measurement invariance for gender

(see Table 5).

Two distinct CFA models were fitted for male (χ2 = 9711.13,

p < 0.001; CFI = 0.982; TLI = 0.974; GFI = 0.989; RMSEA =

0.049; SRMR = 0.054; MFI = 0.980) and female (χ2 = 9716.13,

p < 0.001; CFI = 0.985; TLI = 0.975; GFI = 0.984; RMSEA =

0.043; SRMR = 0.056; MFI = 0.981). The measurement

invariance was tested based on the recommendations of Chen

(76) (i.e., achieving -0.01 change in CFI, ≤ 0.015 change in

RMSEA and SRMR change cut-off of 0.015 (residual/scalar

invariance) or 0.030 (metric invariance). Following the

suggestion of Chen (76), the measurement invariance of the

DHLI was established with ΔCFI of 0.003, ΔRMSEA of 0.006

and ΔSRMR of 0.002. The results further showed that scalar/

residual and metric invariance were satisfied with the use of

the instrument.
Discussion

In this study, the validity of the DHLI was assessed among

secondary school students in Ghana, specifically, by examining

the factor solution and construct validity through the polychoric

factor analytic procedure. The study revealed that, within each

dimension, the items were moderately related confirming

observations from previous studies (36, 38). However, the

inter-dimension item relationships were fairly low signifying

homogeneity among the items based on the sub-constructs

they measure. There was enough evidence of model adequacy

for the polychoric analysis. A 4-factor solution was derived

based on the optimal parallel analysis. The 4-factor solution

explained more than two-thirds (70.13%) of DHL of
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secondary school students. Further, a very strong relation was

found between the true DHL of secondary school students

and that which was estimated. This finding confirms that of

previous studies (14, 22, 27, 35–37). Martins et al. (36), for

example, found that the 4-factor solution explained 59.5% of

the variance in the DHL inventory among university students

in Portugal. The study of Rivadeneira et al. (37), though

confirming the current study, it rather identified a 5-five

factor solution. This reflects all the four dimensions in the

current validation, and in addition, the privacy protection

dimension which was not considered in the current study.

Additionally, the four dimensions are reflected in the seven

dimensions originally identified by van der Vaart and

Drossaert (27).

The 4-factor solution was confirmed in a CFA with

acceptable model fit indices. Additionally, all the item

loadings for the various sub-dimensions were greater than

0.70, except items SE1 (…make a choice from all the

information you find?) and EX1 (…clearly formulate your

question or health-related worry?) which had 0.643 and 0.624

loadings, respectively. Even with these items, they explained

about 40% of the variance of their latent traits. Overall, the

item loadings were adequate in the measurement of the sub-

dimensions of DHL among secondary school students in

Ghana. Except for the information searching dimension,

which had an AVE of 0.47, all the other dimensions had

AVEs greater than 0.50, and these met the minimum

recommended threshold (74, 75). Notably, in the case of the

information searching dimension, even though the AVE was

not up to the recommended level, it was very close to 0.50

(i.e., an AVE value of 0.47), and for that matter considered

adequate considering the number of items under the

dimension (75). The low AVE of the information searching

dimension also might be due to the notion that the errors of

measurement are larger than the variances explained by the

information searching construct and the accuracy of the item

contributions as well as the information searching construct.

Nevertheless, the reliability coefficient of 0.743 for the

information searching dimension provided evidence of

convergent validity and thus, the low AVE value for the

dimension might not be a concern as suggested by Fornell

and Larcker (75). Furthermore, the other dimensions of the

DHLI also had sufficient internal consistencies. The outcome

of this study is in line with previous studies in other countries

that have reported high internal consistencies and AVEs (36–

39). It must be noted that not all consistencies functioned the

same for secondary school students, as different dimensions

have varying levels of precision in measuring the various

aspects of DHL.

The study further established measurement invariance of

the DHLI based on gender. This result implies that the DHL

construct had a similar meaning and structure for

both male and female students. Consequently, the DHL
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FIGURE 1

First order CFA model with 4-factor structure and 12 items.

TABLE 5 Multiple indicators for measurement invariance for gender.

Indicators Male Female Difference

Chi-square 9711.13* 9716.16* 5.03

Comparative Fit Indices (CFI) 0.982 0.985 0.003

Tucker-Lewis Index (TLI) 0.974 0.975 0.001

Goodness of Fit (GFI) 0.989 0.984 0.005

Root mean square error of
approximation (RMSEA)

0.049 0.043 0.006

Standardized root mean square residual
(SRMR)

0.054 0.056 0.002

McDonald Fit Indices (MFI) 0.980 0.981 0.001

*loadings significant at p <0.001.
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construct can be meaningfully construed across both male

and female students, justifying the utilisation of the

instrument for scaling students into their DHL levels

irrespective of their gender.

The DHLI is functionally applicable in other contexts such

as in Ghana. More importantly, the current study provides

diverse applicability in terms of the cohort of students. While

the previous studies used university students who are early

adults aged between 20 and 24 years, participants in the

current study used secondary school students who were

averagely aged 18 years, thus, late adolescents. Generally, it

can be said that the DHLI is ecologically robust and age-wise

reproducible, though more studies are needed to further
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validate it. Considering the outbreak of diseases and the

proliferation of technology and other ICT devices, the

development and re-validation of DHLI is timely as it provides

useful information on the easiness or otherwise difficulty in

accessing, evaluating, and use of health-related information

through the blend of technology and competence among students.
Limitations and future directions

Although this research provides direction to future studies

on the psychometrics of the DHLI, it has some limitations.

The study involved secondary school students clustered in the

Northern zone of Ghana. These students may possess some

characteristics which are different from students from other

regions. Furthermore, the findings of this study on gender

measurement invariance differed from what exists in literature

and this presents mixed research findings. Further studies

should consider pursuing the issue of gender measurement

invariance since gender is likely to be a key variable in the

measurement of DHL.
Implications for educational and health
practice

The study offers much insight into the adaptation and

utility of the DHLI among the youth within the Ghanaian

setting. Educational and public health practitioners could

make use of the DHLI to identify students with inadequate

DHL for appropriate interventions to be rolled out to them.

This is particularly important since recent studies have

established a relationship between DHL and protective health

behaviours (11, 14, 15). With the acceptable applicability of

the DHLI, educators could adapt the instrument to study the

sense of digital literacy in a general search for educational

materials for learning by students. The DHLI can offer a

platform where the efficacy of intervention digital health

programs can be tested.
Conclusion

The findings from the study support the validity of the

DHLI and consequently, its utility within the Ghanaian

context. With the growing need for digital health literacy

among younger people globally, the DHLI provides sufficient

grounds for scaling them based on their level of literacy.

There is a need for the instrument to be adapted and re-

validated in Ghana and among the different samples to widen

its reproducibility. The study establishes that secondary school

students digital health literacy can be understood from four

perspectives (i.e., searching for information, self-generated
Frontiers in Digital Health 10
context, assessing the reliability of the information and

determining the relevance of the information). Although the

findings of the study are useful to start the discussions on the

utility of DHLI, a number of challenges were identified and

other areas of validation could not be covered. For instance,

the information searching dimension needs further

investigation on why the AVE estimate failed to reach the

recommended level. Also, it appears the inter-factorial

correlation between the “information searching” and “self-

generated content” was relatively high and this could have

implications on the further investigation of the latent

structure of the instrument. The study recommends that

future studies should conduct discriminant analyses and

differential item analyses to understand the study’s result and

other features of the instrument.
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