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Leveraging machine learning to
examine engagement with a
digital therapeutic
Andrew C. Heusser*†, Denton J. DeLoss†, Elena Cañadas
and Titiimaea Alailima

Akili Interactive, Boston, MA, United States

Digital Therapeutics (DTx) are evidence-based software-driven interventions for
the prevention, management, and treatment of medical disorders or diseases.
DTx offer the unique ability to capture rich objective data about when and how
a patient engages with a treatment. Not only can one measure the quantity of
patient interactions with a digital treatment with high temporal precision, but
one can also assess the quality of these interactions. This is particularly useful
for treatments such as cognitive interventions, where the specific manner in
which a patient engages may impact likelihood of treatment success. Here, we
present a technique for measuring the quality of user interactions with a digital
treatment in near-real time. This approach produces evaluations at the level of a
roughly four-minute gameplay session (mission). Each mission required users to
engage in adaptive and personalized multitasking training. The training included
simultaneous presentation of a sensory-motor navigation task and a perceptual
discrimination task. We trained a machine learning model to classify user
interactions with the digital treatment to determine if they were “using it as
intended” or “not using it as intended” based on labeled data created by subject
matter experts (SME). On a held-out test set, the classifier was able to reliably
predict the SME-derived labels (Accuracy = .94; F1 Score = .94). We discuss the
value of this approach and highlight exciting future directions for shared
decision-making and communication between caregivers, patients and
healthcare providers. Additionally, the output of this technique can be useful for
clinical trials and personalized intervention.
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Introduction

Digital mental health interventions target the prevention or treatment of mental health

disorders and associated impairments (i.e., functional, affective, cognitive) delivered via a

digital platform (e.g., web browser, mobile apps, text messaging, or virtual reality) (1).

They offer the potential to overcome availability and accessibility limitations, including

geographical location and time (2–4).

While there are thousands of digital interventions claiming to improve various aspects of

mental health, many of them have never gone through clinical trials or regulatory scrutiny.

Also, due to a number of factors, including fast growth of the industry and an absence of

well-accepted standards, there are widely varying definitions of what constitutes a “good”

DTx (5). Contrary to wellness apps, DTx products are typically validated in rigorous

clinical trials measuring safety and efficacy as well as evidence from real-world outcomes,

whereas there is no such standard for wellness products (5).
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Similar to traditional behavioral interventions (e.g., Cognitive

Behavioral Therapy), the success of a DTx depends largely on a

user’s engagement (6). Broadly speaking, engagement can be

described as “(a) the extent (e.g., amount, frequency, duration,

depth) of usage and (b) a subjective experience characterized by

attention, interest, and affect” (7). Engagement is considered to

be a dynamic process that is expected to vary both within and

across individuals over time (7). While data for traditional

behavioral interventions is typically limited to attendance/

adherence, a DTx affords the opportunity to collect rich data on

when and importantly how a user interacts with the intervention.

Stakeholders across academic and industry settings acknowledge

that the current measures of engagement (e.g., extent of usage) may

not be sufficient (1) especially if they are not strong mediators of

outcomes (8). For example, users might come back to the app

every day for months (strong retention), but their symptoms do

not improve. This could be interpreted as the intervention not

being effective, but adherence/retention alone does not ensure that

the DTx is being used as intended. The user may not have

followed the instructions for use correctly, or may not have put

forth significant cognitive effort and/or were distracted during use

of the DTx. Another example of why standard adherence/retention

methods may not be sufficient is that a user may abandon a

treatment once they have achieved the desired benefits. Standard

methods would predict attenuated efficacy, whereas methods

focused on the quality of engagement could tell a different story.

Due to their ability to collect rich data not just when but how a

user interacts with a treatment, DTx products afford the unique

opportunity to identify when a DTx product is being used as

intended. Thus, an approach that provides a clinically-informed

and data-driven way to measure the quality of DTx engagements

may shed some light on the effectiveness of a DTx (8).

While measuring adherence and retention can be achieved by

simply tracking the number of user interactions over time, assessing

the quality of interactions is much more nuanced and time-

consuming, and requires the expertise of trained clinicians or

individuals deeply familiar with the intervention. Machine learning

enables us to capture the wisdom of such experts into a classification

algorithm, making this task efficient and scalable. In other words,

once the classifier is trained it can be applied to large quantities of

new data without the need for additional human labeling.

This manuscript introduces a machine learning-based

approach to examine engagement with a pair of related DTx

targeting attentional control function. These devices use

proprietary algorithms designed to improve cognitive interference

management in an adaptive manner and thereby personalized to

the patient. Interference is instantiated through a video game-like

interface presenting two tasks that are performed simultaneously

(multitasking): a perceptual discrimination task (selecting the

correct target from a number of distractor stimuli) and a sensory

motor navigation task (continuously adjusting their position to

steer towards some objects and away from others). Performance

in each task is assessed during single and multitasking

conditions. The interference training is adapted in real time

based on the individual’s performance. Thus the training is

tailored specifically to each individual’s performance level to
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achieve a consistent and optimal challenge at a predefined level

of difficulty, continually challenging them to improve while

providing rewards and positive feedback when they succeed.

We propose to evaluate engagement not only by examining simple

adherence metrics of (e.g., sessions or total time played) but also the

quality of the interactions with the DTx. In other words, is the user

engaging with the DTx as intended (i.e., following the instructions

provided, putting in an appropriate level of effort)?
Methods & results

Visualizing and labeling gameplay data

As described in the introduction, users engage in a perceptual

discrimination and a sensory-motor task simultaneously for

approximately 4 min per “mission”. The perceptual

discrimination task is performed by tapping on the screen of

the device while the sensory-motor task is performed by tilting

the device left and right. For a video example of gameplay, see

here. Missions are the basic unit of interaction with our DTx.

To develop and assess the approach we used gameplay data

from 1,308 missions sampled from 427 users, including users

from four studies from which data has been previously

published (9–12) and users of the commercial product. We

pseudo-randomly sampled missions with the goal of balancing

across data source (clinical or commercial), the 4 sequentially

played worlds in the game, balancing types of missions

(training or assessment) proportional to how frequently they

occurred in the game, and selecting a variety of performance

levels. The particular software build varied across studies with

some differences in game content between builds, but the tasks

were substantially identical and all task difficulties were

governed by our proprietary cognitive training technology, the

Selective-Stimulus Management Engine (SSMETM). Details on

the particular instantiation of SSME for a given study can be

found in the papers referenced above. The data was sourced

from a number of studies across a number of indications

(ADHD, Multiple Sclerosis, Major Depressive Disorder) so that

our classifier could learn patterns that are not indication-

specific. For the clinical trials, consent for health research and

publication was provided by caregivers in the form of IRB

consent (please see individual studies for details). For the

commercial data, retrospective IRB-exempt status was granted

under 45 CFR 46 116(f)[2018 Requirements] 45 CFR 46.116(d)

[Pre-2018 Requirements] for the analysis of de-identified data

by the WCG Institutional Review Board on April 21, 2023

(Study Number: 1353416).

To facilitate label generation, we created a set of plots that

depict how a user is interacting with the treatment and how the

treatment is dynamically responding to the user’s input. The

plots are generated from telemetry data that is captured as a

participant engages in a mission. Figure 1 is a schematic

representing a mission “played as intended” (left panel) and “not

played as intended” (right panel). For each panel, the top two

plots represent game difficulty levels (solid lines) that varied
frontiersin.org
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FIGURE 1

Schematic of plots created to assist in labeling. A schematic of a mission “played as intended” is represented in the left panel and “not played as intended”
in the right panel. The top two plots depict difficulty levels for each of two tasks changing over time. The bottom left plot represents tapping behavior
where colors indicate whether the trial was correct (green) or incorrect (red) and points above the line represent taps and points below the line represent
no taps. The bottom right plot represents accelerometer input where deflections from the 0 axis indicate the degree to which the device was tilted (which
controls steering in the sensory-motor navigation task).
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dynamically between the top and bottom difficulty limits (dashed

lines) for each of two tasks played simultaneously. The bottom

left plot represents screen tapping in response to the targeting

task (green = correct tap, red = incorrect tap) and the bottom

right plot represents accelerometer measurements. As seen in the

left panel, “playing as intended” is characterized by dynamic

changes in task difficulty as the user engages with the tasks,

tapping during a reasonable percentage of targeting trials with a

reasonable correct rate, and continuously varying accelerometer

input representing movement of the device to perform the

navigation task. In contrast, the right panel depicts a mission

“not played as intended”, which is often characterized by task

difficulty levels at the lower difficulty limit, infrequent taps and

excessive errors, and little to no accelerometer input.
Labeling the plots of mission data

We trained human labelers to analyze the data presented in these

plots (Figure 1) and label the missions using an agreed upon

strategy. The labelers included Akili employees from various

departments such as Cognitive Science, Clinical Operations, and

Data Science. Before they labeled the data, they were trained by

reviewing a number of plots representing various examples of

gameplay (e.g., playing effortfully with the correct rules for the

entire mission or playing one or both tasks with the rules

systematically wrong). A labeling application was created to allow

labelers to indicate the proportion of time (e.g., 0, 25, 50, 75, or

100%) during each mission where each task was “played as

intended”, as well as check a series of boxes if certain conditions

were met (for example, if it appears they did not understand the

targeting rules). These labels were only used in cases where there

was reasonable certainty and typically result in accuracy levels that

are far below what are in the typical range for missions. For each
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mission, labels were collected from 3 human labelers to increase

accuracy/reduce human error. Numeric labels were transformed to

binary ones for the purposes of training a binary classifier using

the following operational definition for “playing as intended”:

multitasking for greater than 75% of a mission while playing with

the correct rules. Above this threshold is considered “playing as

intended” and below the threshold is considered “not playing as

intended”. We considered a full consensus from all raters of

requiring 100% to be too stringent (and would lead to many false

negatives) and that >50% was too liberal, which left us with >75%

as the best option. A final label was determined based on the

majority of the labels for each mission. For example, if 2 out of 3

labelers coded the mission as “playing as intended”, the final label

was “playing as intended”.
Model features

Features were created based on aspects of the mission data that

were informative in making a decision on whether the mission was

“played as intended”. To create features, we extracted the raw

gameplay telemetry data that is captured for each mission played

and transformed the data into a set of summary statistics. The

feature set included statistics such as task accuracy, tapping

frequency and accelerometer variance. These feature vectors were

paired with the labels described above and were used to train a

machine learning model to predict the most likely label (“played

as intended” or “not played as intended”).
Model fitting

The labeled dataset was split into a training (80%) and test

(20%) set using a stratified random sampling approach (stratified
frontiersin.org
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TABLE 1 Model performance statistics: accuracy, precision, recall, F1-
score and support.

Accuracy Precision Recall F1-score # of Samples
(positive/negative)

.94 .94 .94 .94 134/128

Heusser et al. 10.3389/fdgth.2023.1063165
by data source and label (0 or 1). A grid search was performed on

the training data over hyperparameters of a Random Forest

Classifier (implemented with scikit-learn version 0.23.2) using

leave-one-user-out cross validation. Using the hyperparameter

combination with the highest cross-validated F1-score, the

random forest was retrained on the full training set. To ensure

that the classifier accuracy was not inflated due to overlap in

users in the training and test set, we separately analyzed the

accuracy for users’ data who were only in the test set (F1-score

= .96) and found them to be comparable to users in both the

training and test sets (F1-score = .94).
Model results

We validated the model by assessing performance on the held out

test set. Overall, test set accuracy was 94%. An ROC curve analysis

representing the model’s true/false positive rate at different

thresholds is shown in Figure 2. Precision, Recall and F1-score for

both “playing as intended” (1) and “not playing as intended” (0)

were all exactly 94% (see Table 1 for positive label metrics).

In addition to the model validation outlined above, we ran

additional validation on new data (n = 600 missions) from a

different set of users (n = 220). The labeling procedure was

identical to what is described above except that there were only 2

labelers. This data was used for the purposes of model drift

monitoring (i.e., the model was not retrained with this data).

Any disagreement between the labelers (“playing as intended”

vs. “not playing as intended”) were reviewed together live until a

consensus was reached. The F1-score for this additional

validation step was similar (.92), providing additional support

that the model performance was high and that model drift was

unlikely to be of concern.
Discussion

In this manuscript, we introduce a machine learning-based

approach to examining engagement with a DTx targeting

attentional control function. Our results suggest that it is feasible

to label missions (the “units” of interaction with our DTx) based
FIGURE 2

ROC curve representing model performance on the held out test set.
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on whether or not they are “played as intended” with high

accuracy. Importantly, this labeling can be done in an automated

and scalable way (without continual expert assessment), which

opens the door for many potential use cases centered around

measuring the quality of engagement with a DTx.

A recent opinion piece (1) calls for better measures of attrition

and engagement. The approach described herein fills that unmet

need in the DTx space, opening a new dimension for assessing

engagement. It can also help to tease apart whether attrition is

due to lack of use, or due to the manner of use, and improve the

product experience accordingly. The proposed approach helps

the DTx be more accurate and proactive in determining whether

the patient is engaging with the product as intended and can

help address many of the issues brought up in the opinion piece.

The authors mention gamification of the DTx as means to

increase engagement, which is core to the DTx under

examination. The interactivity of the game experience produces a

rich data stream that enables an approach like this to be

developed. But the output of this approach can enable further

gamification, such as points for completing your daily tasks in

the intended manner, or simple rewards for periods of significant

effort when the DTx is used as intended. The approach we

describe also enables more direct feedback to the patient and/or

their caregivers in a near real-time manner as to whether they

were using the DTx as intended, potentially paired with further

messaging to encourage proper engagement to maximize benefit.

These messages should be tailored to each app and given in a

positive/motivational manner, to avoid inducing frustration or

dissatisfaction with the DTx for the patient.

This kind of approach has several other potential uses. It could

also be used to discover cohorts of patients for any number of

analyses. These cohorts could be used to identify responders,

examine dosage at a much finer level, or even to predict whether

a user is likely to cease using the product altogether. Different

cohorts may require different types of messaging to the patient

depending on their usage patterns. The approach could also

provide patients or their caregivers additional insights on (a) the

time course of engagement over the course of a treatment, (b)

ways to get more out of the DTx by using the product as

intended, and (c) any number of other communication strategies

to give the patient a behavioral cue to move them into a pattern

of use that is more likely to lead to greater benefit from the DTx.

Future development of this approach could include moving

from a binary classification of whether the patient was using the

product as intended to a continuous outcome, for example

indicating the total amount of time in each daily task where they

were using the product in the intended manner. This could be

useful for a number of reasons. First, missions which are

currently near the classification boundary and would register as
frontiersin.org

https://doi.org/10.3389/fdgth.2023.1063165
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Heusser et al. 10.3389/fdgth.2023.1063165
“not played as intended” could instead result in more granular

feedback as to the level of engagement as intended (e.g., 73% of

a given mission). A continuous output could also serve better as

a feature in other models or analyses to examine patterns of

usage, effectiveness of different messaging campaigns around

proper use of the product, or differences in effectiveness of the

DTx for different patients.

A limitation of the current approach is that the machine

learning model (a random forest classifier) is moderately

complex, and so explaining how the model arrived at a particular

decision is not straightforward. Explainable Boosting Machines

can be used to create a model that can be as accurate as a

random forest while simultaneously providing output that can be

easily interpreted (13). We have experimented with these models

and found that they produce similar results.

While the specific methods and tooling used for our DTx will not

likely transfer directly to another DTx the overall approach could be

replicated with similar labeling, feature engineering, and model

training efforts. It will require sufficient telemetry recorded, such

that an expert observer might discern with high confidence

whether or not the data stream represents use as intended. This

sort of tool could become a standard feature of DTx, ensuring that

products that have undergone such rigorous clinical validation can

consistently prove out their benefit in the real world.
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