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Introduction: Drug utilization is currently assessed through traditional data
sources such as big electronic medical records (EMRs) databases, surveys, and
medication sales. Social media and internet data have been reported to provide
more accessible and more timely access to medications’ utilization.

Objective: This review aims at providing evidence comparing web data on drug
utilization to other sources before the COVID-19 pandemic.

Methods: We searched Medline, EMBASE, Web of Science, and Scopus until
November 25th, 2019, using a predefined search strategy. Two independent
reviewers conducted screening and data extraction.

Results: Of 6,563 (64%) deduplicated publications retrieved, 14 (0.2%) were
included. All studies showed positive associations between drug utilization
information from web and comparison data using very different methods. A
total of nine (64%) studies found positive linear correlations in drug utilization
between web and comparison data. Five studies reported association using
other methods: One study reported similar drug popularity rankings using both
data sources. Two studies developed prediction models for future drug
consumption, including both web and comparison data, and two studies
conducted ecological analyses but did not quantitatively compare data sources.
According to the STROBE, RECORD, and RECORD-PE checklists, overall
reporting quality was mediocre. Many items were left blank as they were out of
scope for the type of study investigated.

Conclusion: Our results demonstrate the potential of web data for assessing drug
utilization, although the field is still in a nascent period of investigation. Ultimately,
social media and internet search data could be used to get a quick preliminary
quantification of drug use in real time. Additional studies on the topic should
use more standardized methodologies on different sets of drugs in order to
confirm these findings. In addition, currently available checklists for study quality
of reporting would need to be adapted to these new sources of scientific
information.
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1. Introduction

Drug utilization research has been defined as “an eclectic collection
of descriptive and analytical methods for the quantification, the
understanding and the evaluation of the processes of prescribing,
dispensing and consumption of medicines, and for the testing of
interventions to enhance the quality of these processes.” (1). Accurate
and timely estimates of pharmaceutical drug utilization patterns are
considered critical for assessing drug safety, effectiveness, access to
drugs, and patients’ care (2, 3). Higher than expected use of some
medications in a specific country (e.g, opioids in the United States)
should be flagged rapidly as it could point to potential drug abuse).
Timely assessment of drug utilization could be used to investigate the
effectiveness and safety of medications for this new disease (4). On the
contrary, when detected early, suboptimal use of essential medicines
or vaccines could trigger health policymaking to prevent the
resurgence of preventable morbidity.

Traditional ways to retrieve data on the use of drugs based on
surveys, prescription rates, and drug sales tend to be slow, expensive,
difficult to obtain, limited in geographic scope, and may not accurately
capture a representative sample of the population. Currently, accessing
the appropriate databases and analyzing drug utilization can take up
to a year (sometimes even more). These limitations in retrieving drug
utilization data can affect the health of populations.

In the last decade, web data such as social media and internet search
data have been shown to be useful for infectious disease surveillance. In
2009, a study based on Google Flu Trends showed that worldwide
influenza virus activity could be monitored using the Google search
engine (5). It was found that the frequency of influenza-associated
search terms highly correlated with the number of physician visits for
influenza-like symptoms (5). Similar approaches have also been used
in pharmacovigilance-focused studies, which deal with detecting,
comprehending, and preventing adverse drug events (6, 7). Similarly,
the potential of using social media data to detect adverse drug
reactions (8) as well as its use for infectious disease surveillance (9-11)
have been recognized in the literature, and an increasing number of
studies utilize web data to assess drug utilization (12-14).

Therefore, studies on web data could provide evidence of a
complementary way to access information on drug utilization
compared to traditional methods. We conducted a systematic
scoping review and aimed to assess the content and quality of
existing research using social media and internet search data to
study drug utilization volumes compared to other sources of drug
utilization information. This review was performed before the start
of the COVID-19 pandemic as we believe that the specific media
attention on some medications during this period may not reflect
the association that could be made between drug web data and drug
utilization in more usual circumstances.

2. Methods
2.1. Reporting standards

We performed a systematic scoping review and followed the
Preferred Reporting Items for Systematic Reviews and Meta-
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Analyses extension for Scoping Reviews (PRISMA-ScR) checklist
(15) (Supplementary File S5). The review protocol is available in
the online Supplementary Material (File S1).

2.2. Search strategy

A literature search was conducted in September 2016, updated in
November 2019, and included PubMed Medline, EMBASE, Scopus,
and Web of Science. The search strategy was developed including an
experienced pharmacoepidemiologist and counseling by an
information specialist. The PubMed Medline search strategy is

available in the online Supplementary Material (File S2).

2.3. Selection criteria

We included studies if they: (1) were primary research studies
that involved web data including social media or search engine data
such as Google Trends, Google Correlate, Google Insights for
Search, Google search engine, Facebook, Twitter, and Instagram;
(2) involved any kind of comparison data such as drug sales or
drug prescription volumes acquired from surveys, registry data,
physician databases, and others. Not all of these data originated
from validated sources; and (3) included any kind of drug
utilization data such as utilization frequencies of vaccines,
vitamins, supplements, nicotine alternatives, prescription drugs,
and over-the-counter drugs for both data sources.

Articles were excluded if they: (1) focused on E-cigarettes; (2)
involved incidence rates of diseases instead of drug utilization
volumes; or (3) involved only web data sources but no other
kind of comparison data source.

In addition, we excluded non-English study documents,
literature reviews, posters, PowerPoint presentations, articles
presented at doctoral colloquia, or if the article’s full text was not
accessible to the study authors (e.g., conference abstracts). Only
peer-reviewed proceedings were included in this review.

2.4. Selection process

All identified references were downloaded into Endnote, where
duplicates were removed. Two independent reviewers conducted
the screening with the free online tool Cadima (15). First, titles
and abstracts were screened, followed by screening of the articles’
full texts. The reference lists of the included articles were checked
for additional studies. Any remaining disagreements about study
inclusion or exclusion were resolved by a third investigator.

2.5. Data extraction

One
information of the articles into a Microsoft Excel sheet with 22

reviewer independently extracted the prespecified

columns containing information on the following aspects: (1)

General information on the included studies

(e.g., study
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objective), (2) characteristics of the involved data sources (e.g., web
data source), and (3) additional study items (e.g., conflict of
The full list
Supplementary Material (File S4).

Additionally, the reporting quality of the included studies was
assessed using the STROBE checklist (16) (Strengthening the
Reporting of Observational Studies in Epidemiology) as well as the

interest). can be accessed in the online

statement’s extensions RECORD (Reporting of studies conducted
using observational routinely collected data) (17) and RECORD-PE
(Reporting of studies conducted using observational routinely
collected data for pharmacoepidemiological research) (18). Items
were excluded if they were considered out of scope for the
One
subsequently reviewed the adherence of the articles to the

investigated population of research studies. reviewer
checklists’ items. The checklist items were marked “yes” if the item
was described satisfactorily well, “partly” if described partially, and
“no” if it was not described at all. If an item was not applicable due
to a study’s nature or design, the item was marked “n/a”.

One reviewer additionally reviewed the study authors’
perceptions of the challenges of using web data for drug
utilization estimation reported in the discussion sections of the
papers. The abstracted data items were verified by a second
reviewer, and any disagreements were resolved in consensus. The
full list can be accessed in the online Supplementary Material
(File S3). The extracted data were synthesized narratively.
Descriptive statistics were performed using Microsoft Excel (e.g.,

frequencies, and measures of central tendency).

2.6. Risk of bias assessment

Risk of bias assessment was not conducted, which is consistent
with the scoping review methods manual by the Joanna Briggs
Institute (19).

3. Results
3.1. Study flow

A total of 6,563 deduplicated citations from electronic
databases were screened (Figure 1). Of these, 6,427 (98%) papers
were excluded during the title- and abstract-screening process,
leaving 137 (2%) articles eligible for full-text screening. A total of
123 (90%) full texts were found to be ineligible for study
inclusion, the most common reason being wrong study design as
they did not include relevant datasources or any comparison
with drug utilization data [see exclusion criteria 2, n =70 (57%)].
Ultimately, 14 (10%) papers were considered eligible for
inclusion. A first search was conducted in September 2016,
identifying eight eligible articles, and the updated search in
November 2019 yielded six additional papers. The full list of
included documents can be found in the online Supplementary
Material (File S4).
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3.2. Characteristics of included studies

The articles’ publication dates ranged from 2010 to 2019, with
93% (13/14) of papers published from 2014 onwards (Table 1).
The document types comprised journal articles (79%) and (full)
conference papers (21%) (see Supplementary File S4).

3.3. Data source characteristics

Of all reviewed articles, the most employed web data source
was Google Trends’ search volumes assessed in eight (57%)
studies (21-24, 26, 27, 32, 33). Two (14%) studies used Twitter
posts (22, 34), and two (14%) other studies utilized search
volumes from former Google services similar to Google Trends:
specifically, the Google Health Trends API (30) and Google
Insights for Search (25). One (7%) study utilized both Google
Insights for Search’ and Google Trends’ search volume (20), and
another (7%) study assessed the frequency of website hits where
a certain keyword is found using the Google search engine (28).

Datasources used for comparison with Web data included:
Elven (79%)
organizations drug utilization estimates as comparator to the web
data (21, 24, 25, 27, 29, 31, 32). U.S. databases [Medical
Expenditure Panel Survey (MEPS) (21, 24), Database from
Centers for Disease Control and Prevention (CDC) (25, 31),
Center for Disease Dynamics Economics & Policy (32), the flu

studies used data from public/government

vaccination rate surveillance system used by the U.S. Department
of Health and Human Services (DHHS) (29), Medicaid (26),
State Serum Institute (27), Register of Medicinal Product
Statistics (30), Drug prescription report, Germany (23), European
Drug Report 2014: Trends and Developments (28), UNODC
World Drug Report 2011 (28)], and three studies (21%) used
privately owned databases [the 2004 to 2008 Pfizer Annual
Shareholder Reports (20), IMS Health (22) and the
administrative claims database provided by JMDC Inc. (33)].

Twelve (86%) out of fourteen studies provided the time of data
collection for both the web and the comparison data source. In
these studies, the web data were gathered for a median duration
of 5.3 years (interquartile range of 3.9 to 8.6 years), while the
comparative data were collected for a median duration of 5.0
years (interquartile range of 3.7 to 9.6 years). One (7%) study
only reported the time of data collection for the comparison data
source (21), while in another (7%) study, the time of data
collection could not conclusively be identified (28).

3.4. Approaches used for comparisons

Nine (64%) of the fourteen studies quantitatively compared
web-mined and comparison data using different types of
correlation analyses (Pearson -, Spearman - and Cross-
correlation) (20, 21, 23, 25, 26, 29, 31-33). Two studies (14%)
quantitatively compared the performance of different prediction
models (27, 30) using web and comparison data in terms of root
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FIGURE 1
PRISMA flow diagram of included studies

mean squared and mean absolute error. One study qualitatively
compared different popularity ranking lists (28). Furthermore,
two (14%) studies did not directly compare drug utilization
volumes but reported the results of both data sources as part of
an ecological analysis without statistical comparison (22, 24).

3.5. Therapeutic classes of drugs assessed

With a total of four (28%) studies, vaccines were the most
frequently investigated drug class (25, 27, 29, 31). Two (14%)
studies examined antibiotics (26, 30), and one (7%) study
focused on both antibiotics and probiotics (32). The remaining
studies included: Psychoactive drugs (28), statins (20), drugs for
prostatic  hyperplasia  (22), (23),
medications with seasonal patterns (21), moisturizer (heparinoid)
(33) and oral bisphosphonates (24).

benign antidepressants
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3.6. Main findings

Overall, positive associations between drug utilization estimates
reported in web data sources and comparison data sources were
found in all studies, with significant results reported in eight of
the nine studies that used correlation analyses (20, 21, 23, 25, 26,
29, 31, 33). Kaminski et al. found antibiotic consumption to be
significantly associated with internet search data of probiotics but
not antibiotics (32). Kalichman et al. found that the internet
search term HINI
coverage, while the search term vaccine independently predicted

independently predicted HINI vaccine

HPV vaccination coverage as results of ordinal regression
analyses (25). Two studies built and evaluated models to predict
future drug utilization and reported the best predictions when
combining web and comparison data (27, 30). Jankowski et al.
developed a drug popularity ranking list using internet search
data and found the list to be similar to those reported by two
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international drug data sources (28). Two studies conducted
ecological analyses (22, 24), of which Skeldon et al. study
reported both increased web search interest and drug
prescription rates, separately after two sequential advertising
campaigns (22). The study of Jha et al. found a series of
temporally correlated spikes in internet search activity and a
decline in drug utilization estimates following media reports of
medication safety concerns (24).

Three studies found similar seasonal patterns across the web
and comparison data sources (21, 26, 31). Moreover, one study
found correlations between internet search volumes and drug
prescription volumes not only at the same time but also
following a one-month time lag for the population aged 20 to 59
years, suggesting that people obtain health-related information
from the internet, which may subsequently affect their behavior

and medication requests (33).

3.7. Assessment of the reporting quality

The adherence of the articles to the individual items of the
STROBE, RECORD, and RECORD-PE statements is presented in
Table 2. In over 80% of the studies, the following items were
reported: title and abstract (1.1), background rationale (2),
objectives (3), variables (7.1.b), statistical methods (12-a), and
outcome data (15). The following (sub-)items were considered in
more than 20 to 50% of the studies: title and abstract (1-a, 1-b,
1.2), study design (4), setting (5), data access (12.1), key results
(18), limitations (19.1), interpretation (20), generalisability (21),
and funding aspects. Less than 20% of the studies described the
following items: variables (7.1, 7.1-a), bias (9), statistical methods
(12-e), participants (13-c), other analyses (17), and accessibility
of protocol, raw data, and programming code (22.1).

3.8. Reported challenges of using web data
for drug utilization estimates

Several limitations and biases of using web-mined data for drug
utilization estimation were discussed by the study authors. A total
of five studies stated that there might be a selection bias as the web
data source might not sufficiently represent the whole population
and that important vulnerable populations such as the elderly
might be underrepresented (21, 23, 29, 31, 33). Furthermore,
unmeasured factors, such as users’ search intents and attitudes as
well as the potential impact of media attention might influence
web-mined drug utilization volumes (20, 25, 32). Additional
challenges were identified resulting from low search volumes
when web data is narrowed down to specific regions or
populations (31, 32). In two studies web data was considered to
be inadequate to draw causal relationships (20, 25) and it was
also stated that web-mined data might generally be unreliable as
it is based on self-reported experiences (29).

Four studies specifically addressed limitations of using web-
mined data from Google Trends (21, 26, 32, 33). Of these, three
studies highlighted that Google Trends only reported a normalized
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share of the number of searches in the form of “relative search
volume” rather than an absolute number of total searches (21, 26,
32). Furthermore, Google Trends provided no details about how
research words were recognized or aggregated (33).

4. Discussion

This systematic scoping review identified 14 studies which
compared drug utilization estimates from web data to another
data source. While most studies (13) concluded to some
similarities between the two data sources, studies showed a lack
of consensus on methodology and only nine (64%) studies used
a quantitative measure of correlation between the web and
comparison data source.

To our knowledge, this is the only scoping review specifically
focusing on the utility of web data for estimating drug utilization
in comparison to other data sources. Other recent reviews
focused on the use of social media data for pharmacovigilance
(8, 34-36), surveillance of prescription medication abuse (37),
and illicit drug use (38). Reviews investigating search engine data
mostly focused on infectious disease surveillance (39, 40), but, to
the best of our knowledge, did not cover the utility for drug
utilization so far.

Ultimately, using web data in order to inform on drug
utilization could have a significant public health impact. Research
is likely to develop in this field showing more examples of
association between web data and drug utilization (e.g., types of
medication assessed, countries, web data sources used and speed
of data obtained) that could confirm our findings.

Our findings are similar to those of a review investigating the
utility of social media for pharmacovigilance: Tricco et al.
reported consistent results in a majority of included studies
which compared the frequency of drug adverse events detected
from social media data sources against a regulatory database (8).
In addition, our review found that all four included studies that
reported on seasonal differences found similar seasonal drug
utilization patterns between the two data sources. This finding
shows that web data not only generally correlate with
comparison data but also underpins the utility of web data to
produce timely estimates of drug utilization.

Our review showed a great variety of comparison data sources
commonly used for drug utilization studies that were used to
validate the results from web data. Those comparison sources
included, many country-specific surveillance data sources such as
from the US CDC, US Medical Expenditure Panel Surveys
(MEPS), and private companies, such as the Japanese JMDC Inc
identified.
utilization estimates were the most commonly used data measure,

were In these comparison data sources, drug

before prescription volumes and drug sales.

4.1. Web data sources

Twelve (86%) out of 14 included studies employed search
engine data retrieved from various Google services such as
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Google Trends, Google Insights for Search, Google Health Trends,
and the Google search engine. Connected to this, the total duration
of access was very similar with a median duration of 5.3 years for
the web and 5.0 years for the comparison data source. This is
notably more than has previously been reported by a review
focusing on the utility of social media for pharmacovigilance,
where social media posts were followed for a median duration of
1.1 years (8). In addition, the predominance of search engine
web data sources might be explained by the greater ease of
accessing search engine data through services such as Google
Trends compared to retrieving unstructured social media data,
which typically involves a labor-intense processing pipeline
containing multiple steps (8) to extract datasets suitable for
analysis and comparison to other sources. We recommend that
research in this field would use a wide range of web data rather
than only focussing on one type of research engine (e.g.
Facebook, Twitter, specific health forums).

4.2. Drug classes and type of drug
utilization investigated

Seven out of 14 (50%) studies focused with both antibiotics (n
= 3) or vaccines (n =4), respectively, on drug classes that belong to
the field of infectious diseases. The remaining studies focused on
drug classes of diverse other fields, such as diabetes, depression,
Studies
medications used either as short treatment (e.g., antibiotics or

and the misuse of psychoactive drugs. included
vaccines) or chronic use (e.g, statins for lipid lower, or
antidepressants). However, as most studies used web search
engines, they could only evaluate the prevalence of drug use as it
is not possible to differentiate former and new users only from
these data sources. Using specific analyses of posts content from
Facebook, Twitter or specific health forums would allow more
information to be retrieved on drug utilization. For instance, one
could screen for information on the time patient are on
medications or on the concomitant use of other medications.
Analysing the content of social media posts has already been
used in the past for pharmacovigilance (41). Considering that the
investigated studies found consistent positive results of using web
data for estimating drug utilization across the vast majority of
the investigated drug classes, we advise future studies to extend
research to include drug classes from other fields additionally
and use a wider diversity of web data sources such as those
including specific users posts.

4.3. Reported challenges of using web data
for drug utilization estimates

The mentioned limitations of the included primary research
studies highlighted potential challenges of using web data for
estimating drug utilization, such as the potential lack of
representativeness between web data-creating users and the
general population, difficulties identifying the populations who
created the web data, difficulties interpreting relationships
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between web data and comparison drug utilization data (e.g., due
to the presence of potentially unmeasured confounding factors
such as users’ search intent or effects of media attention), and
problems dealing with low search volume if data is narrowed
down to specific regions or populations. These critical aspects
should be systematically targeted in further studies using web
data to assess drug utilization.

4.4. Reporting quality

The overall reporting of the studies’ quality according to the
STROBE, RECORD, and RECORD-PE checklists was mediocre
and strongly varied between the different items. The most
commonly reported items (>80%) were background/rationale,
objectives, and outcome data. Items with low reporting (<20%)
were other analyses, bias, and the accessibility of protocol, raw
data, and programming code. Of particular relevance is the poor
reporting of the two latter items, since both items were rated to
be applicable for all reviewed studies and since these points are
increasingly recommended as they target research transparency
and reproducibility. The finding that articles tend to underreport
biases has also been observed in two other studies that assessed
the compliance of the articles with the STROBE checklist in
different fields (42, 43). One of the issues may be that these
guidelines are not specific to internet user content research.

Moreover, many items were rated to be out of scope for the
type and design of the studies we included in our review. In
many cases, this was due to the fact that the users who created
the web data could not directly be regarded as study participants
as, for example, eligibility criteria cannot be controlled and
important information such as descriptive user characteristics can
hardly be retrieved from web data.

In conclusion, the three checklists include all important items
necessary to assess the reporting quality of the included studies.
However, a variety of items were not applicable as they were out
of scope for these types of studies. Therefore, we recommend
utilizing a shortened and adapted version of the current
STROBE, RECORD, and RECORD-PE checklists for future
studies. For example, as web data was usually sourced through
social media platforms and open-access websites for search
analysis, no actual participant recruitment procedures took place
in those studies. Therefore, all items relating to the recruitment
and assessment of real-world participants could be omitted in a
future version of this checklist (i.e., items: 6(a), 6(b), 6.1, 6.2, 6.3,
6.1.a, 13(a), 13(b), 13.1, 14(a), 14(b), 14(c)) and replaced by
more suited item such as: the type of web data (e.g. search terms
volumes, number of tweets/posts of interest...).

4.5. Strengths and limitations

This systematic scoping review was conducted and reported
according to the standardized PRISMA guidelines (15). We
conducted an extensive literature search, defined the study
eligibility criteria, rigorously assessed studies that contained drug
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TABLE 2 Reporting of items of the STROBE statement (strengthening the reporting of observational studies in epidemiology) complemented with items
from the RECORD and RECORD-PE checklists [reporting of studies conducted using observational routinely collected data (RECORD) and RECORD
statement for pharmacoepidemiological research (RECORD-PE)].

Category

Item description

Yes (%)

Partly
(%)

Total coverage

No (%)

Not

Title and abstract
1 | (a) Indicate the study’s design with a commonly used term in the title or the 4 | (29) (7)1 9 |(64) 0| (0)
abstract.
(b) Provide in the abstract an informative and balanced summary of what was 11 (79) @10 @ |0 (0
done and what was found.
1.1* The type of data used should be specified in the title or abstract. When possible, | 13 | (93) (7)1 0] () 0/ (0)
the name of the databases used should be included.
1.2* If applicable, the geographical region and timeframe within which the study | 7 | (50) 214129 0/ (0
took place should be reported in the title or abstract.
Introduction
2 Background/ Explain the scientific background and rationale for the investigation being 14 | (100) © | 0] (@ o0 (0)
rationale reported.
3 Objectives State specific objectives, including any prespecified hypotheses. 13| (93) @7 | 0/]© 0 (0
Methods
4 Study design Present key elements of study design early in the paper. 11| (79) @0 © 0 (0
5 Setting Describe the setting, locations, and relevant dates, including periods of 11 (79) @10 @ |0 (0
recruitment, exposure, follow-up, and data collection.
7.1% Variables A complete list of codes and algorithms used to classify exposures, outcomes, | 1 | (7) (14) |11 (79 0 | (0)
confounders, and effect modifiers should be provided. If these cannot be
reported, an explanation should be provided.
7.1.a%% Describe how the drug exposure definition was developed. 0 (0) 0) | 0| (0) | 14 (100)
7.1.b** Specify the data sources from which drug exposure information for individuals | 14 | (100) © | 0o|@ 0| (0
was obtained.
9 Bias Describe any efforts to address potential sources of bias. 1 () ©) [ 13]/(93) 0 | (0)
12 | (a) Statistical methods Describe all statistical methods, including those used to control for 131 (93) 7)1 0] 0 (0)
confounding.
(e) Describe any sensitivity analyses. 1] () ©) | 0| (0) 13| (93)
12.1% Data access Authors should describe the extent to which the investigators had access to the | 10 | (71) 290 | () 0 (0
database.
Results
13 | (¢) Participants Consider use of a flow diagram. 1 (7) ©) | 0| (0) 13 (93)
15 Outcome data Cohort study—report numbers of outcome events or summary measures over | 13 | (93) 70| © 0 (0
time. Case-control study—report numbers in each exposure category, or
summary measures of exposure. Cross sectional study—report numbers of
outcome events or summary measures.
17 Other analyses Report other analyses done—e.g., analyses of subgroups and interactions, and | 1 | (7) ©) | 0| (0) 13| (93)
sensitivity analyses.
Discussion
18 Key results Summarise key results with reference to study objectives. 4 (29) 21429 3| (1
19 Limitations Discuss limitations of the study, taking into account sources of potential bias or | 11 | (79) © | 3(@n|o| (0
imprecision. Discuss both direction and magnitude of any potential bias.
19.1* Discuss the implications of using data that were not created or collected to 8 | (57) QD3 @0 (0
answer the specific research question(s). Include discussion of misclassification
bias, unmeasured confounding, missing data, and changing eligibility over
time, as they pertain to the study being reported.
19.1.a** Describe the degree to which the chosen database(s) adequately captures the | 5 | (36) 36)| 429/ 0 (0
drug exposure(s) of interest.
20 Interpretation Give a cautious overall interpretation of results considering objectives, 10 | (71) 29,0 |0 (0)
limitations, multiplicity of analyses, results from similar studies, and other
relevant evidence.
21 Generalisability Discuss the generalisability (external validity) of the study results. 8 | (57) 0 6|43 0 (0)
Other information
22 Funding Give the source of funding and the role of the funders for the present study | 6 | (43) “43) 2 (14| 0 (0)
and, if applicable, for the original study on which the present article is based.
22.1* Accessibility of protocol, raw Authors should provide information on how to access any supplemental 0 (0) 211179 0| (0)
data, and programming code information such as the study protocol, raw data, or programming code.

*ltem from the Reporting of studies conducted using observational routinely collected data checklist (RECORD).

**|tem from the Reporting of studies conducted using observational routinely collected data for pharmacoepidemiological research checklist (RECORD-PE). Items Nr: 1.3,
4.a,4.b,6(), 6(b), 61,6263 61a771c71d, 71e 7.1f 719, 8, 8.4, 10,11, 12(b), 12(c), 12(d), 12.1.3, 12.1.b, 12.2, 12.3, 13(a), 13(b), 13.1, 14(a), 14(b), 14(c), 16(a), 16(b), 16(c),
20.a of the checklists were rated by the study authors as being out of scope for the design and type of studies included in this review (e.g. no participants were recruited).
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utilization information from web data sources, and compared it to
other sources with drug utilization information.

One limitation of this review was the heterogeneity of
methodologies in terms of study objectives and analysis methods in
the included studies, which made it impossible to draw more
general conclusions. This, together with the relatively small number
of identified studies, underlines the complexity and novelty of the
field and justifies the selection of a scoping review approach.

Finally, in our assessment of the studies’ reporting quality
employing the STROBE, RECORD, and RECORD-PE checklist, a
substantial number of items had to be considered out of scope for
these types of studies. This requests for an adapted (standard)
checklist.

5. Conclusion

While this study demonstrates the potential of social media and
search engine data in assessing drug utilization, it also emphasizes
the low level of evidence available in the literature. Generalization
of this approach requires additional studies focusing on the
validation of drug utilization estimates from traditional data
sources as well as on using quantitative (such as correlation
assessment or modelling) methodologies when comparing
traditional sources to web data. The use of web data to estimate
drug utilization is an emerging field, and future research should
focus on fulfilling standardized reporting standards as well as
developing new reporting guidelines that specifically target the

characteristics of this type of research.
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