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Background: Accurate and timely diagnostics are essential for effective mental
healthcare. Given a resource- and time-limited mental healthcare system, novel
digital and scalable diagnostic approaches such as smart sensing, which utilizes
digital markers collected via sensors from digital devices, are explored. While the
predictive accuracy of smart sensing is promising, its acceptance remains
unclear. Based on the unified theory of acceptance and use of technology, the
present study investigated (1) the effectiveness of an acceptance facilitating
intervention (AFI), (2) the determinants of acceptance, and (3) the acceptance of
adults toward smart sensing.
Methods: The participants (N= 202) were randomly assigned to a control group
(CG) or intervention group (IG). The IG received a video AFI on smart sensing, and
the CG a video on mindfulness. A reliable online questionnaire was used to assess
acceptance, performance expectancy, effort expectancy, facilitating conditions,
social influence, and trust. The self-reported interest in using and the installation
of a smart sensing app were assessed as behavioral outcomes. The intervention
effects were investigated in acceptance using t-tests for observed data and latent
structural equation modeling (SEM) with full information maximum likelihood to
handle missing data. The behavioral outcomes were analyzed with logistic
regression. The determinants of acceptance were analyzed with SEM. The root
mean square error of approximation (RMSEA) and standardized root mean square
residual (SRMR) were used to evaluate the model fit.
Results: The intervention did not affect the acceptance (p=0.357), interest
(OR=0.75, 95% CI: 0.42–1.32, p=0.314), or installation rate (OR=0.29, 95% CI:
0.01–2.35, p=0.294). The performance expectancy (γ=0.45, p < 0.001), trust
(γ=0.24, p=0.002), and social influence (γ=0.32, p=0.008) were identified as
the core determinants of acceptance explaining 68% of its variance. The SEM
model fit was excellent (RMSEA=0.06, SRMR=0.05). The overall acceptance was
M= 10.9 (SD= 3.73), with 35.41% of the participants showing a low, 47.92% a
moderate, and 10.41% a high acceptance.
Discussion: The present AFI was not effective. The low to moderate acceptance of
smart sensing poses a major barrier to its implementation. The performance
expectancy, social influence, and trust should be targeted as the core factors of
acceptance. Further studies are needed to identify effective ways to foster the
acceptance of smart sensing and to develop successful implementation strategies.
Clinical Trial Registration: identifier 10.17605/OSF.IO/GJTPH.
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1. Introduction

Mental disorders are rising in prevalence worldwide (1–3) and

constitute a leading cause of years lived with disability (4) and

economic costs (5, 6). Effective treatment options exist ranging

from face-to-face treatment (e.g., cognitive behavioral therapy)

(7, 8) and pharmacological treatment (9, 10) to digital mental

health interventions (11, 12). However, a fundamental

prerequisite to treatment is an accurate diagnosis and the

identification of clinically relevant symptoms (13–15). Facing

economic pressure and limited resources in many healthcare

systems (16–18), researchers develop novel digital diagnostic

procedures such as smart sensing aiming for a scalable, accurate,

and time-efficient diagnosis (19–22).

In the context of mental health diagnoses, smart sensing is used

to predict mental disorders and mental symptoms by features

generated based on digital markers collected via the smartphone

or other wearables (e.g., time stayed at home derived from the

GPS sensor) (23, 24). Recent studies show the high potential of

smart sensing (20, 21, 25–31). For instance, depression status

could be detected with over 90% accuracy solely based on

smartphone data (21). But also, in other mental disorders (e.g.,

psychosis spectrum or bipolar disorder), smart sensing achieves

promising results (30–35).

However, before applying novel diagnostic approaches such as

smart sensing into clinical routine care, it is important to assess the

acceptance of it and identify factors associated with using smart

sensing. The unified theory of acceptance and use of technology

(UTAUT) (36) is a widely applied framework for the use and

acceptance of technology (37, 38). UTAUT analyzed several

behavior change models to identify performance expectancy as

the perception of personal benefit derived from utilizing the

technology, effort expectancy as the anticipated ease of use, social

influence as the perception that others consider the technology

worthwhile, and facilitating conditions as the expected support

and availability of practical resources as the core determinants of

acceptance (36, 37). Given the successful validation of the

UTAUT in various contexts [e.g., Internet finance (39), electronic

health records (40), or digital health interventions (38)], it may

also provide a strong framework to investigate the acceptance of

smart sensing and its determinants. In addition, trust has been

identified as an important factor influencing the acceptance in

application areas of technology and AI-augmented systems [e.g.,

automatic driving (41)]. Based on the trust concept in automated

technology (42), we define trust in smart sensing as the attitude

that a smart sensing system can help achieve an individual’s goal

in an uncertain or vulnerable situation. For instance, a smart

sensing system for mental health could prompt a user that they

show a high risk for depression and recommend action (e.g.,

changing routines or visiting a therapist). The users could either

show trust in the system (e.g., following the action

recommendations) or distrust the system (e.g., rejecting the

recommendations). Similar to the findings in automatic driving

[e.g., (43)], trust might be affecting the acceptance of smart

sensing. However, the role of trust in the acceptance of smart

sensing has not been examined.
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Besides, understanding the determinants of acceptance of smart

sensing, opportunities to foster the acceptance of smart sensing

need to be explored for a successful implementation of smart

sensing. In the past, acceptance facilitating interventions (AFIs)

have been shown to be effective in influencing the acceptance of

novel approaches (e.g., Internet-based or blended psychotherapy)

(44–48). AFIs are usually grounded on an acceptance model such

as UTAUT (36, 37) or other models [e.g., health action process

approach (49)]. Based on the underlying theoretical background

(e.g., UTAUT), assumed determinants of acceptance are directly

targeted to increase the acceptance: for instance, in an AFI

constructed based on UTAUT, the performance expectancy could

be targeted by highlighting the personal benefit, effort expectancy

by showing the novel approach in action, social influence by

providing reports of other users, and facilitating conditions by

targeting concerns of practical resources or the availability of

support. In addition to their background, AFI can be characterized

by their presentation formats (e.g., written informative text, expert

talks, videos, or one-on-one conversations). However, while AFIs

were explored in various settings (44–48), it is unknown whether

they are effective in the context of smart sensing.

Given the success of the UTAUT model in the context of

technology and its application in AFI in other contexts [e.g.,

Internet- and mobile-based interventions (38)], the present study

examines the effectiveness of an UTAUT-based AFI on the

acceptance of smart sensing compared with an attention control

group.

1. We hypothesize that (a) the self-reported acceptance, (b)

interest in using a smart sensing app, and (c) installation of a

smart sensing app will be higher in the intervention group

compared with the control group.

In addition, the present study aims to apply the UTAUT

framework extended by a trust factor in the context of smart

sensing to investigate the core determinants of the acceptance of

smart sensing.

2. We hypothesize that the UTAUT factors are determinates of

acceptance of smart sensing.

Lastly, the present study investigates the general level acceptance of

smart sensing (i.e., unmanipulated acceptance in the control group)

and answers the following question:

3. What is the acceptance of smart sensing (i.e., self-reported

acceptance, interest in using a smart sensing app, installation

of a smart sensing app) in the context of mental health?

2. Methods and materials

2.1. Study design and sample

We report on a randomized controlled trial with a single post-

assessment to investigate the effect of the AFI between an

intervention group (IG) and a control group (CG). The

participants were allocated to IG or CG using a 1:1

randomization. The randomization was conducted automatically

by the online survey platform LimeSurvey. The allocation
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sequence was concealed for the participants and trial personnel

until the participants were enrolled and assigned to the groups.

All procedures were approved by the ethics committee of Ulm

University (462/20—FSt/Sta) and registered at OSF (10.17605/

OSF.IO/GJTPH). The registration took place after all the

assessment procedures were finalized and recruitment had

started. The data were not accessed or analyzed before registration.

The sample size planning assumed that the AFI affects the

acceptance, and the increase in acceptance carries over to an

increased usage of a smart sensing app (installation of a smart

sensing application: yes/no; see measures and outcomes). A usage

rate of 20% in the CG and 33% in the IG was expected. To

detect this effect using logistic regression with a power of 80%

and an α = 5%, an effective sample of N = 124 was needed.

However, due to a technical limitation, the smart sensing app

was only functional on Android devices. To avoid potential bias

in the investigation of acceptance and determinates of acceptance

by excluding users of other systems (e.g., iOS), the possession of

an Android smartphone was not defined as an inclusion

criterion. Instead, the recruitment was continued until a

maximum of N = 206 participants to adjust for the forced

dropout of Apple iPhone users (or other operating systems).
2.2. Inclusion criteria and data collection
procedures

All procedures and data collection were conducted online. Aiming

to recruit participants from the general population, the participants

were recruited and forwarded to the online survey via digital (e.g.,

email lists, social media posts) and analog (e.g., flyers, on-site

recruitment) ways from April 2021 to June 2021. The flyers and

on-site recruitment included public (e.g., libraries, fitness centers)

and university-related places at Ulm and Freiburg in Germany.

Inclusion criteria were as follows: (1) being of legal age (≥18
years), (2) having Internet access, (3) providing informed

consent, and (4) agreement to data processing procedures

according to the European General Data Protection Regulation.

The online survey was aborted if the criteria were not fulfilled.

The eligible participants first answered socio-demographic and

mental health questionnaires followed by their automatic

randomization to one of two videos (IG or CG; see description

below). The participants were not explicitly informed about their

group allocation. However, they were aware of the presence of

two different conditions due to the informed consent process.

After the video, the acceptance of smart sensing and the assumed

determinants were assessed (see outcomes below). In addition,

the participants could sign up for a study, in which they could

use a smart sensing app. The sign-up process did not include

any intervention content. The participants received only the

information that the university is conducting a smart sensing

study without any further explanation of smart sensing or, e.g.,

how they could benefit from using the smart sensing app. The

participants were prompted to indicate whether they are

interested in participating in that smart sensing study. The

participants reporting interest were forwarded to a survey page,
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where they could provide their email to be invited to the smart

sensing study. The information about expense allowance in the

smart sensing study was included on the forwarded survey page.

This process was the same in IG and CG.

After completion of this acceptance study, the participants who

were psychology students at Ulm University and the University of

Freiburg could receive credits for their course of studies, and all the

participants could participate in a lottery for one 20 Euro voucher.
2.3. Intervention and control condition

The experimental intervention was a video with a total duration

of 3:04 min. The structure and content of the video were based on

the UTAUT model and focused on the assumed determinants of

acceptance: performance expectancy (e.g., presenting application

areas such as early recognition of mental health symptoms),

effort expectancy (information on effort: e.g., data are mainly

collected passively without additional effort for the user),

facilitating conditions (information on needed resources: e.g., the

broad availability of smartphones), and social influence (e.g., the

inclusion of user reports and why others think smart sensing is

use-worthy). First, an expert (YT) explained the concept of smart

sensing and application areas in healthcare. The expert talk was

structured in the following parts: (1) “What is smart sensing?”

(2) “Which data is collected?” and (3) “Aims and application

areas.” Afterward, three examples were presented of how smart

sensing applications could be used in daily life and which benefit

it provides for the users. The examples focused on (a) sleep

monitoring, (b) physical activity, and (c) general wellbeing. A

summary of the key concepts and examples presented in the AFI

can be found in Supplementary Material 1.

In the control condition, the participants received a video with

an expert (EM) explaining the concept of mindfulness, its influence

on health, and suggestions on how mindfulness can be integrated

into daily life (e.g., meditation exercises). The total duration of

the control video was 3:00 min.
2.4. Measures and outcomes

2.4.1. Participant characteristics
We assessed the age, gender, nationality, and personality to

describe the participant characteristics. Personality assessment was

conducted using the 10-item version of the Big Five Inventory

[BFI-10; (50)]. The BFI-10 assesses openness, conscientiousness,

extraversion, agreeableness, and neuroticism with a 5-point Likert

scale from “fully disagree” to “fully agree.” The BFI-10 shows good

reliability and validity (50). In addition, the eight-item version of

the patient health questionnaire (PHQ-8) and the seven-item

version of the generalized anxiety disorder questionnaire (GAD-7)

were used for a reliable assessment of depression (PHQ-8) and

anxiety (GAD-7) symptoms in the last 2 weeks (51, 52). The items

(e.g., feeling nervous, anxious, or on the edge) were answered from

0—“not at all” to 3—“nearly every day.” According to their scoring

procedures, the sum scores for PHQ-8 and GAD-7 were calculated.
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2.4.2. Acceptance
Acceptance was operationalized in three ways. First, it was

assessed as a continuous dimension with the UTAUT

questionnaire (36–38) consisting of four items rating the

intention to use smart sensing on a 5-point Likert scale ranging

from “fully disagree” to “fully agree” (=self-reported acceptance).

The items are presented in Supplementary Material 2. Second, it

was determined by the number and percentage of the

participants registering for the study (=interest), in which they

could use a smart sensing app, and third the actual number and

percentage of installation of the smart sensing app were assessed

as a direct behavioral outcome.
2.4.3. Potential determinants of acceptance
The performance expectancy (three items), effort expectancy

(three items), social influence (two items), and facilitating

conditions (two items) were assessed as potential determinants of

acceptance with the UTAUT questionnaire (36–38). All items were

rated on a 5-point Likert scale from “fully disagree” to “fully

agree.” The items are presented in Supplementary Material 2.

In addition, trust (e.g., trust in smart sensing-based treatment

recommendations) was assessed with the short version of the German

automation trust scale (41, 53). The scale was originally developed in

the context of automated driving and adapted to the context of digital

health. It consists of seven items (e.g., “I trust the system”) rated on a

7-point Likert scale from “fully disagree” to “fully agree.”
2.5. Analysis

2.5.1. Intervention effects
Intervention effects were operationalized on three levels: (1) the

self-reported acceptance in the UTAUT questionnaire, (2) the

reported interest rate to use a smart sensing app, and (3) the

installation of a smart sensing app.

The self-reported acceptance of smart sensing was analyzed by

investigating the mean difference between IG and CG in the

observed data using an unpaired t-test. In addition, we

investigated the intervention effect on acceptance following the

intention to treat principle. Therefore, we applied the structural

equation modeling (SEM). First, a measurement model was

defined in SEM analysis consisting of the latent factors for all

items of acceptance, performance expectancy, effort expectancy,

facilitating conditions, social influence, and trust. In all SEM

analyses, the root mean square error of approximation (RMSEA)

as a non-centrality parameter and the standardized root mean

square residuals (SRMR) as a residual index were used to assess

the goodness of fit due to the tendency of the χ2-test to reject the

misspecified models too harshly (54–56). Following the established

guidelines, a cut-off value of RMSEA≤ .06 and SRMR≤ .08 were

chosen to determine a good model fit (57). The full information

maximum likelihood was used to handle missing data (58). Robust

(Huber–White) standard errors were obtained. In the second step

of SEM analysis, a regression from the acceptance factor to the

group variable (dummy coded: CG = 0, IG = 1) was introduced.
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The path loading of the dummy coded group variable on the

latent acceptance factor was the parameter of interest to determine

the effects of the intervention on latent level.

The intervention effects on the interest rates (dummy coded

outcome: 0: not interested, 1: interested) were investigated with a

logistic regression model. Odds ratio were reported as effect sizes.

Analog potential differences in the installation rate of a smart

sensing app were analyzed.

2.5.2. Latent structural equation modeling:
determinants of acceptance

To investigate the influence of potential determinants of

acceptance, SEM was applied. Building on the measurement

model consisting of the latent factors for all items of acceptance,

performance expectancy, effort expectancy, facilitating conditions,

social influence, and trust, we introduced paths between

acceptance and all other latent factors. These path estimates were

used to determine the presence of significant effects of the

postulated UTAUT factors on acceptance (see Section 2.5.1 for

SEM criteria and process).

2.5.3. Acceptance of smart sensing for health
Following the previous studies on the acceptance of digital

interventions (44–48), the acceptance (i.e., self-reported, interest

rates, and installation rates) in the CG that did not receive any

AFI is assumed to be the general acceptance of smart sensing.

Acceptance is quantified by the mean and standard deviation of

the sum score of the UTAUT questionnaire (numerical mean of

the scale: 12.5, range: 4–20). In addition, we categorized the sum

score following the previous studies (44–48): low acceptance

(sum score: 4–9), moderate acceptance (sum score: 10–15), and

high acceptance (sum score: 16–20). The percentages for each

category were summarized.
2.6. Software

The statistical software R was used for all analyses (59). The R

package “lavaan” was used as the core package for all the structural

equation models (60). See Supplementary Material 3 for an

overview of all packages and versions used in the present analysis.
3. Results

Of N = 433 interested individuals, a total of N = 202 were

eligible and included in the study (CG: n = 96; IG: n = 106). The

study flow is summarized in Figure 1. The included participants

covered a broad age range from 18 years to 79 years (M = 30.77,

SD = 15.82). Gender was unequally represented in the study

(female: n = 157, 77.72%). All participants had a European

background with the majority being German (n = 186, 92.08%).

Education level was distributed as follows: advanced education

level n = 65 [32.18%; e.g., bachelor degree and higher or other

International Standard Classification of Education (ISCED-11)

level >4 qualifications], intermediate education level n = 123
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FIGURE 1

Study flow.
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(60.89%; e.g., A levels, completed an apprenticeship or other

ISCED-11 level <5 qualifications), and basic education level

n = 13 (6.44%; i.e., no qualification or other ISCED-11 level

<3 qualifications; one participant did not report on qualification

level). Mental health symptoms were below clinical relevance on

average (PHQ-8: M = 6.17, SD = 4.05; GAD-7: M = 5.25,

SD = 4.22). Baseline differences did not suggest a problem with

the randomization process. For group-specific details, see Table 1.
TABLE 1 Descriptive sample characteristics.

All IG CG

N = 202 n = 106 n = 96
Age M = 30.77 M = 31.11 M = 30.39

SD = 15.82 SD = 15.59 SD = 16.14

Gender (female) n = 157 (77.72%) n = 82 (77.36%) n = 75 (78%)

Personality facets
Openness M = 3.75 M = 3.71 M = 3.79

SD = 0.99 SD = 1.03 SD = 0.95

Conscientiousness M = 3.74 M = 3.76 M = 3.72

SD = 0.82 SD = 0.82 SD = 0.82

Extraversion M = 3.47 M = 3.53 M = 3.42

SD = 0.94 SD = 0.97 SD = 0.91

Agreeableness M = 3.38 M = 3.44 M = 3.32

SD = 0.79 SD = 0.72 SD = 0.85

Neuroticism M = 3.15 M = 3.12 M = 3.19

SD = 0.99 SD = 0.99 SD = 1.00

Nationality
German n = 186 (92.08%) n = 97 (91.51%) n = 89 (92.71%)

Other European n = 16 (7.92%) n = 9 (8.49%) n = 7 (7.29%)

Qualification levela

Basic n = 13 (6.44%) n = 4 (3.77%) n = 9 (9.38%)

Intermediate n = 123 (60.89%) n = 67 (63.21%) n = 56 (58.33%)

Advanced n = 65 (32.18%) n = 34 (32.08%) n = 31 (32.29%)

Depression (PHQ-8) M = 6.17 M = 5.85 M = 6.51

SD = 4.05 SD = 3.78 SD = 4.32

Anxiety (GAD-7) M = 5.25 M = 5.14 M = 5.37

SD = 4.22 SD = 4.21 SD = 4.25

aEducation level is summarized according to the International Standard

Classification of Education: ISCED-11.
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3.1. Intervention effects

With an average self-reported acceptance of M = 11.42

(SD = 4.07, Min = 4, Max = 19) in the IG, there was descriptively

higher acceptance compared with the control group, but with no

significant difference (d = 0.14, 95% CI: −0.15–0.43; t = 0.92,

df = 187, p = 0.357). This held true on the latent level using

the SEM and accounting for missingness (γ = 0.11, 95%

CI: −0.21–0.43, p = 0.503; γstandardized = 0.05). The model fit for

the underlying questionnaire was excellent (RMSEA = 0.06,

SRMR = 0.05). The full parameter list of the measurement model

is reported in Supplementary Material 4.

With interest rates of nyes = 39 (36.79%) and nno = 57 (53.77%)

in the IG, the odds for being interested to use a smart sensing app

did not differ significantly compared with the CG (OR = 0.75, 95%

CI: 0.42–1.32, p = .314). Only one participant (0.94%) in the IG

installed the smart sensing app, amounting to a non-significant

intervention effect compared with the CG (OR = 0.29, 95% CI:

0.01–2.35, p = .294). For a summary of all intervention effects

and group-specific results see Table 2.
3.2. Determinants of acceptance

The following analysis of the latent effects on acceptance across

groups identified the performance expectancy (γ = 0.45, p < 0.001),

trust (γ = 0.24, p = 0.002), and social influence (γ = 0.32, p = 0.008)

as determinants of acceptance (overall model fit: RMSEA = 0.06,

SRMR = 0.05). All other factors were non-significant. Together, the

three determinants explained 68% of the variance of the latent

acceptance factor. The final path model is displayed in Figure 2.

A list of all parameters is included in Supplementary Material 5.
3.3. General acceptance of smart sensing

The unmanipulated self-reported acceptance of smart sensing

in the control group was below average M = 10.90 (SD = 3.73,

Min = 4, Max = 20). A total of n = 34 (35.41%) showed low, n =

46 (47.92%) moderate, and n = 10 (10.41%) high acceptance (see

Figure 3). For a descriptive summary of the acceptance and

subscales, please see Supplementary Material 6.

A total of n = 42 (43.75%) participants stated interest to try

smart sensing in another study (no interest: n = 45, 46.86%; not

responded: n = 9, 9.38%). Of all 42 participants with interest,

only n = 3 (7.14%; 3.13% of all participants in the CG) installed

the smart sensing app.
TABLE 2 Summary of intervention effects.

Outcome CG IG Effect
size

CI p

Acceptance M = 10.90 M = 11.42 d = 0.14a −0.15 to 0.43 0.357

SD = 3.73 SD = 4.07 γ = 0.11b −0.21 to 0.43 0.504

Interest n = 42 (43.75%) n = 39 (36.79%) OR = 0.75 0.42 to 1.32 0.314

Installation n = 3 (3.13% n = 1 (0.94%) OR = 0.29 0.01 to 2.35 0.294

aMean difference between IG and CG based on observed data.
bUnstandardized group difference between IG and CG based on SEM.
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FIGURE 2

Structural equation model of adapted model for the acceptance toward smart sensing. Latent variables are represented in ellipses: A, acceptance; PE,
performance expectancy; EE, effort expectancy; FC, facilitating conditions; SI, social influence; T, trust. Observed items are indicated as rectangles.
Path loadings are represented as single-headed arrows. Residual variances of endogenous latent variables are presented in circles. All exogenous
latent variables were allowed to correlate. For improved readability, all latent correlations and residual variances of manifest items were omitted.
Please see Supplementary Material 3 for a full list of all parameters.

FIGURE 3

Acceptance of smart sensing. Acceptance was measured by the UTAUT
questionnaire. The sum score of all four acceptance items was
categorized as low (sum score: 4–9), moderate (sum score: 10–15),
and high (sum score: 16–20).
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4. Discussion

Acceptance is a fundamental precondition for the dissemination,

uptake, and clinical impact. The present UTAUT-based acceptance

facilitating intervention was unable to significantly affect the

acceptance of smart sensing. We identified three core

determinants for the acceptance of smart sensing measured with

the UTAUT questionnaire: combined the performance expectancy,

the social influence, and the trust factor explained 68% of the

variance in the self-reported acceptance. Most participants

reported a below-average acceptance toward smart sensing in the

UTAUT questionnaire and even one-third showed low acceptance,

highlighting the sensitivity of smart sensing. Interestingly, despite

the low acceptance in the questionnaire, 44% stated general

interest in using smart sensing. Though, the actual installation rate

of a smart sensing app as a behavioral outcome was below 5%.
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The lack of acceptance of smart sensing by potential end users

clearly highlights a major barrier to the implementation of smart

sensing applications. Developing successful AFI and

implementation strategies are of utmost importance to fully

exploit the potential of smart sensing. As shown in the structural

equation modeling, the performance expectancy had the

strongest influence on self-reported acceptance with an effect of

γ = 0.45. Accordingly, the personal benefit for individuals should

especially be highlighted, when the intention of the individual to

use a smart sensing application is targeted.

However, besides the context of AFI, future studies should

explore which formats (e.g., with extended case examples in daily

life, a showcase of specific example apps and functions, or an in-

person AFI with direct participant interaction) are best suited to

achieve positive effects. For instance, the present AFI format

consisting of a combination of an expert talk with short examples

was unable to achieve this goal despite targeting the determinants

postulated in UTAUT. Looking to the field of instructional design

and online learning research, in particular, whiteboard videos may

pose an opportunity to development scalable and effective AFI

(61). Following the cognitive theory of multimedia learning,

information (e.g., on the personal benefit) could be divided in

verbal and visual components to reduce cognitive load during the

intervention (62). Furthermore, a dynamic visualization of content

and narrative style could potentially increase the effectiveness of

whiteboard-based AFI (61, 63, 64). However, the effectiveness of

such AFI in the context of smart sensing is currently unclear and

needs to be explored.

Extending the findings of below-average acceptance in the

questionnaire data, the transfer from behavioral intention to use

smart sensing to the usage of smart sensing was identified as

another issue in the present study: even in the subset of the

participants stating interest in using a smart sensing app, only 7%

installed the smart sensing app (3% if participants stating no

interest are also included). Due to the low usage rate of the smart

sensing app, the present study allowed no robust analysis of the

factors influencing the relationship between intention to use and

actual usage. Future studies on the use of smart sensing and how

the transfer from intention to action can be maximized are

needed. Based on another study in the context of mobile health,

the factors such as existing habits and personal empowerment

might be promising variables to investigate (65). In addition, it

must be highlighted that installing a smart sensing app marks

only the starting point of actual usage. Future studies should

extend on this by observing not only the start of usage but also

monitoring the duration, frequency of the use, and retention time

(i.e., days past until an app is no longer opened) of a smart

sensing app over time (66). The long-term use of digital

applications has been identified as a major issue in the previous

studies (11, 48, 66–69). Particularly in smart sensing, which is

usually implemented as a longitudinal process requiring

assessment over a longer period, early dropout could have a major

impact on its potential benefit in healthcare. Hence, approaches

fostering the maintenance of adherence and the prevention of

disengagement over time need to be explored. For instance,

therapeutic persuasiveness, user engagement, and usability may be
Frontiers in Digital Health 07
important factors based on the findings in eHealth interventions

(68, 70). Overall, the promising findings of smart sensing (30–35)

will only translate into healthcare improvements if the

requirement of acceptance is met and the underlying processes for

the initial and long-term usage are understood.

While speaking of implications for future studies as well as

when interpreting the present results, some limitations of the

present study should be considered: the present sample showed

an imbalance in education level, national backgrounds (i.e., >90%

German), and gender (78% female). In addition, although a

broad age range (18–79 years) was included, children and

adolescents were excluded from this study. Given the higher

usage of smartphones and affinity to digital platforms and

technologies in younger individuals (71), the acceptance of smart

sensing might be different in that population. Furthermore, the

recruitment was not conducted in a clinical setting. As a result,

depression (PHQ-8) and anxiety (GAD-7) symptoms were in a

sub-clinical range. Since the perceived personal benefit was

identified as the most important predictor, the general

acceptance might be higher in a clinical population in which the

benefits of smart sensing and tracking of health symptoms or

diagnosis are more apparent (e.g., symptom tracking, early

warning of relapse risk). Hence, generalizations of the below-

average acceptance to the mental healthcare sector should be

made carefully, and additional studies on the acceptance in

patients and other stakeholders (e.g., psychotherapists) are

required.

Furthermore, the present study assessed the acceptance of

smart sensing with no further differentiation between data types

(e.g., smartphone usage time or GPS data) or the recipients of

data (e.g., physicians). Previous research has shown that the

data type and recipients can be influential regarding acceptance

(72). Hence, the acceptance of smart sensing in different

settings such as tracking physical mobility after surgery or

tracking mental health after inpatient psychotherapy might

differ. Moreover, the degree of autonomous agency of a smart

sensing system can be varied from (1) a full user-controlled

self-monitoring system over (2) a system integrated into expert

systems to support clinicians in their decisions to (3) a fully

automated diagnosis and treatment system (72, 73). The

influence of the varying degree of autonomous agency on the

acceptance was not in the scope of the present study and

should be examined in future studies.
5. Conclusions

The present AFI was unable to significantly impact the

acceptance of smart sensing. However, we identified the

performance expectancy, social influence, and trust toward smart

sensing applications as the key predictors of acceptance. Future

studies should focus on these factors and investigate different

formats (e.g., whiteboard-based AFI) to improve the acceptance

of smart sensing. Moreover, exploring the acceptance of smart

sensing in patients and other stakeholders and agents in the

mental health sector would be a valuable addition to this study.
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Based on the low to moderate acceptance of smart sensing found in

the present study, the acceptance seems to pose a major barrier for

the implementation of smart sensing and its impact. The

development of successful implementation strategies including

the facilitating of acceptance are highly needed to fully exploit

the potential of smart sensing.
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