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The extraction of patient signs and symptoms recorded as free text in electronic
health records is critical for precision medicine. Once extracted, signs and
symptoms can be made computable by mapping to signs and symptoms in
an ontology. Extracting signs and symptoms from free text is tedious and
time-consuming. Prior studies have suggested that inter-rater agreement for
clinical concept extraction is low. We have examined inter-rater agreement
for annotating neurologic concepts in clinical notes from electronic health
records. After training on the annotation process, the annotation tool, and
the supporting neuro-ontology, three raters annotated 15 clinical notes in
three rounds. Inter-rater agreement between the three annotators was high
for text span and category label. A machine annotator based on a
convolutional neural network had a high level of agreement with the human
annotators but one that was lower than human inter-rater agreement. We
conclude that high levels of agreement between human annotators are
possible with appropriate training and annotation tools. Furthermore, more
training examples combined with improvements in neural networks and
natural language processing should make machine annotators capable of
high throughput automated clinical concept extraction with high levels of
agreement with human annotators.
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Introduction

Extracting medical concepts from electronic health records is key to precision medicine

(1). The signs and symptoms of patients (part of the patient phenotype) are generally

recorded as free text in progress notes, admission notes, and discharge summaries (2).

Clinical phenotyping of patients involves the mapping of free text to defined terms that

are concepts in an ontology (3,4). This is a two-step process that involves identifying

appropriate text spans in narratives and then converting the text spans to target

concepts in an ontology (5,6). The process of mapping free text to defined classes in an
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ontology, illustrated in (1) and (2), has been termed

normalization (7,8).

patient movements were ataxic ) ataxia

) UMLS CUI :C0004134 (1)

freetext ) clinical concept ) machine readable code (2)

In this example 1, an annotator highlights the term ataxic, then it

is mapped to the concept ataxia, and the UMLS code CUI

C0004134 is retrieved (9). This is a slow and error-prone

process for human annotators. Agreement between human

raters for annotation of clinical text is often low. A study on

the agreement for SNOMED CT codes between coders from

three professional coding companies yielded about 50 percent

agreement for exact matches with slightly higher agreement

when adjusted for near matches (10). Another study of

SNOMED CT coding of ophthalmology notes yielded low levels

of inter-rater agreement ranging from 33 to 64% (11). Identified

sources of disagreement between coders included human errors

(lack of applicable medical knowledge, lack of recognition of

abbreviations for concepts, and general carelessness), annotation

guideline flaws (under specified and unclear guidelines),

ontology flaws (polysemy of coded concepts), interface term

issues (inconsistent categorization of clinical jargon), and

language issues (interpretation difficulties due to use of ellipsis,

anaphora, paraphrasing, and other linguistic concepts) (12).

The goal of high throughput phenotyping is to use natural

language processing (NLP) to automate the annotation process

(13). Approaches to high throughput clinical concept extraction

have included rule-based systems, traditional machine learning

algorithms, deep learning algorithms, and hybrid methods that

combine algorithms (6). Tools for concept extraction based on

rules, linguistic analysis, and statistical models, such as cTAKES and

MetaMap, generally have accuracy and recall between 0.38 and 0.66

(5,14,15). Neural networks are being used for concept recognition

with increasing success. Arbabi et al. developed a convolutional

neural network that matches input phrases to concepts in the

Human Phenotype Ontology with high accuracy (16). Other deep

learning approaches, including neural networks based on

bidirectional encoder representations from transformers (BERT),

show promise for automated clinical concept extraction (5,6,17,18).

In this paper, we examine inter-rater agreement for text-span

identification of neurological concepts in notes from electronic

health records. In addition to the agreement between human

annotators, we examine the agreement between human

annotators and a machine annotator based on a convolutional

neural network.
Methods

Annotation tool

Prodigy (Explosion AI, Berlin, Germany) was used to annotate

neurologic concepts in the EHR physician notes. Prodigy runs
Frontiers in Digital Health 02
under python in the terminal mode of macOS, Windows, or

Linux. It creates a web interface locally (Figures 1A,B). As input,

Prodigy requires free text to be converted to JSON format.

{ 0 0text00 : 0 0The patient had weakness andsensoryloss00} (3)

Each line of text from a JSON file 3, appears as a separate screen for

annotation by Prodigy (Figures 1A,B). Annotations are stored in

an SQLite database and are exportable with annotations and text

spans as a JSON file. Prodigy is integrated with the spaCy natural

language processing toolkit (Explosion AI) and can train neural

networks for named entity recognition and text classification.

The Kappa statistic was used to assess agreement between the

three annotators and the neural network. The Kappa statistic

corrects observed rater agreement for chance rater agreement. It

ranges from 0 to 1, where 1 is complete agreement, 0 is a chance

agreement. Values of Kappa of 0.6 to 0.79 are considered

substantial agreement, values between 0.8 and 0.90 are

considered strong agreement, and values over 0.90 are considered

near perfect agreement (19,20). For each line of text that had one

or more annotations (3), the agreement was rated 1 for the

annotations if both annotators agreed and rated 0 if the

annotators disagreed. A line of text with no annotations

(null_annotations) by either annotator was scored 1 for

agreement. The total number of annotations considered by the

Kappa statistic for two raters A and B was

(A< Bþ null annotations).
Rater training and instructions

Three annotators participated in the research. Annotator 1

(A1) was a senior neurologist, Annotator 2 (A2) was a pre-

medical student majoring in neuroscience, and Annotator 3 (A3)

was a third-year medical student. Raters first reviewed neurologic

signs and symptoms in the neuro-ontology of neurological

concepts (21) and then were instructed to find all neurological

concepts in the neurology notes. Signs and symptoms (ataxia,

fatigue, weakness, memory loss, etc.) were annotated but not

disease entities (Alzheimer’s disease, multiple sclerosis, etc.)

Raters annotated the neurologic concepts and ignored laterality

and other modifiers (e.g., arm pain for right arm pain, back pain

for severe back pain, etc.) In addition, annotators tagged each

text span with an category label (see Figures 1A,B). Category

labels included unigrams (one-word concepts such as ataxia),

bigrams (two-word concepts such as double vision), trigrams

(three-word concepts such as low back pain), tetragrams (four-

word concepts such as relative afferent pupil defect), extended

(text span annotations longer than four words), compound

(multiple concepts in one text span such as brisk ankle and knee

reflex), and tabular (concepts represented in tabular or columnar

format, usually showed right and left body sides). Our

motivation for tagging signs and symptoms by the length and

type of the text span was a hypothesis that neural networks

trained to recognize signs and symptoms in medical text would
frontiersin.org
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FIGURE 1

(A) Annotator screen for a patient with multiple sclerosis. The patient complains of imbalance, leg weakness, and pain, and these concepts have been
annotated. Imbalance and pain are labeled as unigrams; leg weakness is labeled a bigram. Annotators were trained to ignore laterality (e.g., right leg
weakness.) Each Prodigy screen reflects one line of text from the JSON input file. This screen has three potential items to contribute to the Kappa
statistic: imbalance, leg weakness, and pain. (B) Annotator screen for neurological concepts for a patient with multiple sclerosis. The patient denies
problems with vision, sensation, bladder, bowel, gait, or falls. The annotators are trained not to annotate negated concepts. The NN had no specific
negation rule but learned not to tag negated concepts through training examples. Since there are no signs and symptoms in this screen, if both
annotators show no annotations, a score of 1 is assigned to the Kappa statistic for agreement on this screen. If one annotator shows no annotations
and another shows annotations on this screen, annotator disagreement is scored.
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exhibit lower accuracies with longer text spans. This hypothesis was

confirmed by a recent study from our group (18).
The machine annotator

The machine annotator (NN) was a neural network that was

trained to recognize text spans containing neurology concepts in

the electronic health record physician notes. The NN was the

default spaCy named entity recognition model based on a four-

layer convolutional neural network (CNN) that looked at four

words on either side of each token using tok2vec with an initial

learning rate 1� 10�3. The default parameters provided by

Prodigy were used for training. NN was trained on 11,000

manually annotated sentences derived from neurology textbooks,

online neurological disease descriptions, and electronic health

record notes. Further details on training the NN are available in (18).
Annotations

Five patient EHR notes were annotated for each of the three

rounds. The annotation of EHR clinical notes for research

purposes was approved by the Institutional Review Board of the

University of Illinois (UIC Neuroimmunology Biobank 2017-

0520Z). Informed patient consent for use of clinical notes was
Frontiers in Digital Health 03
obtained from all subjects through the UIC Biobank Project.

Three human annotators (A1, A2, and A3) and the machine

annotator (NN) annotated each note. After each round, the

annotators met and reviewed any annotation disagreements. The

annotations of each annotator were stored in an SQLite database

and exported as a JSON file for scoring for inter-rater agreement

in Python. Text spans were mapped to concepts in the neuro-

ontology (21) utilizing a lookup table with 3,500 target phrases

and the similarity method from spaCy (22) (pp. 152–54).

Univariate analysis of variance and Cohen’s Kappa statistic were

calculated with SPSS (IBM, version 28).
Results

Annotators identified neurological signs and symptoms in

physician notes from electronic health records. Each annotator

identified the text span associated with each sign and symptom

and assigned a category label to each annotation (e.g., unigram,

bigram, trigram, etc.) Inter-rater agreement (adjusted and

unadjusted) was calculated between the three human annotators

and the machine annotator (NN).

Although five EHR notes were annotated for each round, the

notes varied in length. Each line in the EHR note was converted

to a single line in the JSON file and generated one annotation

screen in the Prodigy annotator. Round 1 had 625 annotation
frontiersin.org
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screens with 139 signs and symptoms to annotate, Round 2 had 674

annotation screens with 205 signs and symptoms to annotate, and

Round 3 had 523 annotation screens with 138 signs and

symptoms to annotate. Since the number of signs and symptoms

was less than the number of annotation screens, many annotation

screens had no signs or symptoms to annotate (null screens).

When both annotators agreed that the annotation screen had no

signs or symptoms, this was scored as annotator agreement for

both the adjusted and unadjusted metrics (Kappa and concordance).

Concordance (unadjusted agreement) on the text span task was

88:9%+ 3:2 (mean+ SD) between the human annotators and

was 83:9%+ 4:6 (mean+ SD) between the human annotators and

the machine annotator (human-human mean was higher, one-way

ANOVA, df ¼ 1, p ¼ 0:016). Concordance (unadjusted agreement)

on the category label task was 87:7%+ 4:4 (mean+ SD) between

human annotators and was 84:6%+ 5:5 (mean+ SD) between the

human annotators and the machine annotator (means did not differ,

one-way ANOVA, df ¼ 1, p ¼ 0:212).
FIGURE 2

(A) Boxplots for the Kappa statistic for inter-rater agreement for text spans fo
mean inter-rater agreement differed by rating pair (one-way ANOVA, df ¼ 5
that pair A1-A2 outperformed pair NN-A2. (B) Boxplots for the Kappa stat
concepts. Univariate analysis of variance showed that mean Kappa for cat
p ¼ 0:165, df ¼ 5).
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Cohen’s Kappa statistic (k) was high for both the text span task

(0.715 to 0.893) and the category label task (0.72 to 0.89)

(Figures 2A,B). On the text span identification task (Figure 3A)

k was higher for the human-human pairs (0:85+ 0:05

mean+ SD) than the human-machine pairs (0:76+ 0:06). On

the category label task, k (Figure 3B) was similar between the

human-human pairs (0:83+ 0:05 mean+ SD) and the human-

machine pairs (0:82+ 0:06). k for the text span task and the

category label task did not differ by round (for p values and

means see Figures 4A,B).
Discussion

Signs and symptoms are an important component of a patient’s

phenotype. Extracting these phenotypic features from electronic

health records and converting them to machine-readable codes

makes them computable (23). These computable phenotypes are
r the neurological concepts. Univariate analysis of variance showed that
, p ¼ 0:021). Post hoc comparisons by the Bonferroni method showed
istic for inter-rater agreement for category labels for the neurological
egory label agreement did not differ by rating pair (one-way ANOVA,
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FIGURE 3

(A) Kappa statistic for agreement between human-human and human-machine raters for text span. Groups differed, one-way ANOVA, df ¼ 1, p ¼ 0:004.
(B) Kappa statistic for agreement between human-human and human-machine raters for category label. Groups did not differ, one way ANOVA, df ¼ 1,
p ¼ 0:589.
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critical to precision medicine initiatives (24–26). Agrawal et al. (5)

have conceptualized clinical entity extraction as a two-step process

of text span recognition followed by clinical entity normalization.

Text span recognition is the identification of signs and symptoms

in the free text; entity normalization is the mapping of this text

to canonical signs and symptoms in an ontology such as UMLS

(9). We have focused on an inter-rater agreement for text span

annotation. For entity normalization, we depended on a look-up

table that mapped text spans to concepts in neuro-ontology. We

found high inter-rater concordance (unadjusted agreement)

among the human annotators (approximately 89%) with a lower

concordance (unadjusted) agreement between the human

annotators and the machine annotator (approximately 84%).

The concordance (unadjusted agreement) for category labels

was lower than the inter-rater agreement for text spans which
Frontiers in Digital Health 05
may have been due to factors such as the use of hyphens in the

free text of the EHR notes and annotator uncertainty about

which types of text spans required the tabular label. The Kappa

statistic (adjusted agreement) for human-human raters was

between 0.77 and 0.91, and the Kappa statistic for the human-

machine agreement was between 0.69 and 0.87 (Figure 3A). We

consider the inter-rater adjusted agreement between the human

raters (0.77 to 0.91) good, especially when contrasted with the

inter-rater adjusted agreement between trained neurologists

eliciting patient signs and symptoms (27,28). For trained

neurologists eliciting signs and symptoms such as weakness,

sensory loss, ataxia, aphasia, dysarthria, and drowsiness, the k

statistic ranges from 0.40 to 0.70 (27,28).

The higher levels of agreement in this study may reflect that

eliciting a sign or symptom from a patient is more difficult than
frontiersin.org
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FIGURE 4

(A) Kappa statistic for inter-rater agreement for text span by round. Round 1: 0:78+ 0:03 (mean+ SE), Round 2: 0:84+ 0:03, Round 3: 0:81+ 0:03,
groups do not differ, one-way ANOVA, df ¼ 2, p ¼ 0:310. (B) Kappa statistic for inter-rater agreement for category label by round. Round 1:
0:80+ 0:21 (mean+ SE). Round 2: 0:85+ 0:21, Round 3: 0:83+ 0:21, groups do not differ, one-way ANOVA, df ¼ 2, p ¼ 0:306.
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annotating a sign or symptom in an EHR. Nonetheless, the

adjusted agreement (k) was higher in this study than in prior

annotation studies (10,11), possibly reflecting the training of the

annotators, the use of a neuro-ontology, the decision not to code

severity or laterality of the symptoms, and the use of a

sophisticated annotation tool.

We did not find a training effect for the human annotators

across rounds (Figures 4A,B). Although the annotators met after

each round and discussed discrepancies in their annotations,

inter-rater adjusted and unadjusted agreement did not improve

significantly between rounds. This suggests that there may be a

ceiling for inter-rater agreement for text span annotation with a

Kappa of 0.80 to 0.90 and that higher levels of agreement may
Frontiers in Digital Health 06
not be possible due to the complexity of the task and random

factors that are not addressable with additional training or

experience. This ceiling effect for the human inter-rater

agreement has implications for the potential for higher rates of

inter-rater agreement between humans and machines

(Figure 3B). Mean inter-rater adjusted agreement for text span

was higher for the human-human pairs (k ¼ 0:85) than the

human-machine pairs (k ¼ 0:76). Additional training examples

would likely improve the performance of the machine annotator

on the text span and category label tasks. Furthermore, other

neural networks are likely to outperform the convolutional

neural network (CNN), which is the baseline for Prodigy. We

have found that a neural network based on bidirectional encoder
frontiersin.org
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representations from transformers (BERT) can improve

performance on the text span task by 5 to 10% (18). Others have

found that deep learning approaches based on BERT outperform

approaches based on CNN for concept identification and

extraction tasks (17). A ceiling effect for inter-rater agreement for

annotating signs and symptoms, whether human-human or

human-machine, near a k of 0.90 is likely.

Given the heavy documentation burden on physicians and

physician burn-out attributed to electronic health records,

physician documentation of signs and symptoms will likely

continue as free text. Structured documentation of signs and

symptoms as an alternative to free text is too burdensome in the

current environment (29–34). A medium-sized medical center

with a daily inpatient census of 300 and a daily outpatient

census of 2,000 generates at least 5,000 clinical notes daily or

over 1.5 million notes annually (unpublished estimates based on

two academic medical centers). The sheer volume of clinical

notes in electronic health records makes the manual annotation

of signs and symptoms impractical. Extracting signs and

symptoms for precision medicine initiatives will depend on

advances in natural language processing and natural language

understanding.

Although high throughput phenotyping of electronic health

records by manual methods is impractical (13), the manual

annotation of free text in electronic health records can be used to

train neural networks for phenotyping. Neural networks can also

speed up the manual annotation process. The annotator Prodigy

(35,36) has an annotation mode called ner.correct, which uses a

trained neural network to accelerate the manual annotation of

signs and symptoms.

With suitable training and guidelines, high levels of inter-rater

agreement between human annotators for signs and symptoms are

feasible. Restricting the annotation to a limited domain (e.g.,

neurological signs and symptoms) and restricted ontology (e.g.,

neuro-ontology) simplifies manual annotation. Although the

inter-rater agreement between human and machine annotators

was lower than between human annotators, advances in natural

language processing should bring inter-rater agreement between

machines and humans closer and make high throughput

phenotyping of electronic health records feasible.

This work has limitations. The sample of clinical notes was

small (five patient notes per annotation round). A larger sample

of notes would have been desirable. The annotation process was

restricted to neurological signs and symptoms in neurology

notes. The target ontology was a limited neuro-ontology with

1600 concepts (21). We evaluated only one machine annotator

based on a convolutional neural network. Other neural networks

are likely to perform better. Our results on an inter-rater

agreement might not generalize to other medical domains and

ontologies. Although we had three raters for this study, we did

not designate any of them as the “gold standard,” and we elected

to calculate inter-rater agreement for each pair of raters

separately. In our opinion, unadjusted agreement at the 90% level

between human raters should be considered high. Likewise,

machine annotators that can reach 90% unadjusted agreement

with human annotators should be considered accurate. Because
Frontiers in Digital Health 07
we lacked a gold standard, we chose to measure the performance

of the machine annotator as concordance (unadjusted agreement)

and Kappa statistic (adjusted agreement) rather than as accuracy,

precision, and recall. Although we used ANOVA to assess the

significance of differences in the means for adjusted and

unadjusted agreement, we cannot be certain that all assumptions

underlying ANOVA were met in our samples, including

normality, homogeneity of variance, and independence.
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