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Objective: Chest radiographs are frequently used to diagnose community-acquired
pneumonia (CAP) for children in the acute care setting. Natural language processing
(NLP)-based tools may be incorporated into the electronic health record and
combined with other clinical data to develop meaningful clinical decision support tools
for this common pediatric infection. We sought to develop and internally validate NLP
algorithms to identify pediatric chest radiograph (CXR) reports with pneumonia.
Materials and methods: We performed a retrospective study of encounters for patients
from six pediatric hospitals over a 3-year period. We utilized six NLP techniques: word
embedding, support vector machines, extreme gradient boosting (XGBoost), light
gradient boosting machines Naïve Bayes and logistic regression. We evaluated their
performance of each model from a validation sample of 1,350 chest radiographs
developed as a stratified random sample of 35% admitted and 65% discharged patients
when both using expert consensus and diagnosis codes.
Results: Of 172,662 encounters in the derivation sample, 15.6% had a discharge diagnosis
of pneumonia in a primary or secondary position. Themedian patient age in the derivation
samplewas 3.7 years (interquartile range, 1.4–9.5 years). In the validation sample, 185/1350
(13.8%) and 205/1350 (15.3%) were classified as pneumonia by content experts and by
diagnosis codes, respectively. Compared to content experts, Naïve Bayes had the
highest sensitivity (93.5%) and XGBoost had the highest F1 score (72.4). Compared to a
diagnosis code of pneumonia, the highest sensitivity was again with the Naïve Bayes
(80.1%), and the highest F1 score was with the support vector machine (53.0%).
Conclusion:NLPalgorithms can accurately identify pediatric pneumonia from radiography
reports. Followingexternal validation and implementation into theelectronic health record,
these algorithms can facilitate clinical decision support and inform large database research.
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1. Introduction

Pneumonia is a significant cause of morbidity among children, resulting in a large proportion

of unscheduled healthcare visits worldwide (1). In the United States, pneumonia accounts for 1%–

4% of all emergency department (ED) visits in children and leads to greater than 100,000

hospitalizations annually (2–5). Among patients in children’s hospitals with possible
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2023.1104604&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fdgth.2023.1104604
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1104604/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1104604/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1104604/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1104604/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2023.1104604
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Rixe et al. 10.3389/fdgth.2023.1104604
pneumonia, greater than 80% receive a chest radiograph (CXR) which

are frequently used, in addition to clinical presentation, to determine

the need for antimicrobial therapy (6, 7). Previous studies have

demonstrated wide variation in management strategies, including

variable use of guideline-concordant antibiotics and inconsistent

severity-adjusted hospitalization rates among this patient population

(8–11). Electronic clinical decision support (CDS) tools have emerged

as a way to align patient care with guideline-concordant therapy and

management strategies (12–14). The utility of CDS tools in the

pneumonia literature has been limited by the ability to incorporate

free-text data, including CXR reports, into the electronic

algorithm. Natural language processing (NLP), a class of machine

learning which uses rule-based algorithms to convert unstructured text

into encoded data, may overcome this limitation by interpreting and

classifying large volumes of unstructured electronic text. Use of NLP

in a comprehensive CDS tool that incorporates the chief complaint,

historical data, vital signs and laboratory values, may allow for the

rapid and accurate identification of disease, assist with guideline-

concordant recommendations, and minimize unnecessary alert fatigue.

As the electronic health record (EHR) evolves, clinicians and

researchers are increasingly able to query and utilize large volumes

of electronic data to generate electronic CDS tools and to inform

large dataset research. A CDS tool for pneumonia, for example,

would take clinical data in combination with radiology data (such as

CXRs and their interpretation) to calculate a predicted probability

for this outcome. When this probability occurs within certain

stakeholder-defined risk parameters, CDS tools may inform the

clinician with respect to the best course of action (Supplementary

Figure) (15). NLP offers a mechanism by which to rapidly interpret

CXR reports and incorporate the encoded result into a CDS tool.

The reported use of NLP in the pediatric pneumonia literature has

been sparse, with prior studies limited to a small number of

radiology reports and variable diagnostic performance (16, 17).
FIGURE 1

Highlighted examples of positive and negative chest radiograph reports, respect
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In this study, our objective was to develop and internally validate

a novel NLP tool capable of rapidly identifying pediatric pneumonia

from CXR reports with comparable accuracy to content experts and

diagnosis codes.
2. Methods

We used a multicenter dataset of pediatric CXR reports to

develop and internally validate multiple models capable of

automatically identifying radiographic pneumonia based on

radiologists’ interpretation. Model programming was performed

using Python (version 3.9.1). Data management, calculation of

Cohen’s Kappa coefficient, and assessment of model performance

were performed in R (version 3.6.3; R Foundation for Statistical

Computing, Vienna Austria).
2.1. Data source

We performed a retrospective study of pediatric CXR reports

from the Pediatric Health Information System plus (PHIS+)

database, a federated collection of clinical and administrative data

from six large pediatric hospitals, collected between January 1,

2010 and December 31, 2012, and which has previously been

employed for research using granular data not found within

administrative datasets (18, 19). Figure 1 shows two examples of

typical CXR reports. These generally consisted of an explanation

of the image type, a clinical prompt, findings, and an

interpretation, though exact formats varied. This study was

deemed as exempt research by the investigators’ Institutional

Review Boards.
ively.
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TABLE 1 Keywords used to train natural language processing algorithms.

Acute cardiopulmonary abnormality

Areas of pneumoniaa

Clear lungs

Evidence of acute cardiopulmonary disease

Features of bacterial pneumonia

Focal airspace consolidation

Focal consolidation

Focal pulmonary infiltrate

Rixe et al. 10.3389/fdgth.2023.1104604
2.2. Inclusion criteria

From the PHIS+ dataset, we identified all encounters for children

ages 3 months to 18 years with a CXR performed in the ED and for

which corresponding clinical data were identifiable within PHIS+.

We only included children whose ED visits resulted in discharge or

admission, thus excluding ambulatory or surgical encounters. For

encounters with multiple CXRs during the same encounter, we

retained the first. All types of CXR series were included, including

portable, single-view, two-view, multiple-view, and foreign body

aspiration series, regardless of the imaging study indication.

Records with incomplete or missing CXR reports were excluded.

Ground glass opacities

Hyperinflationa

Lungs are clear

Multifocal airspace diseasea

Negative chest

No abnormality

No pleural effusion

Normal chest radiograph

Normal chest x-ray

Patchy consolidation

Perihilar opacitiesa

Pleural effusion

Pneumoniaa

Pneumonia cannot be excluded
2.3. Data abstraction

For included encounters, we abstracted the attending radiologist

CXR report and patient demographic data, including age, sex, race,

ethnicity, hospital, and season of visit. We also abstracted relevant

clinical characteristics, including complex chronic conditions (using

a previously published diagnosis code-based classification system)

(20), inpatient admission status, intensive care unit (ICU) status,

need for extracorporeal membrane oxygenation (ECMO), need for

mechanical ventilation, and mortality. Observation status was

considered equivalent to inpatient status (21). These demographic

data were not utilized in the development of the NLP tool but

were provided to better describe the sample of pediatric patients

with suspected CAP in the study population. We abstracted all

(primary, associated and admission) discharge diagnosis codes.
Reactive airway disease

Viral bronchiolitis

Within normal limits

aTop 5 keywords in extreme gradient boosting model.
2.4. Definition of pneumonia

In order to train the models, three content experts (NR, SR, AF)

reviewed 200 randomly selected CXR reports and generated a

mutually agreed upon list of the most frequently utilized keywords

used to denote pneumonia (Table 1). Negative combinations of the

keywords (e.g., “no infiltrate”) were also included to represent the

absence of pneumonia. These keywords were then converted into

tokens, (i.e., broken down into their most basic components)

(Figure 1), and were then used to train models.
2.5. Derivation and validation sample

To assess the performance of the NLP modeling, we first retained a

random sample of approximately 1% of the total number of included

encounters to create the validation sample. This proportion was

primarily selected due to the large total number of radiology reports

included in the derivation sample which exceeded 170,000; the manual

review of more than 1% of such a large number of chest x-ray reports

was time and labor-prohibitive. To generate a validation sample, we

performed stratified random sampling of equal proportions of chest

radiographs positive and negative for pneumonia, which included

approximately 1/3 from admitted patients to ensure similar disease

acuity. Radiographs not used in the validation sample were retained

for the derivation sample. For radiographs in the validation sample,
Frontiers in Digital Health 03
two authors (NR and SR) independently reviewed and classified all

CXR reports within the validation sample as either positive or negative

for pneumonia based on clinical expertise. We calculated a Cohen’s

kappa coefficient to assess interrater reliability between the primary

reviewers. A third, independent content expert (JR) reviewed the

discrepant records and assigned a final code of pneumonia or no

pneumonia. The remaining 99% of CXR reports that were not

included in the validation dataset were included in the derivation sample.
2.6. Outcome measures

For the purposes of model validation, we used two outcomes: any

diagnosis code of pneumonia (including the principal, admission,

and any associated diagnosis) and diagnosis by expert consensus.

A diagnosis of pneumonia was defined by an International

Classification of Disease, 9th edition (ICD-9) discharge diagnosis

code of pneumonia (Supplementary Table). While content expert

annotation was considered more clinically applicable, we also

evaluated its performance in the prediction of ICD-9 codes, as
frontiersin.org
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models were trained using these parameters. We used a previously

validated list of diagnosis codes for CAP (4).
2.7. Development of natural language
processing tool

To derive the NLP algorithms, we used six frequently employed

NLP methods: word embedding, extreme gradient boosting

(XGBoost), light gradient boosting machine (LightGBM), Support

Vector Machine (SVM), Naïve Bayes, and logistic regression. We

chose these representative algorithms on the basis of their prior

use (Naïve Bayes, Support Vector Machines), frequent use in other

domains (word embedding, logistic regression), and novelty

(XGBoost and LightGBM).
2.7.1. Word embedding
Word embedding refers to a classification technique in

unsupervised machine learning that mathematically embeds a word

or phrase from a space with potentially infinite meanings per word

into a numerical vector space with fewer meanings in order to

create the simplest numerical classification for complex language

using an artificial neural network (22). Put another way, word

embedding classifies many related words into simpler high

dimensional vectors. For example, using word embedding, the

words “happy” and “joyful” would be classified into the same

numerical vector. We chose this machine learning technique, in

part, because of its applicability to medicine, which often has many

words that have similar meanings (for example, pneumonia,

infiltrate, and consolidation).

We first trained specific word embedding on pneumonia-related

clinical text. We then used sample phrases constructed by the authors

for pneumonia. We converted these phrases into embedding by

calculating the average word embedding for all tokens in a given

phrase. Next, to apply word embedding to the dataset for

classification, each CXR report was broken up into tokens. A skip-

gram model, using a window of words of size 10 with a dimension

of 100, was utilized to predict context words from the input, or

target, words (Figure 2). A window of 10 is considered to be the

reference standard size to train skip-gram models (24). We used
FIGURE 2

A simplified example of our skip-gram model.
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100 as the dimension of the vector because it was sufficient to

capture an adequate amount of semantic information from words

without requiring prolonged training time. The window of words

with the highest cosine similarity score for each keyword was used

to classify a CXR report as “pneumonia” or “no pneumonia.” We

used the Genism Word2Vec library to train the word embedding

from the given clinical documents (23).

2.7.2. XGBoost and LightGBM
Gradient boosting is a form of meta-analytic machine learning

that combines weak, individual prediction models to generate a

more accurate aggregate target model that can perform regression

and classification analyses. XGBoost is an open-source software

designed to improve gradient boosting by performing parallelized

decision tree building, tree-pruning using a depth-first approach

and employing regularization to avoid overfitting the data.

XGBoost was utilized primarily for its recent emergence as the

optimal technique in many machine learning applications (24).

From our training dataset, each keyword and its potentially

negative expansion were used as initial inputs (24). We controlled

the maximum depth of the tree as 3 and the learning rate as 0.3

based on the optimal model performance with these

hyperparameters (25). Similarly, LightGBM is a gradient boosting

framework based on decision tree algorithms which develops

asymmetric trees, but differs from XGBoost through the

development of more selective (e.g., “leaf-wise”) growth instead of

level-wise growth. The LightGBM was set to have 31 leaves, and a

learning rate of 0.05. As with word embedding, both gradient

boosting techniques use an artificial neural network to calculate the

embedding of the input text.

2.7.3. SVM
SVM is a classification technique in supervised machine learning

that maps data points (or support vectors) onto an N-dimensional

hyperplane (where N equals the number of features) in order to

classify them. For our SVM model, we implemented the “linear

kernel” method, which classifies support vectors in a linear

decision plane (Figure 3) (26, 27). Previous studies have utilized

SVM to extract free text information from CXR reports with

reasonable sensitivity and specificity (28).
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2.7.4. Naïve Bayes
Naïve Bayes is an NLP technique which relies on Bayes’ theorem

and assumes independence of predictor variables when calculating the

probability that predictor variables are related to the target variable

(29). Naïve Bayes has served as a foundational NLP technique in

studies examining both neonatal and adult pneumonia (16). For our

Naïve Bayes model, we used the default configuration of a “Gaussian

Naïve Bayes” model from the sklearn python package (30).
2.7.5. Logistic regression
Logistic regression is commonly applied in machine learning

contexts and uses Maximum Likelihood Estimation to classify the

probability of a dichotomous outcome using predictor data. In

NLP contexts, logistic regression is applied following feature

extraction of vectorized text, similar to SVM and Naïve Bayes.
2.8. Statistical analysis

Study demographics and clinical characteristics were summarized

using proportions for categorical variables and median and

interquartile range for continuous variables. Characteristics of CXR

reports that were positive versus negative for pneumonia were

compared using χ2 tests for categorical variables and Wilcoxon rank

sum for continuous variables. We compared demographic and

clinical characteristics of encounters in the derivation and validation

datasets. Differences were considered statistically significant at a p

value of <0.05. In the validation dataset, we calculated the sensitivity

and specificity of any ICD-9 diagnosis code of pneumonia compared

to a reference standard of consensus content expert interpretation.

For radiograph reports in the validation set, we calculated the

unweighted Cohen’s Kappa to measure inter-rater agreement for the

manual CXR report review between the two primary reviewers. We

calculated the performance of the four NLP models on both the

derivation and validation datasets. For each of the machine learning

techniques, we calculated the sensitivity (recall), specificity, positive

predictive value (precision), negative predictive value, and positive
FIGURE 3

A simplified two-dimensional example of our linear kernel method.
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and negative likelihood ratios with corresponding 95% confidence

intervals (CI). Additionally, we calculated the accuracy and F1 score

as measures of model performance frequently used in machine

learning applications:

accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ

F1 ¼ 2x precision� recallð Þ= precisionþ recallð Þ
3. Results

3.1. Study inclusion

A total of 829,751 encounters with imaging were collected from

the six children’s hospitals within the PHIS+ database between

January 1, 2010 and December 31, 2012. We excluded 599,849

(72%) imaging studies that were not CXRs, 22,525 (2.7%) that

lacked a discharge diagnosis code, and 17,508 (2.1%) that were

duplicate CXRs within the same encounter. 17,207 (2.1%) non-ED

encounters were also excluded. A total of 172,662 (21%) CXR

reports from unique ED encounters were included in the final

analysis. This was divided into a derivation sample consisting of

171,312 (99.2%) CXR reports and a validation sample consisting of

1,350 (0.8%) CXR reports (Figure 4).
3.2. Descriptive data

The mean patient age for all included encounters was 3.7 years

(1.6–8.7); 55% of encounters represented male patients. A median of

28,694 (IQR 19,280–39,943) CXR reports were collected from each

hospital. 33,412 (19.3%) of encounters contained at least one

diagnosis code of a complex chronic condition. A total of 27,105

(15.6%) encounters contained any ICD-9 diagnosis code of

pneumonia and 20,493 (11.9%) encounters had a primary diagnosis

code of pneumonia (Table 2).
FIGURE 4

Study population.
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TABLE 2 Demographics and clinical characteristics of all included encounters.

Overall (N = 172,662) No pneumonia diagnosis (N = 145,557) Pneumonia diagnosis (N = 27,105)

Demographics

Age, year, median (IQR) 3.7 (1.6–8.7) 3.7 (1.4–9.9) 3.7 (1.8–7.3)

Male, n (%) 95,245 80,796 (55.5%) 14,449 (53.3%)

Race, n (%)

White 76,062 62,214 (44.1%) 11,848 (43.7%)

Black 48,044 40,961 (28.1%) 7,083 (26.1%)

Other or more than one 48,556 40,382 (27.7%) 8,174 (30.2%)

Ethnicity, n (%)

Hispanic or latino 17,731 14,917 (10.2%) 2,814 (10.4%)

Non-hispanic or latino 127,664 107,664 (74.0%) 20,000 (73.8%)

Unknown 27,267 22,976 (15.8%) 4,291 (15.8%)

Hospital, n (%)*

Hospital A 20,043 17,196 (11.8%) 2,847 (10.5%)

Hospital B 37,345 32,137 (22.1%) 5,208 (19.2%)

Hospital C 39,943 32,409 (22.3%) 7,534 (27.8%)

Hospital D 41,316 34,831 (23.9%) 6,485 (23.9%)

Hospital E 14,735 12,049 (8.3%) 2,686 (9.9%)

Hospital F 19,280 16,935 (11.6%) 2,345 (8.7%)

Month, n (%)

Winter 53,706 44,134 (30.3%) 9,572 (35.3%)

Spring 39,074 33,432 (23.0%) 5,642 (20.8%)

Summer 32,971 28,968 (19.9%) 4,003 (14.8%)

Fall 46,911 39,023 (26.8%) 7,888 (29.1%)

Clinical characteristics

Complex chronic condition, n (%)* 33,412 28,510 (19.1%) 4,902 (18.1%)

Admitted from ED, n (%)* 60,623 49,294 (33.9%) 11,329 (41.8%)

ICU admission, n (%)* 11,891 9,321 (6.4%) 2,570 (9.5%)

Use of ECMO, n (%) 83 64 (<0.1%) 19 (0.1%)

Use of mechanical ventilation, n (%)* 5,840 4,524 (3.1%) 1,316 (4.9%)

In-hospital mortality, n (%) 509 420 (0.3%) 89 (0.3%)

ED, emergency department; ECMO, extracorporeal membrane oxygenation; IQR, interquartile range; ICU, intensive care unit. Comparisons made using chi-squared or

Wilcoxon rank-sum tests as appropriate.

*p < 0.05.

Rixe et al. 10.3389/fdgth.2023.1104604
3.3. Validation sample

In the validation sample, 185/1,350 (13.7%) of CXR reports were

classified by reviewers as positive for pneumonia. Concordance

between reviewers demonstrated a kappa of 0.86. A total of 205

(15.3%) encounters had any ICD-9 diagnosis of pneumonia. 157

(11.6%) encounters had a primary ICD-9 diagnosis code of

pneumonia (Table 3). There were statistically significant differences

between encounters in the derivation and validation samples with
Frontiers in Digital Health 06
regard to hospital location, complex chronic condition, admission from

the ED, admission to the ICU, and the need for mechanical

ventilation. There were no significant differences between in gender,

race, ethnicity, need for ECMO, in-hospital mortality, or any primary

ICD-9 diagnosis codes of pneumonia. When comparing the presence

of an ICD-9 diagnosis code for pneumonia to annotation of

radiographs by context experts (as the reference standard), ICD-9

diagnosis codes had a sensitivity of 93.3%, specificity of 69.2%, positive

predictive value of 95.0%, and negative predictive value of 62.1%.
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TABLE 3 Demographics and clinical characteristics of encounters in the derivation and validation samples.

Derivation (N = 171,312) Validation (N = 1,350) p*

Demographics

Age, year, median (IQR) 3.70 (1.43–9.46) 3.83 (1.40–9.59) 0.35

Male, n (%) 94,522 (55.2) 723 (52.6) 0.21

Race, n (%) 0.38

White 75,492 (44.1) 570 (42.2)

Black 47,660 (27.8) 384 (28.4)

Other or more than one 48,160 (28.1) 396 (29.3)

Ethnicity, n (%) 0.62

Hispanic or latino 17,584 (10.3) 147 (10.9)

Non-hispanic or latino 12,6681 (73.9) 983 (72.8)

Unknown 27,047 (15.8) 220 (16.3)

Hospital, n (%) 0.05

Hospital A 19,878 (11.6) 165 (12.2)

Hospital B 37,080 (21.6) 265 (19.6)

Hospital C 39,605 (23.1) 338 (25.0)

Hospital D 40,985 (23.9) 331 (24.5)

Hospital E 14,644 (8.5) 91 (6.7)

Hospital F 19,120 (11.2) 160 (11.9)

Month, n (%) 0.64

Winter 53,276 (31.1) 430 (31.9)

Spring 38,782 (22.6) 292 (21.6)

Summer 32,723 (19.1) 248 (18.4)

Fall 46,531 (27.2) 380 (28.1)

Clinical characteristics

Complex chronic condition, n (%) 33,180 (19.4) 232 (17.2) 0.04

Admitted from ED, n (%) 60,273 (35.2) 350 (25.9) <0.01

ICU admission, n (%) 11,818 (6.9) 73 (5.4) 0.04

Use of ECMO, n (%) 83 (0.0) 0 (0.0) 0.85

Use of mechanical ventilation, n (%) 5,810 (3.4) 30 (2.2) 0.02

In-hospital mortality, n (%) 506 (0.3) 3 (0.2) 0.81

Outcome

Any ICD-9 diagnosis of pneumonia 26,899 (15.7) 205 (15.3) 0.68

Primary ICD-9 diagnosis of pneumonia 20,336 (11.9) 157 (11.6) 0.82

ICD, International Classification of Disease; ED, emergency department; ECMO, extracorporeal membrane oxygenation; IQR, interquartile range; ICU, intensive care unit.

*Comparisons made using chi-squared or Wilcoxon rank-sum tests as appropriate.

Rixe et al. 10.3389/fdgth.2023.1104604
3.4. Model performance on validation sample

When evaluating model performance on the validation sample

compared to manual review, the Naïve Bayes model had the

highest sensitivity of 93.5% (Table 4). The XGBoost model had the

highest specificity of 98.8%, positive predictive value of 89.0%,
Frontiers in Digital Health 07
likelihood ratio of 50.8 and overall performance with an F1 score

of 72.4. When evaluating the validation sample using an outcome

of ICD-9 diagnosis codes of pneumonia, the performance of all

models was lower (Table 5). The Word Embedding, SVM,

XGBoost, and LightGBM models each retained a specificity greater

than 90% when assessed with ICD-9 diagnosis codes.
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TABLE 4 Model characteristics of the validation cohort based on manual review by three content experts.

Model Sensitivity %
(CI)

Specificity %
(CI)

PPV % (CI) NPV % (CI) LR+ (CI) LR− (CI) Acc % F1

Word embedding 19.5 (14.0–25.9) 95.1 (93.6–96.2) 38.7 (28.5–
48.9)

88.1 (86.2–
89.9)

3.91 (2.6–5.8) 0.85 (0.79–
0.91)

84.7 25.9

XGBoost 61.1 (53.7–68.1) 98.8 (98.0–99.3) 89.0 (82.2–
93.8)

94.1 (92.6–
95.4)

50.8 (29.8–86.6) 0.39 (0.33–
0.47)

93.6 72.4

SVM 56.2 (48.7–63.5) 98.1 (97.2–98.8) 82.5 (74.8–
88.7)

93.4 (91.8–
94.7)

30.0 (19.3–45.9) 0.45 (0.38–
0.53)

92.4 66.9

Naïve Bayes 93.5 (88.9–96.6) 74.2 (71.6–76.7) 36.6 (32.2–
41.1)

98.6 (97.6–
99.3)

3.63 (3.27–4.03) 0.09 (0.05–
0.15)

76.9 52.6

Logistic
regression

5.4 (2.6–9.7) 95.5 (94.2–96.6) 16.1 (8.0–27.7) 86.4 (84.4–
88.2)

1.21 (0.63–2.34) 0.99 (0.95–
1.03)

83.1 8.1

LightGBM 26.5 (20.3–33.5) 99.8 (99.4–100) 96.1 (86.5–
99.5)

89.5 (87.7–
91.1)

154.28 (37.84–
629.02)

0.74 (0.68–
0.80)

90.0 41.5

SVM, support vector machine; sensitivity, or recall; PPV, positive predictive value, or precision; NPV, negative predictive value; LR+, positive likelihood ratio; LR−, negative
likelihood ratio; Acc, or accuracy, is equal to (TP + TN)/(TP + TN+ FP + FN); F score, or F1, is equal to 2x (precision x recall)/(precision + recall).

TABLE 5 Model characteristics of the validation cohort when using an outcome based on any ICD-9 diagnosis code of pneumonia.

Model Sensitivity % (CI) Specificity % (CI) PPV % (CI) NPV % (CI) LR+ (CI) LR− (CI) Acc % F1

Word embedding 15.0 (1.03–21.1) 94.6 (91.5–94.5) 26.4 (18.0–
35.2)

87.1 (85.4–
89.2)

2.2 (1.48–3.29) 0.91 (0.86–
0.97)

82.4 20.7

XGBoost 42.2 (35.0–49.6) 96.5 (94.2–96.6) 60.0 (51.0–
68.5)

91.2 (89.5–
92.8)

9.45 (6.9–12.9) 0.61 (0.53–
0.69)

88.2 52.3

SVM 42.7 (35.5–50.2) 95.6 (94.3–96.7) 60.8 (89.6–
92.8)

91.3 (89.6–
92.8)

9.75 (7.11–13.9) 0.60 (0.53–
0.68)

88.4 53.0

Naïve Bayes 80.1 (73.5–85.5) 73.1 (70.0–86.0) 32.1 (27.9–
36.6)

95.8 (94.3–
97.1)

2.98 (2.64–3.35) 0.27 (0.2–0.37) 74.1 48.6

Logistic
regression

4.9 (2.4–8.7) 88.2 (86.2–90.0) 6.9 (3.4–12.3) 83.7 (81.5–
85.8)

0.41 (0.22–0.77) 1.08 (1.04–
1.12)

75.5 5.7

LightGBM 20.0 (14.8–26.1) 99.1 (98.4–99.6) 80.4 (66.9–
90.2)

87.4 (85.4–
89.1)

22.88 (11.65–
44.94)

0.81 (0.75–
0.86)

87.1 32.0

SVM, support vector machine; sensitivity, or recall; PPV, positive predictive value, or precision; NPV, negative predictive value; LR+, positive likelihood ratio; LR−, negative
likelihood ratio; Acc, or accuracy, is equal to (TP + TN)/(TP + TN+ FP + FN); F score, or F1, is equal to 2x (precision x recall)/(precision + recall).
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3.5. False positives and false negatives

Each NLP algorithm was subject to false positives and false

negatives. Within the validation sample, the Naïve Bayes model

demonstrated the lowest false positive rates of 6.5% and 19.1%

when compared to expert consensus and ICD-9 codes, respectively.

The LightGBM method demonstrated the lowest false negative rate

of (0.2% when compared to expert consensus and 0.9% when

compared to ICD-9 codes). There was no significant overlap of

tokens that triggered false negative and false positive results

between each of the models.
4. Discussion

In this investigation, we evaluated six NLP models to interpret

pediatric CXRs with pneumonia. The Naïve Bayes model was the

most sensitive and the XGBoost model was the most specific and
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had the overall best performance when compared to manual expert

review. The incorporation of this type of machine learning tool

into electronic CDS algorithms, in combination with other EHR

data, carries the potential to augment the rapid identification of

patients with pneumonia and to facilitate the real-time application

of evidence-based clinical guidelines. In addition, this type of NLP

tool may expedite large database research by reducing the time

needed for manual review.

An accurate NLP model for the identification of pneumonia can be

used in “non-knowledge” [or statistically/machine-learning derived

(31)]-based CDS in order to decrease unnecessary variation in care,

improve antibiotic stewardship, and improve prognostication. Used

in conjunction with additional historical and clinical factors, a

comprehensive CDS for pneumonia may be best able to identify

patients for whom imaging may be indicated, followed by

interpretation of radiograph findings in the context of clinical data

in order to provide guidance with respect to antimicrobial utilization

and ED disposition. Our findings are demonstrative of the utility of

NLP-based interpretation of radiography reports to improve the
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evidence-based management of pediatric pneumonia. These expand

upon prior research on the use of NLP for the identification of

pediatric pneumonia in several ways, including in the use of a

multicenter dataset, comparing multiple NLP algorithms, and

evaluating two forms of internal validation (content experts and

diagnosis codes). NLP results in optimal model performance when

the quantity of the input data is large, which reduces the effect of

noise, or unexplainable variation, in the data. Furthermore, dividing

large volumes of input data into a training and test dataset mitigates

this risk of over-fitting the model to the training dataset (32).

Previous investigations into the role of NLP in the classification of

pediatric CXR reports with pneumonia have used training datasets

with several hundred CXR reports and, in some cases, used the

same dataset for training and testing (16, 17, 33). Meystre, et al.,

used a sampling of 282 pediatric annotated CXR reports from the

PHIS+ dataset using Textractor, a library included within the

Apache Unstructured Information Management Architecture

framework, to develop a model with a sensitivity of 52.7% and

specificity of 96.6% (16). Mendonça, et al., evaluated the

performance of a multimodular clinical NLP algorithm (called

MedLEE) to assist in the interpretation of neonatal radiographs and

reported a sensitivity of 71% and 99% (17). More recently, Smith,

et al., used a random forest classifier trained using 10,000 chest

radiographs performed among children hospitalized at a single

institution and implemented it using a clinical decision support

system (34). These models had high sensitivity (89.9%) and

specificity (94.9%) during implementation and demonstrate the

potential of these applications for identifying pneumonia, though its

performance across clinical settings has not yet been reported. By

training our models using more than 170,000 CXR reports from a

multicenter database, we increase the scale of prior work by several

orders of magnitude. In addition, we retained a separate validation

dataset, which was interpreted by independent content experts with

excellent concordance. Following external validation, our models

may have potentially greater generalizability and applications to

other populations.

Prior NLP studies of both adult and pediatric CXR reports have

frequently relied on Bayesian methodology to determine the presence

or absence of pneumonia (35, 36). While Bayesian logic is considered

simple, fast and effective, it relies on the premise that all features in

the dataset are both equally important and independent, a potentially

inaccurate assumption in the highly variable interpretation of chest

radiographs (37, 38). In this investigation, different NLP algorithms

provided differing diagnostic accuracy. Importantly, the highest

performing algorithm utilized XGBoost, a relatively novel machine

learning technique which has been trialed in a wide variety of

applications, functions well on multiple operating systems, supports

all major programming languages and has consistently shown

superior performance in comparison to other NLP methodologies (24).

The robust performance of our NLP models supports its

incorporation into electronic CDS tools to efficiently integrate

patient information with clinical guidelines. Implementation of and

compliance with CDS tools varies widely between hospital systems,

practice settings, EHRs and individual users (39). Factors

associated with low utilization rates of CDS tools include

complexity of the system and difficulty integrating the tool into the

workflow of the EHR (40).
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XGBoost has recently emerged as the one of the highest-

performing NLP algorithms across a variety of machine learning

platforms, currently making it the most widely applicable NLP

technology. Not surprisingly, our XGBoost model demonstrated

the best overall performance (as measured by the F1 score). The

accuracy of our XGBoost model may be further improved by the

incorporation of other structured elements within the EHR that

are known to be associated with pneumonia (including age, fever,

and hypoxemia) (41, 42). Used in combination with these clinical

factors, the use of automated radiograph interpretation may allow

for an improved diagnostic accuracy, decreasing both false alarms

(i.e., false positives) and missed cases (i.e., false negatives). As

such, this NLP model may offer a standardized approach to

building and implementing CDS tools, with the goals of

improving antimicrobial stewardship, risk severity prediction, and

in reducing unnecessary hospitalizations. The successful

deployment of these algorithms will depend on an engaged

stakeholder base and should follow principles recently identified

by Shortliffe, et al., including (a) transparent reasoning, (b)

seamless integration, (c) intuitive utilization, (d) clinical

relevance, (e) recognition of the expertise of the clinician, and (f)

constructed on a sound evidence base (43).

Our results additionally support the use of NLP research to

facilitate large database research. By automatically finding

actionable insight within large and complex volumes of electronic

health data, a robust NLP model provides a natural solution to

time-intensive manual review usually required by large database

research (44). All models demonstrated tradeoffs between

sensitivity and specificity to varying extends which may impact the

clinical applicability of these algorithms when embedded into a

decision support system model. For example, the Naïve Bayes

model, demonstrated the highest sensitivity at 93.5%, which is

likely due to its reliance on simple probabilities. When trained

with domain experts, we theorize that Naïve Bayes would be best

utilized to accurately capture true positives while reducing the time

burden associated with manually reviewing and classifying

thousands of unstructured imaging reports. In contrast, the XG

Boost model demonstrated a higher PPV, as reflected in its higher

F1 score; this model also demonstrated extremely high specificity.

In combination with a highly specific model like XGBoost,

integration of the Naïve Bayes algorithm into the EHR could

facilitate the rapid and accurate identification of pediatric patients

with pneumonia for prospective enrollment in clinical studies and

allow for the provision of automatic disease-specific management

guidelines. Logistic regression demonstrated poor performance

which favored the majority (e.g., negative) class, suggesting its

limited potential to meaningfully identify true positives with

correspondingly poor sensitivity and positive predictive value.

It is worth noting that each of the four models demonstrated

superior measures of diagnostic accuracy when validated with

domain experts versus ICD-9 diagnosis codes of pneumonia. As

such, our findings likely reflect the inherent difference in

specificity between screening for pneumonia based solely on a

radiograph report and the impact of incorporating additional

clinical data like vital signs, physical exam findings, laboratory

results, comorbid conditions and response to initial treatments,

all of which are integrated into a final diagnosis code. We
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surmise that incorporation of an XGBoost-based model into a

cohesive CDS tool, in combination with other clinical electronic

data, would potentially result in enhanced performance for

specific clinical applications. Other applications of machine

learning with radiography have focused on direct image

interpretation. Within pediatric research, these applications have

been trialed for the diagnosis of pneumonia using Näıve Bayes,

SVM, K-nearest neighbor (45), and transfer learning techniques

(46), among others (47). These algorithms may be combined with

radiologist interpretation to potentially work together in a

complementary fashion to improve the overall accuracy of the

predictive model.

Our findings are subject several limitations. First, the PHIS+

database did not contain the actual radiographs to verify the

radiologists’ interpretations. The interpretation of chest

radiography is complex: prior work, for example, has

demonstrated wide interrater variability between radiology

assessments regarding infiltrate versus atelectasis on the

interpretation of pediatric imaging (38, 40). Second, our manual

review process was based solely on domain expert interpretation

and did not utilize a standardized set of agreed upon words or

phrases to dichotomize the CXR reports into positive or negative.

Despite this, the two primary reviewers retained a high degree of

inter-rater agreement, which was comparable to prior studies

that used a predetermined set of words to define positive and

negative reports (18). We believe our approach is more

generalizable and accurately reflects the natural variation between

providers when interpreting free text clinical data. Third, our

validation dataset was small, containing 1% of the original

sample. Given the large size of the derivation sample, this

amounted to a total of 1,350 CXR reports, which remained a

sizable sample. In addition, PHIS+ is primarily an administrative

database, and, as such, does not include time-based data or

clinical notes. Although we were able to take advantage of the

large repository of radiological data within PHIS+, the lack of

other clinical data (i.e., clinical notes, etc.) make the

development of a deep learning-based tool less applicable and

represents an area of future research. Finally, most CXR reports

in both the training and test datasets were negative for

pneumonia, reflecting the relative paucity of pneumonia in the

pediatric population compared to viral lower respiratory tract

disease. This imbalance in the training data, a commonly

encountered phenomenon in healthcare-related machine learning

applications, has the potential to artificially increase the precision

and decrease the recall (48). Despite this, the F1, or overall

performance, of our XGBoost model was robust indicating an

acceptable balance between precision and recall. Future work

should focus on external validation and enhancing the

performance of this model through interactive learning,

including manual review of the false positive and false negative

reports in order to mitigate the effects of the skewed input data

and optimize model performance.

In this investigation, we used supervised and unsupervised

learning techniques to generate novel NLP algorithms capable of

identifying pediatric CXR reports positive for pneumonia with

comparable accuracy to content experts and robust measures of
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diagnostic accuracy. Our results suggest that, following external

validation, such tools could be integrated into comprehensive

electronic CDS systems to enhance the automatic identification

of pediatric patients with radiographic pneumonia and to

inform large database research. Future research is needed to

refine the NLP algorithms in order to apply them to specific

clinical settings.
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