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Physical activity (PA) provides numerous health benefits for individuals with type 1
diabetes (T1D). However, the threat of exercise-induced hypoglycemia may
impede the desire for regular PA. Therefore, we aimed to study the association
between three common types of PA (walking, running, and cycling) and
hypoglycemia risk in 50 individuals with T1D. Real-world data, including PA
duration and intensity, continuous glucose monitor (CGM) values, and insulin
doses, were available from the Tidepool Big Data Donation Project. Participants’
mean (SD) age was 38.0 (13.1) years with a mean (SD) diabetes duration of 21.4
(12.9) years and an average of 26.2 weeks of CGM data available. We developed
a linear regression model for each of the three PA types to predict the average
glucose deviation from 70 mg/dl for the 2 h after the start of PA. This is
essentially a measure of hypoglycemia risk, for which we used the following
predictors: PA duration (mins) and intensity (calories burned), 2-hour pre-
exercise area under the glucose curve (adjusted AUC), the glucose value at the
beginning of PA, and total bolus insulin (units) within 2 h before PA. Our models
indicated that glucose value at the start of exercise and pre-exercise glucose
adjusted AUC (p < 0.001 for all three activities) were the most significant
predictors of hypoglycemia. In addition, the duration and intensity of PA and 2-
hour bolus insulin were weakly associated with hypoglycemia for walking,
running, and cycling. These findings may provide individuals with T1D with a
data-driven approach to preparing for PA that minimizes hypoglycemia risk.
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Introduction

Type 1 diabetes (T1D) is a chronic disease caused by insulin deficiency (1). However,

there has been significant progress in understanding this disease, leading to many new

management approaches (1). A key enabler for the progress is the growing use of

continuous glucose monitors (CGMs), a device that tracks glucose levels in the interstitial

fluid throughout the day (2). CGMs allow users to view their glucose levels at any time

and observe trends and fluctuations that may help them adjust their food, physical

activity, insulin dosing, and other factors to optimize glycemic control (2).

Hypoglycemia, or low blood sugar, poses an acute danger to people with type 1 diabetes.

It can result in loss of consciousness, seizure, coma, or even death if not addressed urgently

(3). The risk of hypoglycemia-associated effects is especially increased during and after

aerobic physical activity such as running, walking, cycling, and swimming (4). Fear of
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2023.1142021&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fdgth.2023.1142021
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1142021/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1142021/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1142021/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2023.1142021
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


TABLE 2 Variables measured in the Tidepool dataset.

TABLE 1 Participant demographics and clinical data.

Variable Values
Age 38.0 [13.1] years

Sex 21 female
23 male

6 unknown

Duration of CGM data 26.2 [ 19.6] weeks

Years with T1D 21.4 [ 12.9] years

Values for age and years with T1D reported at the start of study period. Values

reported as mean [SD] unless otherwise stated. CGM,Continuous glucose

monitoring; SD, Standard deviation.
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hypoglycemia is stated as one of the main hindrances among

individuals with T1D to performing exercise, despite clear

evidence that exercise provides several health benefits (5). Despite

the ability to monitor glucose in close to real-time, people with

type 1 diabetes can find it challenging to manage their diet and

medication to ensure safe PA. Looking at the broad categories of

risks for hypoglycemia, exercise is known to consume glycogen

stores, increase insulin sensitivity, and has been shown at

moderate intensity to blunt autonomic response to hypoglycemia,

all three of which increase the risk for hypoglycemia (6).

Individuals with T1D are currently recommended to increase

carbohydrate consumption and decrease insulin dosage before

exercising (5). Additionally, anaerobic exercises, which are

resistance and high-intensity exercises, are shown to mitigate the

blood glucose decrease associated with aerobic exercise and can

be used as a form of management (7). The suggestions to

prevent hypoglycemia, such as carbohydrate consumption, have

not yet been quantitatively understood or analyzed in depth,

mainly due to the lack of data. In general, the precise nature of

the relationships between exercise and glucose, especially

mediated between food and insulin is unclear (5). Several

hypoglycemia prediction algorithms have been proposed (8), but

few that integrate real-time information from multiple devices

(CGM, insulin pumps, PA trackers). Complicating this

knowledge gap is the heterogeneity in defining hypoglycemia.

Working groups from the American Diabetes Association,

Endocrine Society, and International Society for Pediatric and

Adolescent Diabetes defined hypoglycemia in diabetes as “all

episodes of abnormally low plasma glucose concentration that

expose the individual to potential harm”, however there is some

ambiguity around the particular metrics for this definition, and

over time different methods for classifying hypoglycemia and its

severity have been proposed (6, 7, 9). With the advent of

widespread use of CGM, consensus guidelines recommend

minimizing time spent with glucose levels <70 mg/dl, to mitigate

the potential harms of hypoglycemia referred to in the broader

definition mentioned above, and this threshold provides a more

straightforward target to define hypoglycemic events through

CGM measurements (10).

In this work, we aimed for an improved quantitative

understanding of the significant factors in exercise-induced

hypoglycemia. We quantified the impact of different types and

attributes of exercise on glucose changes, and therefore, on

hypoglycemia risk in individuals with type 1 diabetes.
Variables
measured

Description

Physical activity Every time a participant engages in a physical activity, a
wearable device records the type of the physical activity
completed, the duration of the physical activity, and the
calories burned during the physical activity in the dataset.

Glucose CGM glucose data (mmol/l or mg/dl) measured every
5 min.

Food/Carbohydrates Grams of carbohydrates entered either directly by the
participant or via the bolus calculator of their insulin
pump.

Insulin Participant self-records their bolus insulin (units) or
information is downloaded from participant’s pump.
Materials and methods

Dataset

Tidepool Inc. provided the dataset used in the study through

the Big Data Donation Project (https://www.tidepool.org/

bigdata). Tidepool is a cloud-based software that stores and

provides diabetes data, free of charge, to clinicians and those

with diabetes (11). It combines the data collected from

individuals with diabetes from different devices via the Tidepool
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app into a streamlined dataset (12) on the Tidepool website. This

is a real-world data set, and patients were not instructed on any

particular protocol for data entry. This means that the data set

does not have a standard device as far as pump or CGM, and

entries such as carbohydrate counts for meal or snack events

were entered using the patient’s preferred carbohydrate log or

bolus calculator and are not entered at a uniform time in

relation to the consumption of carbohydrates. For those who

choose to donate their data, Tidepool anonymizes it and places it

in a pool of datasets to be shared securely with external partners.

Tidepool abides by its privacy policy, which is outlined here:

https://developer.tidepool.org/privacy-policy/#1.5.

We analyzed the dataset with information from 50 participants

with T1D. The available demographic and clinical information is

summarized in Table 1.

Multiple variables relevant to the post-exercise hypoglycemia

risk prediction task were available for analysis. These variables

are described in Table 2.
Computation and statistical analysis

Statistical analyses were performed using Matlab R2021a (The

MathWorks Inc., Natick, MA, United States). Linear regression

models were developed using the “fitlm” function in MATLAB.

We also computed several summary statistics using information

about participants’ physical activities, glucose levels, carbohydrate

intake, and bolus insulin.

The following predictors were used in the analysis of exercise-

induced hypoglycemic events:
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1. Glucose value (mg/dl) at the start of exercise (baseline glucose)

2. 2-hour pre-exercise glucose adjusted AUC: the area between the

baseline glucose and the glucose curve starting from two hours

before the exercise (Figure 1).

3. Calories Burned (kcal) during exercise

4. Activity Duration (minutes)

5. Bolus insulin (units)

Within the predictors, the Calories Burned variable was used as

a surrogate for exercise intensity. In our analysis, we use 70 mg/dl

as a threshold to determine hypoglycemia. Our main outcome is

the average glucose difference from 70 mg/dl during two hours

after exercise as a surrogate for hypoglycemia risk. This metric is

computed by subtracting 70 from the average glucose during the

two hours after exercise.

We visualized daily glucose fluctuations for all the participants,

all of which yielded similar graphs (Figure 1). A couple of

observations can be made in almost all the multimodal Glucose

—Exercise—Carbohydrate Graphs. First, as expected, there is a

sharp decrease in the glucose level as soon as the participant

starts their exercise; Figure 1 shows the participant’s glucose

dropping below 70 mg/dl after their physical activity, resulting in

hypoglycemia. Second, there is commonly an increase in glucose

levels prior to exercise. This increase in glucose before the

exercise can likely be attributed to the participants consuming

carbohydrates, termed “carbohydrate preparation”, in an effort to

minimize hypoglycemia risk with aerobic exercise (7).

Unfortunately, we also observed inconsistent carb intake logging

across several participants in the dataset. For example, many of

the participants’ appeared not to intake any carbohydrates

throughout the day, and there would be drastic increases in

blood glucose levels without a carbohydrate intake at the same

time. These observations led us to use the 2-h glucose adjusted

AUC instead of the actual carb intake logs to quantify the

carbohydrate preparation before exercise (Figure 1).

Exercise events were only included in the analysis if they met

the criteria of not having any other exercises being done within

two hours before or after the exercise, which was logged by the

participants. This is to ensure that the glucose levels within those

two hours would not be influenced by other physical activities.

Similarly, we only included bolus insulin administered within the

two hours prior to exercise in our analysis as we assumed earlier

boluses would not have significant impact on hypoglycemia risk.
Results

Frequency of different types of PA

We first computed the frequency of different activity types

included in the dataset. Figure 2 shows the percentage of the 50

participants with at least one record for the given PA type. The

top three activities were found to be walking (94% of

participants), running (70%), and cycling (66%). To ensure a

sufficient sample size for our analysis, we focused on these three

activities for the current work.
Frontiers in Digital Health 03
Proposed 2-h pre-exercise adjusted
AUC metric

We performed statistical analysis on the 2-h pre-exercise

adjusted AUC (“adjusted AUC” hereafter) for the set of exercise

events that fit the criteria and found the following number of

corresponding hypoglycemic events for those exercises. There

were 1,664 hypoglycemic events for walking, 494 for running,

and 805 for cycling. The p-values were calculated using the

Wilcoxon rank sum test. We compared the number of

hypoglycemic events for high adjusted AUC vs. low adjusted

AUC (top 25% vs. bottom 25%, and top 50% vs. bottom 50%).

We observed that high adjusted AUC instances were associated

with significantly fewer hypoglycemia events compared to low

adjusted AUC instances as reported in Table 3. This finding

suggests the protective role of high adjusted AUC (indicating

carbohydrate preparation) on hypoglycemia risk.

The p-values were calculated using the Wilcoxon rank sum test.
Linear regression analysis

Using the adjusted AUC and non-clinical variables mentioned

in the Computation and Statistical Analysis section, we created a

simple linear regression model to predict the risk of

hypoglycemia 2 h after each exercise. The variables used were the

glucose value (mg/dl) at the start of exercise, 2-hour pre-exercise

glucose adjusted AUC: the area between the baseline glucose and

the glucose curve starting from two hours before the exercise,

calories burned (kcal) during exercise, activity duration

(minutes), and bolus insulin (units). For the prediction, we used

individual metrics: for each participant, we took the distance of

average glucose reading 2 h after a physical activity from 70 mg/

dl for each exercise instance of running, walking, and cycling,

and used those metrics to create the regression model. The linear

regression model results are detailed in (Table 4).
Discussion

Our results indicated that higher 2-hour pre-exercise glucose

adjusted AUC was associated with fewer exercise-induced

hypoglycemic events. Additionally, the linear regression model

showed that the proposed adjusted AUC metric and glucose level

at the start of exercise were associated with exercise-induced

hypoglycemia risk. These results reinforce the importance of

adequately high blood glucose levels at the start of exercise, as a

metric to forecast exercise-induced hypoglycemia. Most

hypoglycemia predictions typically rely on this baseline blood

glucose and heart rate (8). But we also identified the adjusted

AUC in the two hours before exercise as a key predictor. The

adjusted AUC and the glucose value at the start of exercise were

significantly associated with hypoglycemia risk in walking, running,

and cycling, which indicates their importance in predicting

exercise-induced hypoglycemia risk. Physical activity Duration,
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FIGURE 2

This graph shows the top 10 most frequently done exercises among the 50 participants in our dataset, based on the number of participants who have
done each exercise at least one time.

FIGURE 1

Multimodal Glucose - Exercise - Carbohydrate Graph. This shows the graph of one day of a participant. The black line shows the glucose value of the start
of exercise. The green shaded region shows the 2-hour pre-exercise glucose adjusted AUC. It is bordered superiorly by the glucose trend and inferiorly by
70mg/dL which is the cutoff for hypoglycemia that we are using. Both are parameters used in the analysis. The “train_9dc61” is the participant’s ID..
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TABLE 3 Top and bottom 25% and 50% adjusted AUC and their
corresponding hypoglycemic events for each exercise instance for all
participants.

Adjusted AUC measure Mean number of hypoglycemic
events

Walking Running Cycling
Top 25% Adjusted AUC 0.3451 1.0927 0.5014

Bottom 25% Adjusted AUC 1.3916 2.5695 1.4482

p-value <0.0001**** <0.01** <0.0001****

Top 50% Adjusted AUC 0.403 1.2649 0.7355

Bottom 50% Adjusted AUC 1.058 2.0099 1.0582

p-value <0.0001**** <0.01** <0.0001****

****p < 0.0001, ***p < 0.001, **p < 0.01.
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Intensity, and Bolus Insulin were significantly associated with only

some, rather than all exercise types, as shown in the results.

There have been very few studies in T1D incorporating both

CGM and physical activity measurements. A recent study showed

that historical CGM data by itself can reliably predict glucose

values in the next 60 min, with additional physical activity

information contributing very little. [Van Doorn ‘21] This aligns

with our findings where CGM-based measures such as pre-

exercise glucose and adjusted AUC had stronger associations

with hypoglycemia than PA measures such as duration and

intensity of exercise. We note that while the PA measures in our

study were not as strongly predictive as CGM measures of

hypoglycemia, they still had significant associations in some

exercise types. This suggests that PA measures can add value to

hypoglycemia risk prediction for specifically post-exercise periods.
Limitations

One of the main limitations of this research was the absence of

heart rate information. A previous study predicted whether

exercise-induced hypoglycemia would occur given just heart rate

and the glucose level at the start of exercise (8). Additionally,

heart rate was found to be one of the physiological variables that
TABLE 4 Linear regression results to predict the average glucose distance 2

Predictor variables Walking

Regression
coefficient [SE]

p-value

2 h pre-exercise glucose adjusted AUC
(mins*mg/dl)

0.0057 [0.0012] <0.0001****

Glucose value at start of PA (mg/dl) 0.5807 [0.0174] <0.0001****

PA Duration (minutes) 0.0884 [0.0300] <0.001***

PA Intensity (Calories Burned) −0.0616 [0.0104] <0.0001****

Total Bolus Insulin within 2-h prior to
PA (Insulin units)

0.0109 [0.3189] 0.973

R-Squared Values 0.539

Results of linear regression to predict the distance of average glucose reading 2 h af

running, and cycling.

SE, Standard error of the regression coefficient, PA, Physical activity; Adjusted AUC, A

****p < 0.0001, ***p < 0.001, **p < 0.01.
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improves the accuracy of overall glucose prediction in physically

active individuals with T1D (13).

Certain limitations arose during our own data analysis. We

used the 2-h pre-exercise glucose adjusted AUC to quantify the

carbohydrate preparation of participants before exercise.

Although self-recorded carb intake logs could conceivably have

better estimated carbohydrate preparation, we could not use

them because of empirically observed inconsistencies such as

missed logs or delayed meal- logging. Missing or incorrect

logging by participants is one of the downsides of using real

world data. However, the drawback of the adjusted AUC is that

the glucose levels may have increased for reasons other than

carbohydrate preparation, which is one of the ways to achieve a

higher adjusted AUC, but we are unable to fully ascribe all

higher adjusted AUC to carb preparation given the limitations of

real world data. Additionally, participants taking action to

increase their glucose levels within the studied 2-hour window

after exercise could affect their glucose readings and thus the

measure of hypoglycemia risk, which we assumed to be entirely

caused by PA. The model ignores other influences during

exercise, and any factors that may arise are not considered.

Further, we elected to use the average difference from 70 mg/dl

as a measure of hypoglycemia risk instead of directly measuring

hypoglycemia via the clinically recognized “time spent in

hypoglycemia” (Battelino et al., 2022). This was done because the

majority of exercise events had zero hypoglycemia readings and

would have skewed our linear regression results. In future studies

with sufficiently balanced zero and non-zero hypoglycemia

instances, we will use the time spent in hypoglycemia as the

clinical outcome of interest.

The results also showed that physical activity duration,

intensity, and bolus insulin were significantly associated with

only some exercises. Because this is real-world data, some

exercise data may have been manually overwritten by the user,

introducing subjective biases to the analysis. Future studies with

fully automated exercise duration and intensity logging could

more precisely summarize the effect of these exercise parameters

on hypoglycemia risk.
h after exercise from 70 mg/dl (risk of hypoglycemia).

Running Cycling

Regression
coefficient [SE]

p-value Regression
coefficient [SE]

p-value

0.0070 [0.0018] <0.001*** 0.0053 [0.0013] <0.0001****

0.45085 [0.0347] <0.0001**** 0.4364 [0.0214] <0.0001****

0.1406 [0.0867] 0.11 0.0848 [0.0527] 0.11

−0.0158 [0.0070] 0.03* −0.0070 [0.0067] 0.30

−2.8729 [0.9541] 0.002* −0.3667 [0.5401] 0.50

0.399 0.508

ter a physical activity from 70 mg/dl for each of three types of exercise: walking,

rea under the glucose curve.
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Due to the limited demographic information in Tidepool

dataset, we could not investigate the role of race/ethnicity on

exercise-induced hypoglycemia. We also have limited pediatric

data, who are a sizable T1D population and can have vastly

different levels and types of activity depending on age. Thus,

these metrics need to be recomputed for different populations to

validate the generalizability of our findings.
Future research

Our results could pave the way to help optimize preparation for

exercise for individuals with type 1 diabetes before exercise.

Depending on various factors such as the type and duration of

exercise, insulin in the blood, and blood glucose at that time,

certain recommendations can be made on whether to consume

carbs, how much to consume, and more. For example, if an

individual were to go on a walk, which would increase the risk of

hypoglycemia, for a certain duration, then the adjusted AUC

could be used to derive a quantification of how many carbs

should be consumed prior to exercise.

In further analysis of our data, we hope to create personalized

regression models to accurately predict the average glucose distance

from 70 mg/dl for individuals with type 1 diabetes before they

exercise. The overall R-squared values for each of the exercise

models showed that the models are relatively moderate in their

predicting abilities. We did not include the available

demographic/clinical information (age, years with type 1

diabetes, and sex) into the linear regression model which could

improve the predictive power of the models. Although prior

research has shown that some other key predictors of severe

hypoglycemia are prior episodes of hypoglycemia, duration of

diabetes, body mass index, and other anthropometric measures,

this information was not available to us in this dataset. Including

these variables as well as identifying appropriate interaction

terms can optimize the models and allow those with T1D to

have a personalized model for themselves to help them exercise

safely. We plan to create a training and test set from the data to

test such models in subsequent analyses.

In the future, we hope to be able to use these models to create

an intervention technology for those with T1D to exercise more

safely. We envision these models being able to translate

individuals’ inputted information into a user-friendly exercise

management app. We hope that people can use this to

potentially use exercise as a form of glucose management as well.
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At Tidepool, we recognize the critical importance of ethical

practices when it comes to handling and utilizing data. We are

committed to upholding the highest standards of integrity,

respect, and responsibility in all aspects of data collection,

storage, analysis, and dissemination. Our ethics statement

outlines our principles and commitments in relation to data,

ensuring the protection of privacy, promoting transparency, and

fostering trust with our stakeholders.

Data Privacy and Security: We prioritize the privacy and

security of individual data subjects. We implement robust

measures to safeguard personal data, ensuring it is collected,

processed, stored, and transmitted securely.

Informed Consent and Data Collection: We obtain consent from

individuals before collecting their data, ensuring they are fully aware

of the purpose and potential implications of data collection. We

employ transparent practices, clearly communicating how data will

be used and shared, how it has been used and shared, and

empowering individuals to make informed decisions about

their data.

Data Accuracy and Integrity: We strive to maintain accurate

and reliable data throughout its lifecycle. We employ appropriate

quality control measures to minimize errors and inaccuracies. If

errors are identified, we take prompt action to rectify them and

prevent their recurrence.

Fair and Responsible Use: We utilize data in a fair and

responsible manner, respecting legal, ethical, and societal norms.

We do not engage in discriminatory practices, and we ensure

that data analysis and decision-making processes are transparent.

Data Sharing and Transparency: We support open and

transparent data practices whenever possible, while respecting

privacy and confidentiality. We strive to share data in ways that

benefit society, contributing to scientific research, public

knowledge, and social progress. When sharing data, we take

appropriate measures to de-identify personal information,

protecting individual privacy.

Responsible Data Governance: We implement robust data

governance frameworks and processes to ensure accountability,

compliance, and oversight in our data-related activities. We

designate responsible individuals or teams to oversee data

management practices, and monitor compliance with policies

and regulations.

Continuous Improvement: We are committed to continuously

improving our data ethics practices. We regularly review and

update our policies, procedures, and safeguards to align with

evolving legal, technological, and societal expectations. We

encourage feedback and engagement from our stakeholders,

fostering a culture of transparency, responsibility, and learning.

By adhering to this ethics statement, we affirm our

commitment to maintaining the highest ethical standards in our

data-related activities. We aim to build trust among our
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stakeholders, promote responsible data practices, and contribute

positively to society while ensuring the privacy, security, and

integrity of the data we handle.
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