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Impact of opinion dynamics on
the public health damage inflicted
by COVID-19 in the presence of
societal heterogeneities
Rex N. Ali* and Saswati Sarkar

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA,
United States

Introduction: Certain behavioral practices, such as wearing masks, practicing
social distancing, and accepting vaccines, play a crucial role in impeding the
spread of COVID-19 and reducing the severity of symptoms. Opinions regarding
whether to observe such behavioral practices evolve over time through
interactions via networks that overlap with but are not identical to the physical
interaction networks over which the disease progresses. This necessitates the
joint study of the dynamics of COVID-19 and opinion evolution.
Methods: We develop a mathematical model that can be easily adapted to a wide
range of behavioral practices and captures in a computationally tractable manner
the joint evolution of the disease and relevant opinions in populations of large
sizes. Populations of large sizes are typically heterogeneous in that they
comprise individuals of different age groups, genders, races, and underlying
health conditions. Such groups have different propensities to imbibe severe
forms of the disease, different physical contact, and social interaction patterns
and rates. These lead to different disease and opinion dynamics in them. Our
model is designed to effectively capture such diversities.
Results: Computations using our model reveal that opinion dynamics have a strong
impact on fatality and hospitalization counts and the number of man-days lost due to
symptoms both in the regular form of the disease and the extended forms, more
commonly known as long COVID. We show that opinion dynamics in certain
groups have a disproportionate impact on the overall public health attributes
because they have high physical interaction rates, even when they have the lowest
propensity to imbibe severe forms of the disease. This identifies a social
vulnerability that malactors can utilize to inflict heavy public health damages
through opinion campaigns targeting specific segments. Once such vulnerabilities
are identified, which we accomplish, adequate precautions may be designed to
enhance resilience to such targeted attacks and better protect public health.
Discussion: By recognizing and understanding the vulnerabilities, appropriate
precautions can be developed to enhance resilience against targeted attacks and
safeguard public health. Our study underscores the importance of considering
opinion evolution alongside disease dynamics, providing insights into the interplay
between behavioral practices, opinions, and disease outcomes. We believe that
our model is a valuable tool for understanding the joint dynamics of COVID-19
and opinions. We hope that our findings will help to inform public health policy
and facilitate evidence-based decision-making for public health interventions.
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1. Introduction

The novel coronavirus, COVID-19, was first detected in the

United States in January 2020 (1). Most of the detected COVID-

19 in the early days were from travelers returning from high-risk

countries or their close contacts. Thereafter, widespread

community transmission of the disease began to occur in

Washington, New York, and California communities (2). On

March 11, 2020, the World Health Organization (WHO)

declared COVID-19 a pandemic (3). Since then, there have been

approximately 97 million cases and 1.06 million fatalities in the

United States (4).

Behavioral patterns heavily influence both the spread and

evolution of COVID-19. For example, a large-scale randomized

trial involving 350,000 people in 600 villages in Bangladesh has

shown that the use of surgical masks impedes the spread of

COVID-19 (5). Observing isolation when exposed or infected

also impedes the spread. Vaccines reduce the severity of

symptoms, including hospitalization and death, and also the

spread rates (6). Opinions regarding whether to observe

behavioral patterns conducive to containment of COVID-19

evolve over time through social exchanges via networks that

overlap with but are not identical to the COVID-19 propagation

networks. Thus, the biological and information contagion spread

simultaneously and necessitate a joint investigation of the two

phenomena. The joint investigation is yet to be studied for

COVID-19, despite enormous progress in research on COVID-19

in the last 3 years. However, certain distinguishing characteristics

of COVID-19 necessitate an investigation of the joint spread

focusing on COVID-19.

Several behavioral patterns, such as willingness to wear surgical

masks and observing social distance, affect the spread of COVID-19.

Next, whether an individual is vaccinated affects the severity of

symptoms in infected individuals (7,8). Furthermore, the severity

of COVID-19 symptoms and fatality rates depend on age (9–11),

underlying health conditions (obesity, cancer, heart conditions,

chronic liver disease, chronic lung disease, chronic kidney disease,

HIV infection, etc.) (12, 13), race (14), and gender of individuals

(15), while propensity to spread COVID-19 depends on the

contact patterns of individuals. More specifically, old individuals

and those with certain underlying diseases, hitherto referred to as

comorbidity, are at greater risk to develop a severe form of the

disease and even die from it; the risk factor is higher for males and

for certain ethnic groups. However, old individuals are also least

likely to spread the disease because their contact rates are limited

(16). Young individuals who are in good health usually have high

contact rates among themselves, and also with other groups, and

are therefore more likely to spread the disease. Nevertheless, they

are also least likely to develop a severe form of the disease. Given

this divergence between groups who are at greater risk from the

disease and who are most likely to spread it, there may also be a

divergence between opinions regarding the behavioral patterns

between them. That is, given that their risk factors for developing

a severe form of the disease are lower, young and healthy

individuals may more easily subscribe to opinions that undervalue
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behavioral patterns that are conducive to the containment of the

disease. Opinion spread rates can be different in different groups

too. For example, young individuals may be more active on social

media and may therefore circulate their opinions faster than

others. The groups are often clustered in that the contact rates

(both proximity and social contacts) are often higher within

groups than across groups. For example, residential neighborhoods

and social circles are often racially segregated (17)—according to a

poll conducted in 2013 by Reuters/Ipsos, about 40% of White

Americans and about 25% of non-White Americans are

surrounded exclusively by friends of their own race (18). Thus, the

joint disease and opinion spread need to be studied considering

different forms of behavioral patterns that affect the spread and

different types and rates of information and disease spread based

on age, underlying health conditions, gender, race, etc. Note that

the divergences in question need not be as pronounced for other

infectious diseases as COVID-19.

The emergence of a new infectious disease always opens up the

possibility of a new bioterrorist attack that utilizes the respective

contagion. It is possible to create synthetic strains of COVID-19

that are more virulent and has higher transmissibility than the

existing strains through gain-of-function (GOF) research. One such

strain has already been created by a group of researchers at Boston

University (BU) by combining two features of different existing

COVID-19 strains (19). GOF research may help researchers better

understand the evolving pathogenic landscape, pandemic response,

treatment, and countermeasures and develop new technologies, but

may lead to synthetic variants that can be leaked accidentally or

deliberately as part of a bioterrorist attack. In the event of the latter,

opinions may be manipulated to induce behaviors conducive to the

spread of the disease. The divergence between groups that are at the

greatest risk and can spread the most facilitates such behavior

manipulation through opinion spread. For example, simultaneously

with the deliberate seeding of synthetic strains in the populace,

behavior conducive to the spread may be promoted among young

individuals citing their low risk of the disease. Due to connection

across age groups, the disease may spread to old and at-risk

individuals leading to high casualty. Thus, the characteristics of

COVID-19 may be exploited to launch lethal attacks through the

spread of opinions along with the spread of disease. The potential

of malevolent actors to inflict damage by exploiting the above

characteristics needs to be investigated.

In this paper, we develop a computationally tractable

mathematical model that jointly captures the evolution of a

COVID-19 outbreak and the evolution of opinion pertaining to

behavioral patterns pertinent to the spread and severity of the

disease. The model captures (1) the distinguishing characteristics

of COVID-19, namely, different risk factors and contact patterns

of different sections of the populace classified through age,

underlying health conditions (comorbidity), race, and gender; (2)

different opinion dynamics and rates of spreads of opinions

within these groups and across the groups. The model is flexible

enough to capture the dynamics of different kinds of behavior,

namely, wearing surgical masks and receiving vaccines. We

consider the reality that in the age of social media, opinions
frontiersin.org
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regarding behavioral dynamics rapidly evolve, through social

networks that overlap with but are not identical to biological

networks. In particular, during physical interactions, both disease

and opinions may spread, whereas only opinions may spread

through remote (e.g., electronic) interactions, and only the

disease might spread when individuals share the same physical

space (e.g., public spaces like beaches, parks, public transports)

without engaging in social interactions. We consider the long-

term effects of COVID-19 infection, otherwise known as long

COVID or post-COVID conditions (PCC). As per WHO, long

COVID occurs when coronavirus symptoms persist or return

3 months after an individual develops symptoms, and the

symptoms last for at least 2 months and cannot be explained by

an alternative diagnosis (20). Common symptoms of PCC

include fatigue, shortness of breath, and cognitive dysfunction.

According to the CDC, unvaccinated individuals who get

infected with COVID-19 might be at higher risk of developing

long COVID compared to people who get infected after receiving

the vaccine (21). Thus, PCC is correlated with behavioral choice

and therefore opinion dynamics. The model captures the essence

of stochastic evolution, but retains computational tractability, in

that it easily scales to typical target population sizes for

infectious diseases encompassing millions of individuals. We

utilize the model to quantify the impact of the opinion dynamics

on metrics that capture the overall health of the system such as

the total number of fatalities, hospitalization, and the number of

days the populace suffers from symptoms. This provides a

quantitative foundation for public health discourse pertaining to

the relationship between disease and opinion spreads that have

only been conducted in the qualitative sphere for COVID-19

thus far. The quantifications confirm several commonplace

intuitions and go beyond by unearthing the exact nature of the

dependence of the above public health metrics on several key

parameters. Our work helps identify how potential bioterrorist

attacks can strategically exploit the specific characteristics of

COVID-19 to undermine public health.
2. Materials and methods

In this section, we progressively describe the dynamics of

COVID-19 progression and spread (Section 2.1), the spread of

opinions pertaining to different behavioral patterns that affect the

severity of symptoms and the rate of spread (Section 2.2), state

transitions in the joint spread of disease and opinions (Section

2.3), and a mathematical formulation that captures the dynamics

of the joint spread (Section 2.4).
2.1. Dynamics of the infectious disease

SARS-CoV-2 propagates through spatial proximity. When a

susceptible individual, S, gets in spatial proximity of an infected

individual, I, the former contracts the disease with a certain

probability and becomes exposed. We denote the exposed stage

by E. The virus incubates and grows during the exposed stage
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but the exposed individual neither shows any symptoms nor is

contagious. From the exposed stage, an individual either becomes

presymptomatic, stage denoted by P, or asymptomatic, stage

denoted by Ia. During both stages, the individual does not show

symptoms but is infectious, though he may transmit the disease

with different probabilities. From the former stage, he moves on

to show symptoms while from the latter stage, he directly

recovers without ever showing symptoms. If he shows symptoms,

he transitions into the symptomatic stage Is after which he either

recovers or is hospitalized. When he is hospitalized, he cannot

transmit the infection further because he is under quarantine. A

hospitalized individual, stage H, can recover, stage R, or die,

stage D. We assumed that an individual who recovers from

COVID-19 does not get reinfected. Refer to Figure 1 for a

pictorial illustration of the different stages of the disease.

One of the distinguishing characteristics of COVID-19 is that

different segments of the populace exhibit a substantially different

propensity to severe forms of COVID-19, and death when they

imbibe it. First, once infected, older adults are more likely to need

hospitalization, intensive care admission, or a ventilator to help

them breathe (10). Older patients also have a higher fatality rate

(11). Next, male patients are more at risk for worse outcomes and

death (15). Also, in the United States once infected, African

Americans have higher duration of hospital stays, as compared to

White people (14). Finally, risks for a severe form of the disease

are substantially higher when patients have certain underlying

health conditions. These underlying conditions include obesity

[body mass index, i.e., a person’s weight in kilograms divided by

the square of height in meters, over 30 is considered obese (22)],

cancer treatment, HIV/AIDS positive, heart and lung disease,

diabetes, etc. (12). Risks increase manifold for comorbid patients,

i.e., those who suffer from two or more conditions.

To model different risk factors for different sections of the

population, we will classify individuals in different stages of

COVID-19 further according to their age, gender, race, and

underlying health conditions. Specifically, we classify individuals

into three different age groups: (i) youngest group—for individuals

who are in the age range of 0–24 years; (ii) middle-age group—for

individuals who are 25–49 years old; (iii) oldest group—for those

who are 50 years and above. We classify individuals into male and

female; African American, Hispanic, and White; and healthy and

immunocompromised. Individuals who do not have any

underlying health conditions that accentuate the risk of imbibing a

severe form of COVID-19 are classified as healthy, the rest are

immunocompromised. For simplicity, we have considered the

races which together constitute 95% of the population of the

Commonwealth state of Pennsylvania, United States. Table 5

in the Supplementary material shows the demographic

characteristics of Pennsylvania with respect to age and race (23).

Refer to Figure 2 for a pictorial illustration of the evolution

when only age-based classification is resorted to. Note how the

state evolution shown in Figure 1 is being replicated due to age-

based classification. Consideration of further classification based

on gender, race, and underlying health replicates the state

evolution shown in Figure 2 further. We consider this further

classification in the mathematical formulation but not in the
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FIGURE 1

Fundamental COVID-19 state diagram. The states in blue color are the susceptibles (not yet infected but they are prone to infection) while those in light
green color are exposed (still in the incubation period, hence they are not infectious). The states in dark red are infected and therefore infectious while
those in gold have recovered, those in light blue are hospitalized, and black denotes dead. In addition, the yellow arrow shows susceptibles transitioning
to the exposed state after contracting the virus. The blue arrows indicate the natural progression of the disease.
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pictorial representation owing to the large number of states

introduced due to the full-fledged classification.

Different sections exhibit different contact rates and patterns,

both within and across sections. For example, in many parts of

the United States, neighborhoods are racially segregated, through

living preferences and economic conditions. Accordingly, people of

different races also largely attend different schools, and utilize

different services and shops (17). According to a poll conducted in

2013 by Reuters/Ipsos, about 40% of White Americans and about

25% of non-White Americans befriend exclusively from their own

race (18). Thus, contact rates across the categories we considered

in the previous paragraph are lower than those within the same

category. Finally, contact rates also depend on age. Specifically,

older people have less social contact than younger people, and
FIGURE 2

COVID-19 state diagram divided into various age groups. The subscripts 1, 2, a
respectively. Every state and transition has the same meaning as described in t
indexed 1, 2, and 3, e.g., between S1, S2, and S3, as we do not consider transi
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other things being equal, higher age is correlated with a lesser

amount of time spent with others (16). Different contact rates and

patterns can be incorporated by classifying individuals based both

on the stage of the disease and age, gender, race, overall health, etc.
2.2. Opinion dynamics

We now describe how we characterize the opinion dynamics

leading to a characterization of the joint evolution of COVID-19

and opinions.

An individual is cooperative if he follows the behavioral

practices that reduce (1) the probability of the spread of COVID-

19 in the event of spatial proximity between an infectious and a
nd 3 represent the youngest group, middle-age group, and oldest group,
he caption forand Figure 1. Note that there is no transition between states
tions between age groups in the time frame under consideration.
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FIGURE 3

COVID-19 state diagram incorporating cooperativity. The black arrows indicate opinion evolution. The subscripts c and n, respectively, denote
cooperative and non-cooperative individuals. Thus, the black arrow from Sn to Sc represents the conversion of a susceptible non-cooperative to a
susceptible cooperative, i.e., evolution of opinion of a susceptible. Every state and transition has the same meaning as described in the caption for
Figure 1.
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susceptible individual; (2) the severity of symptoms if he imbibes

the disease. Such behavioral practices include some or all of the

following: maintaining appropriate physical distancing, wearing

appropriate protective gear, getting vaccinated, frequent hand

washing, etc. A non-cooperative individual does not observe these

norms. Thus, an individual ought to be classified as cooperative

or non-cooperative, in addition to his stage of the disease, age,

gender, race, and overall health. For example, in the classified

COVID-19 state diagram (Figure 3), Sc and Sn, respectively,

denote cooperative and non-cooperative susceptible individuals.

This additional classification enables the modeling of the joint

evolution of the disease and opinions. Refer to Supplementary

Table 3 for all the notations.

Opinions pertaining to the observance of the above behavioral

practices evolve through the influence of social contacts and

through exposure to independently accessible information such

as reading material, TV, radio, billboards, Internet

advertisements, etc. We consider that a cooperative converts a

non-cooperative to become a cooperative with a certain

probability during an exchange of ideas between the duo. Such

exchanges may happen in person or remotely. A non-cooperative

may also be converted by reading about what reduces the spread

of the disease or by watching or hearing public awareness

programs on TV, radio, billboards, social media, etc. The

conversion may happen during any stage of the disease. We

assume that when an individual is hospitalized, he is

quarantined, then he does not convert anyone or is converted by

anyone but may be converted by exposure to public awareness

campaigns (which may have a stronger impact because the

individual might be infected and he experiences the symptoms

acutely). Our default assumption is that the non-cooperatives

change their opinions, but we later generalize the model to

incorporate change of opinions in the reverse direction as well.
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Refer to Figure 3 for a pictorial illustration of the evolution when

only cooperativity-based classification is resorted to. Note how the

state evolution shown in Figure 1 is being replicated due to the

cooperativity-based classification. Figure 4 shows classification

based on both age and cooperativity. Further classification based

on age, gender, race, and underlying health, which we consider in

the mathematical formulation, replicates the state evolution shown

in Figure 3 further. The fundamental difference between

classifications based on cooperativity and those based on age,

gender, race, and underlying health is that an individual can

transition from cooperative to non-cooperative or vice versa but

does not transition across the other attributes in the time frame we

consider. Thus, in Figure 2, there is no transition between S1, S2,

and S3, but in Figure 3, there is a transition from Sn to Sc.

We have considered different behavioral practices pertaining to

the evolution of COVID-19, namely, maintaining appropriate

physical distancing, wearing appropriate protective gear, frequent

hand washing, getting vaccinated, etc. All except the last reduce

the probability of spread of the disease from an infectious

individual to a susceptible, while the last reduces the severity of

symptoms, probability of hospitalization, and death once the

disease is imbibed (though the last may also reduce the

probability of transmission of the disease from the infectious to

the susceptible). We now illustrate how minor adaptations of the

model can help cater to these distinctions in the impact of

different behavioral precautions. We first consider the behavioral

practices that only reduce the spread. When cooperativity is used

to denote observance of these, we assume that when an

infectious individual is in physical proximity of a susceptible one,

the probability of the spread of the disease from the infectious to

the susceptible is higher if both are non-cooperatives than if both

are cooperatives. If only one is non-cooperative, the probability

of the spread is somewhere in-between (the in-between can also
frontiersin.org
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FIGURE 4

COVID-19 state diagram classified by ages and cooperativities. The subscripts c and n, respectively, denote cooperative and non-cooperative individuals.
Similarly, subscripts 1, 2, and 3 represent the youngest group, the middle-age group, and the oldest group, respectively. Note that there is no transition
across age groups, but there is a transition across opinion groups, e.g., there is a transition from Sn1 to Sc1, but no transition between Sn1 , Sn2 or Sc1 , Sc2.
Every state and transition has the same meaning as described in the caption for Figure 1.
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equal one of the two ends, i.e., the probability when both are

cooperative and when both are non-cooperative). We now

consider the behavioral practice to be vaccinated, i.e., a

cooperative is willing to be vaccinated while a non-cooperative is
Frontiers in Digital Health 06
not. We assume that vaccines are available as soon as one is

willing, which is currently the case in most of the United States

and Europe. Thus, considering that the vaccine in question

requires only one dose, as soon as an individual becomes
frontiersin.org
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cooperative, he is vaccinated. Then, we incorporate the impact of

vaccination by considering that a cooperative has a lower

probability of developing symptoms, a lower probability of

needing hospitalization even when he develops symptoms (i.e.,

the symptoms are mostly mild), and a lower probability of dying

even when hospitalized. We can simultaneously consider that

cooperatives spread the disease with a lower probability, as

described above if vaccines also lower the probability of the

spread. Our default assumption is that the vaccine needs only

one dose, though we describe in Section 4 how our model can

be generalized to incorporate vaccines that need multiple doses.

The model can incorporate different opinion dynamics and

interactions involving exchange of ideas in different sections of

the populace based on age, gender, race, and health conditions,

by considering different rates of conversion of opinions in

different groups representing the above classifications.
2.3. State transitions in the joint evolution of
disease and opinions

There are two kinds of transitions in joint evolution: (1)

interactional and (2) non-interactional. Interactional transitions

happen when a susceptible imbibes the disease from an

infectious individual or a cooperative converts a non-cooperative.

Thus, during interactional transition, both disease and opinions

may spread from one individual to another. The natural

progression of the disease in the infected individuals and

conversion of opinion due to access to information in reading

material or mass awareness campaigns constitute non-

interactional transitions.

We now provide a taxonomy of the interactional transitions

[which is similar to that in (24)]. Interaction between individuals

can be classified as (i) physical interactions with an exchange of

opinion and biological contagion (e.g., friends and acquaintances

visiting homes of each other, etc.); (ii) physical interactions

without any exchange of ideas (e.g., people commuting on a

train, bus, etc.); (iii) virtual interactions with an exchange of

ideas (e.g., telehealth, counseling over the phone or Internet,

etc.). Whereas the first case can cause infection and a change in

opinion, the second case can only cause infection, while the third

case can only cause a change of opinion.
2.4. The clustered epidemiological
differential equation model

A joint investigation of infectious disease and opinion

dynamics naturally leads to a computationally complex model

involving (1) a multiplicity of states representing a combination

of stages of the disease, gender, age group, race, health condition,

and cooperativity; and (2) a multiplicity of state transitions

representing interactional transitions due to spread of the disease

and opinions, as well as non-interactional transitions due to the

natural progression of the disease in the infected individuals and

alteration of opinions due to exposure to public awareness
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campaigns. Following our recent work on modeling the joint

spread of Smallpox and vaccine hesitancy (24), we model these

attributes by adapting the metapopulation epidemiological model

(25, 26) which relies on a set of differential equations. We

describe the adaptations in the Supplementary material and

refer to the resulting model as clustered epidemiological

differential equations or the CEDE, given that each state is

decomposed into groups or clusters. In general, estimating the

spread of infectious diseases is computationally challenging

because it involves millions of individuals in population sizes one

needs to consider. Metapopulation models alleviate this challenge

by relying on differential equations, which can be solved using

readily available and computationally efficient numerical

techniques. The differential equations capture the evolution of

states of different fractions of the total population. Thus, the

computational time does not increase with the increase in the

size of the populace (24).

Each variable in the CEDE represents the fraction of the

population who are in a particular system state. Meanwhile, each

state represents the combination of the stage of the disease, age

group, gender, health conditions, and cooperativity of an

individual. Each differential equation captures the evolution of a

particular variable. Thus, the solution of the CEDE provides the

fraction of individuals in different states at given times. In other

words, the solutions of the differential equation provide the

distribution of the disease and opinion spread across groups and

time. The terms in the CEDE are either linear or quadratic. The

quadratic terms represent the interactional transitions (refer to

the yellow and black arrows in Figure 3) and the linear terms

represent the non-interactional transitions (refer to the blue

arrows in Figure 3). This distinction arises because interactions

always involve two individuals, while non-interactional

transitions involve only one individual. This arises in all

epidemiological models starting from the classical Kermack–

McKendrick formulation (27) and onward to the metapopulation

models (24–26, 28, 29). But our work differs from the

metapopulation epidemiological models because it captures two

different evolving contact processes spreading simultaneously

(disease, opinion), whose overlap is only partial (only certain

interactions spread both the disease and opinion, while others

can only spread one of the two). The spread of the two processes

involves two broad categories of interactional transitions: (1)

susceptible to exposed state; (2) non-cooperative to cooperative

and vice versa. Metapopulation models typically capture only one

evolving process, namely, the disease, spreading through physical

proximity and therefore need only the first kind of interactional

transitions. Since interactional transitions are represented by

quadratic terms, the second kind produces additional quadratic

terms in our model.

We now provide more details on the computation time of the

CEDE. Let there be L variables and thus L differential equations. The

computation time depends only on L and increases linearly with it.

For instance, with three age groups, two genders, three

races, cooperative–non-cooperative, healthy–immunocompromised

classifications, L ¼ 450. And, regardless of the population size, the

average computation time to obtain one data point is approximately
frontiersin.org
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2 min using MATLAB 2022a and Macbook Pro 2.9 GHz Dual-Core

Intel Core i5 Processor with 8 GB Memory Laptop.

A question that arises for the CEDE is that it is a deterministic

model, while many of the state transitions are stochastic. We

resolved this dilemma in our earlier work (24) through an

application of a classical result of probability theory. Under some

commonly made assumptions on the stochastic evolutions, we

have shown that as the number of individuals increases, the

fractions of individuals in different system states in the stochastic

system converge to the solutions of the CEDE, and the

convergence becomes exact in the limit that the number of

individuals is infinity (24). Thus, the CEDE approximates the

stochastic process better with an increase in the number of

individuals. The convergence guarantee holds when the stochastic

evolutions are Markov, that is, the amount of time an individual

spends in each system state is exponentially distributed, which is

what we assume to estimate the parameters of the system

(Supplementary material). Note that such Markovian

assumptions are commonplace in modeling the spread of

infectious diseases [e.g., as noted in Chapter 2, p. 28, (30)].

Our CEDE model is naturally flexible in that it can

accommodate opinion dynamics, different behavioral practices,

arbitrary age groups, gender, health conditions, and

countermeasure application strategies. The CEDE remains

computationally tractable and provides an analytical convergence

guarantee while providing the above modeling flexibility.
3. Results

We utilized our COVID-19 model to investigate the impact of

opinion dynamics on various public health attributes such as

fatalities, number of man-days lost because of symptoms,

hospitalizations, etc. We consider three different scenarios: (1)

cooperatives observe behavioral practices (e.g., wearing surgical

masks, observing social distancing, hygiene such as repeated hand

washing) that reduce the spread of the biological contagion

(Scenario 1, Section 3.2); (2) cooperatives take vaccines which

reduce the severity of symptoms (Scenario 2, Section 3.3); (3)

cooperatives observe both healthy behavioral practices and take

vaccines (Scenario 3, Section 3.4). Recall that consistent with

reported statistics, we have assumed that vaccines only reduce the

severity of symptoms. Thus, in Scenario 1, cooperatives only

impede the spread, while in Scenario 2, they only have a lower

propensity of severe symptoms, and in Scenario 3 they impede the

spread and have a lower propensity of severe symptoms (5–8).

The first scenario corresponds to the case in which vaccines are

not available because then no one (i.e., neither cooperatives nor

non-cooperatives) accepted vaccines. The second and third

scenarios correspond to the phase in which vaccines are available.

When we consider the second and third scenarios, we start from

an initial distribution of cooperatives, which correspond to the

people who had become willing to accept vaccines at the start of

the availability of vaccines. The willingness may be attributed to

trust in the public health system, fear and panic about the

pandemic, etc. In the first and third scenarios, our default
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assumption is that cooperative susceptible (respectively cooperative

infectious) individuals are infected (respectively infect) during

physical proximity with an infectious (respectively susceptible)

individual at a rate that is half that of a non-cooperative

individual. We also deviate from the default assumption and

consider the scenario in which when a susceptible is in physical

proximity of an infectious and (1) both are cooperatives, the

disease transmits at the lowest rate; (2) only one is a cooperative,

the disease transmits at an intermediate rate; and (3) both are

non-cooperatives, the disease transmits at the highest rate. We

consider that the lowest and the intermediate are respectively 1
4

and 1
2 of the highest rate. We denote this scenario as second-

transmission-rate-scenario. We consider different durations for

COVID-19 symptoms: (1) regular durations in which symptoms

do not exist after an individual recovers; (2) long COVID in

which symptoms last for months after recovery (we consider

2 months in this case). We consider different fatality and

hospitalization rates, ranging from those seen in natural variants

(default choice) to extremely high values which have been

reported for synthetic variants. As to opinion dynamics, we

consider that cooperatives convert non-cooperatives during

information exchange (default), but we also consider the scenario

whereby non-cooperatives convert cooperatives.

We start with a sanity check in which we show that several

commonly used variables such as the number of infected,

hospitalized, and recovered individuals vary with time in an

expected manner (Section 3.1). This suggests that the model is

functioning as per expectations and instills confidence in the results

that the model yields. We subsequently report our findings for the

above-mentioned variations in Sections 3.2–3.4. In all the

variations, we observe that opinion exchange between cooperatives

and non-cooperatives has a significant effect on the public health

attributes we consider. Specifically, information exchange among

the younger population has a disproportionate impact on public

health attributes, though statistically speaking the symptoms are the

mildest among them. The disproportionate impact arises because

the younger section is in physical proximity to each other and with

the rest of the society more often than other age groups, because of

their naturally active lifestyle. Unless otherwise mentioned, all

parameters are at their default values specified in Section II in the

Supplementary material. Figures 16–20 are supplementary figures

in the Supplementary material.
3.1. Sanity check

We plot the number of infected, hospitalized, and recovered

individuals as a function of time (Scenario 1, Supplementary

Figure 16; Scenario 2, Supplementary Figure 17; Scenario 3,

Figure 5). We plot these attributes separately for the youngest

and the oldest age groups we considered. As expected, the first

two increase with time initially and then decrease, as individuals

either recover or die. The number of recovered individuals

initially increases with time and finally saturates as the system

reaches a steady state in which all individuals have either

recovered or died. Finally, as expected, more individuals in the
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FIGURE 5

Scenario 3. Plots in the time domain for sanity check. (A) Infection per
day, (B) hospitalization per day, and (C) number of recovered individuals.
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youngest group are infected per day than individuals in the oldest

group (Supplementary Figures 16A, 17A, and Figure 5A). This is

because younger individuals are more often in physical proximity

with others than those in the oldest group. As expected, the

number of hospitalized individuals is higher for the oldest group

because the hospitalization rate increases with age

(Supplementary Figures 16B, 17B, and Figure 5B). The number

of recovered individuals is higher for the youngest group because

the fatality rate is lowest for them and in the steady state an

individual is either dead or recovered (Supplementary Figures

16C, 17C, 5C). The number of infected and hospitalized are the

least and the number of recovered is the maximum in Scenario

3, intermediate in Scenario 1, and respectively the maximum and

the minimum in Scenario 2 (Figures 16, 17, and Figure 5). This

is because the cooperatives observe all the desirable behavioral

practices in Scenario 3 and different subsets of behavioral

practices in the other two scenarios. A comparison between

Scenarios 1 and 2 suggests that impeding the spread is more

effective than reducing the severity of symptoms for all public

health attributes (Figures 16 and 17).
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3.2. Impact of opinion dynamics when
behavioral practices affect spread of
COVID-19: scenario 1

3.2.1. The default scenario
We consider that cooperatives observe behavioral practices that

reduce the spread of biological contagion, while non-cooperatives

do not observe such practices. Also, no individual takes vaccines.

In Figure 6, we plot the overall fatality and hospitalization counts

against the opinion spread rate for different values of the fraction

of individuals who are cooperative initially. As cooperatives

exchange opinions with non-cooperatives, the latter is converted. In

general, the conversion happens faster as the rate of exchange of

opinions, i.e., the opinion spread rate, increases. The conversion

does not happen if all individuals are cooperatives or non-

cooperatives initially. Thus, the number of deaths does not change

with the opinion spread rate when the initial cooperativity is either

0 or 1. The fatality counts, however, decrease rapidly with an

increase in opinion spread rates for initial cooperativities between 0

and 1. For instance, for an initial cooperativity of 0:8, 0:6, 0:4, and

0:2, the number of deaths decreases by 42:33%, 95:06%, 97:35%,

and 97:36%, respectively, as the opinion spread rate increases from

0 through 2� 10�9. Similarly, the number of hospitalized

individuals decreases by 44:22%, 95:28%, 97:40%, and 97:37%

respectively as the opinion spread rate increases from 0 through

2� 10�9. The percentage decrease in fatality and hospitalization

counts show that opinion dynamics have a strong impact on these

public health attributes; the impact is strongest when the initial

cooperativity values are moderate to low as then there are more

non-cooperatives to convert with an increase in opinion exchange

rates. The variations of the fatality and hospitalization counts

against the opinion spread rate follow similar patterns.

We next examine how fatality and hospitalization counts are

affected if only the opinion exchange rate in one age group is

increased and also if there is any difference depending on which

age group that is. We examine this for two different values of

physical contact rates among the youngest population: the default

value (yL) and thrice the default value (yH). For yL, the fatality

count in all, youngest, middle-age, and oldest groups,

respectively, decrease by 88:22%, 90:43%, 88:35%, and 88:10% as

the opinion spread rate of the youngest group increases from 0

through 2� 10�9 (Figure 7A). Also, the hospitalization count in

all, youngest, middle-age, and oldest groups, respectively,

decreased by 88:66%, 90:30%, 88:37%, and 88:11%

(Supplementary Figure 18A). For yH , the number of deaths in

all, youngest, middle age, and oldest groups will respectively

decrease by 47:75%, 52:95%, 44:66%, and 47:63%. Similarly,

hospitalization count in all, youngest, middle-age, and oldest

groups will, respectively, decrease by 48:60%, 52:87%, 44:70%,

and 47:63%. Thus, an increase in the rate at which individuals

physically interact reduces the percentage decrease in fatalities

and hospitalization and thereby the efficacy of the opinion

exchange. Note that the fatality and hospitalization counts for

the oldest group are significantly affected by the opinion

exchange within the youngest group. We now examine the
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FIGURE 6

Fatality and hospitalization counts against opinion spread rate for various initial cooperativities. (A) Fatalities count against opinion spread rate for various
initial cooperativities. (B) Hospitalization count against opinion spread rate for various initial cooperativities.
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impact of opinion exchange within the oldest group (Figure 7B).

For yL, fatality count for all, youngest, middle-age, and oldest

groups decrease by 69:23%, 64:89%, 64:77%, and 69:80%

respectively, as the opinion spread rate of the oldest group

increases from 0 through 2� 10�9. Also, the hospitalization

count for all, youngest, middle-age, and oldest groups will,

respectively, decrease by 67:37%, 64:83%, 64:90%, and 69:81%.
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Next, for yH , the fatality count for all, youngest, middle-age, and

oldest groups will, respectively, decrease by 18:01%, 2:96%,

7:42%, and 19:92%. Similarly, the hospitalization count for all,

youngest, middle-age, and oldest groups will, respectively,

decrease by 11:75%, 2:94%, 7:43%, and 19:92%. Thus, in all

cases, the fatality and hospitalization counts decrease more when

the opinion exchange rates are enhanced in the youngest group
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FIGURE 7

Fatality count for various interaction rates of the youngest group. yL denotes the default interaction rates of the youngest group while yH represents when
the youngest group’s interaction rates are tripled (other groups’ interaction rates remain the same). (A) Opinion spread rate varied for the youngest group.
(B) Opinion spread rate varied for the oldest group. (C) Opinion spread rate varied for all the groups.
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than when they are enhanced in the oldest group. Thus, converting

younger individuals to cooperatives decreases fatality and

hospitalization counts more across all age groups. That is, the

behavioral practices of the youngest group impact the whole

population more than those of the others. As expected,

simultaneously converting opinions across all age groups have
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the most impact. For instance, for yL the fatality count for all,

youngest, middle-age, and oldest groups, respectively, decreased

by 95:98%, 96:23% 96:59%, and 95:91% as the opinion spread

rate increases from 0 through 2� 10�9 (Figure 7C). Also, the

hospitalization count for all, youngest, middle-age, and oldest

groups, respectively, decreased by 99:62%, 96:49% 93:66%, and
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95:90%. Similarly, for yH , the number of deaths for all, youngest,

middle-age, and oldest groups, respectively, decreases by 93:74%,

90:86% 93:62%, and 93:95%. Also, the hospitalization count for

all, youngest, middle-age, and oldest groups, respectively,

decreased by 92:91%, 90:85% 93:66%, and 93:95%. We do not

present separate plots for overall fatality counts as the numbers

can be obtained by adding the fatality counts in the three age

groups; we just provide the numbers in the text. Yet again, we

observe from Figure 7 and Supplementary Figure 18 that the

variation of hospitalization and fatality follows the same pattern.

We, therefore, omit the plots for the latter subsequently.

To understand why the opinion exchange rate in the youngest

group has the greatest impact on the fatality rates, we plot the

fatality vs. the opinion spread rate when the physical interaction

rates are the same in the youngest and the oldest groups. This

would clearly not arise in practice but has been selected so as to

understand the reason underlying the phenomenon reported in the

previous paragraph. We observe that the number of deaths for all,

youngest, middle-age, and oldest groups, respectively, decrease by

19:08%, 31:44%, 19:04%, and 18:74% as the opinion spread in the

youngest group is increased from 0 to 10�9 (Figure 8A). Similarly,

the number of hospitalized in all, youngest, middle-age, and oldest

groups, respectively, decrease by 38:14%, 27:98%, 28:15% and

38:95% as the opinion spread in the oldest group is increased in the

same range (Figure 8B). The numbers are now in the same

ballpark; if at all now fatalities decrease more by converting a

greater number of cooperatives in the oldest group because death

rates are higher here (the oldest group has a high-risk factor). Thus,

in the scenarios that arise in practice, the impact of the opinion

spread in the youngest age group is the most because the physical

interaction rate in this group is the highest. Consequently, disease

spreads in this group at the highest rate and this group spreads the

disease to other groups. Thus, converting individuals in this group

to cooperatives in effect contains the carriers.

3.2.2. Second transmission rate scenario
Next, we consider the case whereby the disease spread rate is at

its default value when only one of the interacting pair is

cooperative; when both the interacting individuals are non-

cooperative, the disease spread rate is twice the default value; and

when both the interacting individuals are cooperative, the disease

spread rate is half the default value. Figure 9A shows that the

fatality counts for all, youngest, middle-age, and oldest groups,

respectively, decrease by 63:49%, 72:31%, 60:02% and 63:40% as

the opinion spread rate of the youngest group increases from 0

through 2� 10�9. Figure 9B shows that the fatality counts for

all, youngest, middle-age, and oldest group, respectively, decrease

by 46:36%, 28:12%, 28:36%, and 48:55%, as the opinion spread

rate of the oldest group increases from 0 through 2� 10�9.

Thus, the pattern of variation remains the same as before.

Figure 9C shows that the fatality counts for all, youngest,

middle- age, and oldest groups, respectively, decrease by 98:81%,

98:85%, 98:85%, and 98:81% as the opinion spread rate for all

the groups increases from 0 through 2� 10�9. Finally, even

when the interaction rate of the youngest group is tripled, the

fatality count for all, youngest, middle-age, and oldest groups,
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respectively, decrease by 94:23%, 89:89, % 93:93%, and 94:51%.

Thus, the impact of the opinion spread rate across all the groups

is quite significant even when the disease spread rate is increased.

3.2.3. Impact of long COVID
Next, we evaluate the impact of opinion dynamics in the presence

of long COVID. Recall that long COVID occurs when coronavirus

symptoms persist for at least 60 days or return 3months after an

individual becomes ill from SARS-CoV-2. We consider only the

former here; in effect, this increases the duration of symptoms for

patients or a fraction thereof and decreases the productivity of the

populace. We consider the number of man-days patients suffer

from symptoms, i.e., the number of days each patient suffers from

symptoms summed up over all patients. This attribute is the sum

of two components: (1) man-days lost due to symptoms during the

symptomatic phase of COVID-19 infection; (2) man-days lost due

to patients experiencing symptoms after recovering. Due to the

second component, a section of the patients experiences symptoms

even after transitioning to the recovered state when they are no

longer infectious. The first component is
PT

i¼1 Ii, where T is the

number of days we consider, Ii is the number with symptoms, and

the number hospitalized on day i. The second component is

r1
PT

i¼1 Xi min (60, T � i)þ r2
PT

i¼1 Yi min (60, T � i), where Xi

is the number of cooperatives who recover on day i, Yi is the

number of non-cooperatives who recover on day i, r1 is the

fraction of cooperatives who suffer long COVID, and r2 is

the fraction of non-cooperatives who suffer long COVID. In the

current section, neither cooperatives nor non-cooperatives are

vaccinated. We consider r1 ¼ r2 ¼ 0:418 as 41:8% of unvaccinated

individuals suffer from long COVID (31, 32). We now plot the

number of man-days patients experience symptoms against the rate

of spread of opinion (Figure 10).

We observe that man-days lost decreases as the opinion spread

rate increases. The decrease is most when the opinion spread rate

for all the groups increases, intermediate when the rate of spread of

opinion increases only for the youngest group, and least when the

rate of spread of opinion only increased for the oldest group. When

the rate of spread of opinion for all the groups, only the youngest

group, and only the oldest group increases, man-days lost due to

long COVID decreases by 95:43%, 87:49%, and 63:39%,

respectively. Thus, the impact of opinion dynamics is pronounced

in this case as a higher rate of spread of opinion tantamount to

non-cooperatives converting to cooperatives at a higher rate, which

in turn leads to a lower rate of spread of the disease in the populace

and, therefore, a lower number of man-days individuals experience

symptoms. Again, the opinion dynamics in the youngest group have

a much greater impact than that in the oldest group.

3.2.4. Synthetic variant with high fatality rate
Next, we consider higher values of fatality rate motivated by

the recent creation by BU researchers of a synthetic variant of

COVID-19, a recombinant virus called Omi-S, that causes 80%

fatality rate in mice (19). Figure 11 shows that fatality count

increases by a factor of 8 as compared to when the fatality rate is

at the default value (Figure 7). In addition, the decrease in

fatality with the increase in the opinion spread rate follows the
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FIGURE 8

Fatality count when the interaction rates of the oldest group equal that of the youngest group. (A) Opinion spread rate varied for the youngest group. (B)
Opinion spread rate varied for the oldest group. (C) Opinion spread rate varied for all the groups.
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same pattern as in the default case. For instance, when the opinion

spread rates for the youngest group increase from 0 to 2� 10�9,

the fatality counts for all, youngest, middle-age, and oldest

groups, respectively, decrease by 88:22%, 90:27%, 88:36%, and

88:11% as against 88:22%, 90:43%, 88:35%, and 88:10% in the

default case. Similarly, when the opinion spread rates for the

oldest group increase from 0 to 2� 10�9, the fatality counts for

all, youngest, middle-age, and oldest groups, respectively,

decrease by 69:24%, 64:82%, 64:89%, and 69:81% as against

69:23%, 64:89%, 64:77%, and 69:80% in the default case.
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3.2.5. When non-cooperatives convert cooperatives
We finally consider the case that non-cooperatives convert

cooperatives while exchanging opinions. Now, as expected, unlike

in the former case where cooperatives convert non-cooperatives,

fatality increases with an increase in the opinion spread rate. We

consider two values of the physical interaction rate in the

youngest group: default value yL and thrice the default value yH
(Figure 12). We observe that for yL, the fatality counts in all,

youngest, middle-age, and oldest groups, respectively, increase by
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FIGURE 9

Fatality count for various interaction rates of the youngest group. yL denotes the default interaction rates of the youngest group while yH represents when
the youngest group’s interaction rates are tripled (other groups’ interaction rates remain the same). (A) Opinion spread rate varied for the youngest group.
(B) Opinion spread rate varied for the oldest group. (C) Opinion spread rate varied for all groups.
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793:81%, 1136:36%, 866:67%, and 777:37% as the opinion spread

rate in the youngest group increases from 0 through 2� 10�9

(Figure 12A). For yH , the fatality counts for all, youngest,

middle-age, and oldest groups will, respectively, increase by

48:21%, 51:11%, 43:28% and 48:37% as the opinion spread rate

in the youngest group increases from 0 through 2� 10�9.

Similarly, for yL, the fatality counts for all, youngest, middle-age,

and oldest group, respectively, increase by 116:29%, 100:00%,

100:00%, and 118:61% as the opinion spread rate of the oldest

group increases from 0 through 2� 10�9 (Figure 12B). For yH ,
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the fatality counts for all, youngest, middle-age, and oldest

groups, respectively, increase by 30:61%, 5:83%, 12:22%, and

34:19% as the opinion exchange rate in the oldest group

increases from 0 to 2� 10�9. In addition, for yL, the fatality

counts for all, youngest, middle-age, and oldest group,

respectively, increase by 5252:44%, 5600%, 5245:45%, and

5239:05% as the opinion spread rate in all the groups increases

from 0 through 2� 10�9 (Figure 12C). Similarly, for yH , the

respective increases in this case are 115:93%, 59:39%, 107:70%,

and 121:39%: We observe that as before, the highest increase in
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FIGURE 10

Impact of opinion dynamics on long COVID in Scenario 1. (A) Number of
man-days of patients suffering symptoms vs. opinion spread rate in all
the groups. (B) Number of man-days of patients suffering symptoms
vs. opinion spread rate in only the youngest group. (C) Number of
man-days of patients suffering symptoms vs. opinion spread rate in
only the oldest group.
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fatalities occurs when the opinion spread rate increase for all the

groups, and if the opinion spread rates were to increase in only

one age group, the increase in the youngest one has the

maximum impact over all the groups.
3.3. Impact of opinion dynamics when
behavioral practices affect the severity of
symptoms of COVID-19: scenario 2

We consider that cooperatives are willing to receive vaccines but

observe no other behavioral precaution; non-cooperatives refuse all
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behavioral precautions including receiving vaccines. We assumed

that COVID-19 vaccination in the United States is now readily

available across the country and the vaccines need only one dose.

Thus, an individual is vaccinated right after he becomes willing to

be vaccinated, i.e., cooperative. According to Wilder-Smith (6), the

secondary attack rate (SAR) among household contacts exposed to

fully vaccinated index cases was similar to household contacts

exposed to unvaccinated index cases. Thus, vaccination does not

affect the rate of transmission of the disease, and cooperatives

spread the disease at the same rate as non-cooperatives. However,

it has been established that vaccines reduce the severity of

symptoms, including hospitalization and death. For example,

vaccines reduce non-intensive care unit (ICU) hospitalizations and

deaths by 63:5% and 69:3%, respectively (33). Thus, infected

cooperatives experience lower hospitalization and death rates as

compared to infected non-cooperatives.

Since cooperatives transmit the disease at the same rate as non-

cooperatives, conversion to cooperative does not affect the rate of

spread of the disease. Thus, increasing the rate of spread of

opinions in one age group affects the fatality count only in that

group. As the rate of spread of opinion in the youngest group

increases from 0 through 2� 10�9, the fatality count for the

middle-age and oldest groups remain unchanged; the fatality

count in the youngest group, however, decreases by 33:49%

(Figure 13A). For yH , the disease spreads faster among the

young and subsequently to the other groups. Thus, the fatality

counts increase in all age groups in this case, but the fatality

counts decrease with an increase in the opinion exchange rate

only in the youngest group, the fatality counts do not change in

other age groups. Similarly, when the opinion exchange rate

increases only in the oldest group, the fatality count remains

constant in other age groups but decreases by 33:47% in the

oldest group (Figure 13B). Thus, opinion dynamics in one group

do not affect public health attributes among others.

Next, we consider the impact of long COVID. For multidose

vaccine, the prevalence of long COVID in vaccinated individuals is

30:0% after one dose, 17:4% after two doses, and 16:0% after a

single dose. Since we consider only single-dose vaccines, we

consider the overall prevalence to be the average, i.e. 21:13% (31,

32). The number of man-days of symptoms can be computed

similarly to that for Scenario 1, with the difference that r1 = r2 in

this case as different fractions of vaccinated and unvaccinated

experience long COVID. The fraction of cooperatives and non-

cooperatives who suffer long COVID are r1 ¼ 0:2113 and

r2 ¼ 0:418, respectively (31, 32). The man-days lost due to COVID

decrease as the opinion spread rate increases (Figure 19). The

decrease is most when the opinion spread rate increases in all

groups, intermediate when the rate of spread of opinion increases

only for the youngest group, and least when it increases only in

the oldest group. When the rate of spread of opinion increases in

all groups, only in the youngest group, and only in the oldest

group, the number of man-days decreases by 29:85%, 10:12%, and

9:09%, respectively. In the presence of long COVID, the man-days

lost when cooperatives only accept vaccines is observed to be lower

when compared to the case in which cooperatives observe the

behavioral practices that impede COVID but do not accept vaccines.
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FIGURE 11

Synthetic variant with high fatality rate. (A) Fatality count vs. opinion spread rate when the latter is increased in all groups for high fatality rate. (B) Fatality
count vs. opinion spread rate when the latter is increased in the youngest group for high fatality rate. (C) Fatality count vs. opinion spread rate when the
latter is increased in the oldest group for high fatality.
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3.4. Impact of opinion dynamics when
behavioral practices affect both spread and
severity of symptoms of COVID-19: scenario 3

We now consider that cooperatives follow behavioral practices that

impede the spread ofCOVID-19 and reduce the severity of symptoms if

one imbibes the disease (i.e., accepts vaccines). The fatality counts for all,

youngest, middle-age, and oldest groups, respectively, decrease by
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88:24%, 93:18%, 88:31%, and 88:01% as the opinion spread rate of

the youngest group increases from 0 through 2� 10�9 (Figure 14A).

The fatality counts for all, youngest, middle-age, and oldest group

decrease by 78:55%, 64:39%, 64:52%, and 80:38%, respectively, as

the opinion spread rate of the oldest group improves from 0 through

2� 10�9 (Figure 14B). Similarly, the fatality counts for all, youngest,

middle-age, and oldest group ,respectively, decrease by 96:81%,

96:97%, 97:18%, and 96:74% as the opinion spread rate in all
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FIGURE 12

Non-cooperatives convert cooperatives during interactions. yL denotes the default interaction rates of the youngest group while yH represents when the
youngest group interaction rates are tripled (other groups’ interaction rates remain the same). (A) Opinion spread rate varied for the youngest group. (B)
Opinion spread rate varied for the oldest group. (C) Opinion spread rate varied for all the groups.
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groups improves from 0 through 2� 10�9 (Figure 14C). Thus,

opinion exchange in all groups has the greatest impact, if opinions

are to be exchanged in only one group, selecting the youngest group

has the maximum impact. For yH , the number of deaths for all,

youngest, middle-age, and oldest groups will, respectively, decrease by

47:32%, 69:54%, 43:14%, and 49:36%, as the opinion spread rate in
Frontiers in Digital Health 17
the youngest group is varied (Figure 14A). Similarly, the number of

deaths for all, youngest, middle-age, and oldest groups will,

respectively, decrease by 43:60%, 2:66%, 6:64%, and 49:36%, as the

opinion spread rate in the oldest group is varied (Figure 14B). In

addition, the number of deaths for all, youngest, middle-age, and

oldest groups will, respectively, decrease by 95:84%, 93:91%, 95:77%,
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FIGURE 13

Impact of vaccination on fatality. yL denotes the default interaction rates of the youngest group while yH represents when the youngest group interaction
rates are tripled (other groups’ interaction rates remain the same). (A) Opinion spread rate varied for the youngest group. (B) Opinion spread rate varied for
the oldest group. (C) Opinion spread rate varied for all the groups.
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and 95:99%, as the opinion spread rate in all groups is increased

(Figure 14C).

Wenow consider the impact of opinion dynamics in the presence of

long COVID. The number of man-days lost due to COVID-19 decrease

as the opinion spread rate increases (Figure 20). The decrease is most

when the opinion spread rate for all the groups improve, intermediate

when the rate of spread of opinion increases only for the youngest

group, and least when the rate of spread of opinion only increases for

the oldest group. When the rate of spread of opinion for all the

groups, the youngest group only, and oldest group only increases
Frontiers in Digital Health 18
from 0 through 2� 10�9, the above attribute decreases by 95:98%,

88:18%, and 65:50%, respectively. These decreases are considerably

higher compared to that when cooperatives only accept vaccines and

do not adopt other behavioral precautions; the decreases are only

29:85%, 10:12%, and 9:09% in this case (Scenario 2, Section 3.3).

This is because we had considered that vaccines do not reduce the

rate of transmission of disease (based on the cited literature). If

vaccines reduced the transmission of the disease as well, at the same

rate as behavioral practices, the results in this section will be obtained

even when cooperatives only accept vaccines.
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FIGURE 14

Joint implementation of vaccines and behavioral practices. yL denotes the default interaction rates of the youngest group while yH represents when the
youngest group interaction rates are tripled (other groups’ interaction rates remain the same). (A) Opinion spread rate varied for the youngest group. (B)
Opinion spread rate varied for the oldest group. (C) Opinion spread rate varied for all the groups.
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3.5. A comparative analysis of the three
scenarios: summary

Scenario 1
Scenario 1: The decrease in the total fatality count when

opinion spread rates are increased in individual groups, as

reported in Tables 1 and 2, shows that the impact of

increasing opinion exchange rate in a group depends on (1)
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physical contact rate for it; and (2) risk factor for it. Increasing

opinion spread rates in the youngest and middle-age groups

decrease the total fatality by the same amount when they have

the same contact rates (Table 1). The decrease is significantly

higher for the youngest group as compared to the middle-age

group when the physical contact rate for the former is twice

that of the latter (Table 2). The physical contact rate for the

oldest group is the lowest, but increasing the opinion spread
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TABLE 1 Physical contact rates for the young and middle age groups are
the same.

Increasing the
opinion
spread rate in
the

Decrease
total fatality
in Scenario 1

by (%)

Decrease
total fatality
in Scenario 2

by (%)

Decrease
total fatality
in Scenario 3

by (%)
Youngest group 88.22 1.28 88.24

Middle-age group 88.92 2.39 89.06

Oldest group 69.23 29.80 78.55

TABLE 2 Physical contact rates for the youngest group is twice that of the
middle-age group.

Increasing the
opinion
spread rate in
the

Decrease
total fatality
in Scenario 1

by (%)

Decrease
total fatality
in Scenario 2

by (%)

Decrease
total fatality
in Scenario 3

by (%)
Youngest group 60.67 1.24 60.20

Middle-age group 33.24 1.98 33.31

Oldest group 31.63 30.21 53.75
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rate in it still decreases the overall fatality because the risk factor

in the oldest group is highest. The decrease is still the lowest

when we increase the opinion exchange rate in the oldest

group alone because the infections in the other groups reach

the oldest group because of the high physical contact rates of

the other two.
Scenario 2
Scenario 2: Recall that in this case, cooperatives receive vaccines

(and therefore have lower risk of developing severe forms of the

disease if infected), but they do not follow behavioral practices

that reduce the chances of contracting the disease. Thus,

increasing the opinion exchange rate in one group reduces

fatality in only that group and does not have any impact on

another group. Thus, the decrease in total fatalities as the

opinion spread rates are increased will be more significant if the

increment occurs in the group with the highest risk factor. The

risk factors are highest for the oldest group, intermediate in the

middle age group but only slightly higher than the youngest

group, and least for the youngest group. Thus, increasing the

opinion exchange rate in only the oldest group decreases the

total fatality count significantly, and increasing the opinion

exchange rate in only the middle-age group decreases the overall

fatality count only slightly more than increasing the opinion

exchange rate in only the youngest group. The opinion dynamics

has the least overall impact in this scenario as cooperativity does

not decrease spread at all.
Scenario 3
Scenario 3: The trends are similar in this scenario as in

Scenario 1 because cooperativity reduces the spread in both. The

only difference is that increasing the opinion exchange rate in

only the oldest group decreases the overall fatality count more in

Scenario 3. This is because cooperativity additionally decreases

the probability of developing a severe form of the disease in the
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infected in this scenario and the oldest age group has the greatest

risk of developing a severe form of the disease.
4. Discussion

We summarize the important findings from our work and the

implications thereof to practice. We have presented a mathematical

model that can be easily adapted to model the impact of a wide

range of behaviors on public health attributes during the spread

of COVID-19. Our model is therefore flexible and also

computationally tractable in that the size of the population does

not affect the computation time. Thus, the model can scale to

large population sizes, which is an important strength given that

the target population for a pandemic is typically large and easily

in the order of millions considering populations of large cities

and even mid-size provinces. Some of our findings from the

model reinforce prior expectations by quantifying the impact. For

example, we show that following a combination of behavioral

practices that impede the spread of COVID-19 and partaking in

vaccines that reduce the severity of symptoms together

substantially reduce both the fatalities and the number of man-

days lost due to symptoms from long COVID. This conclusion is

only expected but our findings quantify the improvements that

accompany good health practices. The quantifications are useful

in comparing different scenarios and impact of opinions of

different groups, which can help public health/government

agencies formulate necessary rules and guidance. Next, we show

that opinion dynamics pertaining to the observance of behavioral

practices that impede the spread have a substantial impact on

fatality count and man-days lost due to symptoms. In particular,

a higher rate of exchange of opinions that convert (respectively

dissuade) individuals to observing such practices substantially

decreases (respectively increases) the fatality count and man-days

lost due to symptoms. Our work is the first to quantify the

impact of behavioral dynamics and the spread of opinions

pertaining to the observance of desired behaviors on public

health damages inflicted by COVID-19. We also show that

opinion dynamics in groups that have the highest rate of physical

interaction have the maximum impact on overall fatalities and

man-days lost due to symptoms even though such groups are

least likely to imbibe severe forms of the disease. Specifically, if

the rate of spread of opinion that conforms to desirable

behavioral practices increases among the youngest groups, fatality

for all the groups decreases. If the rate of spread of similar

opinions increases among the oldest age group, then the positive

impact due to the spread is largely confined to the same age

group. We show that this disparity arises because young

individuals physically interact among themselves and across age

groups at a higher rate than others. The consequence of this

finding is that it reveals how mal-actors can undermine public

health in society by deliberately targeting young individuals with

a propaganda campaign that dissuades them from observing

desirable health practices. Note that such dissuading may be

relatively simple because their own risk of imbibing a severe

form of the disease is low. Appropriate precautions involving a
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FIGURE 15

COVID-19 state diagram for two-dose vaccine. The state in purple color is the vaccinated state. The states in blue color are the susceptibles while those in
light green color are exposed (still in the incubation period). The states in dark red are infected and therefore infectious while those in gold have
recovered, those in light blue are hospitalized, and black denotes dead. In addition, the green arrows denote transition to the vaccinated state after
receiving the vaccine, the yellow arrows show susceptibles transitioning to the exposed state after contracting the virus, the black arrows indicate
opinion evolution, and the blue arrows indicate the natural progression of the disease. The yellow arrows show susceptibles transitioning to the
exposed state after contracting the virus.
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counter-information campaign can be undertaken once this

vulnerability is identified and its impact quantified which our

work has accomplished.

For simplicity, we have considered that individuals are not

reinfected. Thus, different waves of infection were not captured

in the current research. This constitutes an important direction

for future research.

In conclusion, we discuss a generalization of our model. We

have so far assumed that vaccines require only one dose. But,

according to CDC, there are four approved or authorized

vaccines in the United States, namely, Pfizer-BioNTech,

Moderna, Johnson & Johnson’s Janssen, and Novavax COVID-

19 vaccines; and Johnson & Johnson’s Janssen requires one

dose but all the rest require two doses 3–4 weeks apart. We

now describe how our model can be generalized to

accommodate two doses. Refer to Figure 15 for a pictorial

illustration of the state diagram that captures this

generalization while considering classification based only on

opinions. The only difference with the previous versions (i.e.,

Figure 3) is that we introduce a new vaccinated state (V) and

cooperative susceptibles and exposed transition to this state

after they receive the second dose. When an individual

becomes cooperative, we consider that he has received the first

dose because currently in many countries the first dose can be

received without any administering delay. The transition time

between the cooperative and vaccinated state is the delay

mandated between the two doses. According to the CDC,

people who tested positive for COVID-19 (symptomatic or

asymptomatic) should wait to be vaccinated until they have
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recovered from their illness and have met the criteria for

discontinuing isolation (34). We, therefore, do not include any

transition from symptomatic or asymptomatic states to

vaccinated. Thus, a vaccinated individual can get infected and

transition to the exposed state Ev , then to either the

presymptomatic or asymptomatic stage at a certain probability.

The asymptomatic vaccinated recovers after some days while

the presymptomatic vaccinated experiences symptoms after

about 2 days. Thereafter, the symptomatic vaccinated either get

hospitalized at a reduced hospitalization rate or recover. The

hospitalized individual eventually recovers or dies. The

hospitalization and fatality rates for vaccinated individuals are

much lower compared to those for unvaccinated individuals.

These can be incorporated by appropriately choosing the

transition probabilities from the vaccinated state.
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