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Editorial on the Research Topic
Surfacing best practices for AI software development and integration in healthcare




Introduction

The evidence supporting the mainstream use of artificial intelligence (AI) software in healthcare is rapidly mounting. Three systematic reviews of AI software randomized controlled trials (RCTs) were published in 2021 and 2022, including 95 studies across 29 countries (1–3). In the United States (US), the Centers for Medicare and Medicaid Services (CMS) is approving AI software systems for reimbursement through multiple payment mechanisms (4). In the United Kingdom (UK), the National Screening Committee is exploring the use of AI software in national cancer screening and has awarded £90 million to prospective multi-center trials (5, 6). Two large, multi-hospital studies showed the mortality benefit of early detection and treatment of inpatient deterioration and pneumonia (7, 8). However, despite advances in technology and policy, isolated success stories are not leading to efficient diffusion of validated AI software across settings.

A key barrier preventing efficient translation of AI software to new clinical settings is the lack of visibility into poorly characterized, yet critically important labor that Mary Gray and Siddharth Suri call “Ghost Work” (9). Ghost work is broadly described as the invisible labor that powers technology platforms. In healthcare, ghost work is carried out by front-line clinical and administrative staff working beyond the contours of technical AI systems to effectively integrate the technologies into local social environments. But while the brittleness of AI software systems over time and across sites is broadly recognized (10, 11), health systems develop strategies largely in silos. To fill this gap, we invited teams from health systems around the globe to contribute to the research topic “Surfacing Best Practices for AI Software Development and Integration in Healthcare (12).” The research topic was sponsored by Janssen Pharmaceuticals of Johnson & Johnson. In this editorial, we present a synthesis of the nine featured manuscripts and highlight strategies used across settings as well as future opportunities for development and partnership.



Methods

We conducted two primary analyses of the nine research topic manuscripts to identify key themes. We then complement the two primary analyses with details about the host institution, country, model use case, manuscript objectives, and key takeaways.

In the first primary analysis, we mapped the topics described in each manuscript to various stages of the AI software lifecycle. The four stages are defined as follows. First, problem definition and solution procurement describes the activities related to how organizations identify and prioritize problems and then allocate resources and personnel to pursue opportunities. Second, AI solution development and adaptation describes the activities related to how organizations either build technologies internally or adapt externally built tools. Third, technical and clinical integration describes the activities related to how organizations integrate AI solutions into legacy information technology systems and clinical workflows, roles, and responsibilities. Fourth, lifecycle management describes the activities related to maintenance, updating, and decommissioning of AI solutions used in clinical care. Each research topic manuscript could be mapped to multiple lifecycle stages.

In the second primary analysis, we reviewed biosketches, organization websites, and professional social media pages to map each research topic manuscript author to formal academic training across disciplines. Due to the large number of manuscript authors and broad range of formal training, we grouped disciplines into seven categories: engineering, computer science, and physics; statistics, biostatistics, and bioinformatics; business and management; public health and economics; biological or behavioral science; clinical doctorate; ethics or bioethics. Each author could be mapped to multiple academic disciplines.



Results

The research topic “Surfacing Best Practices for AI Software Development and Integration in Healthcare” features 9 manuscripts with 73 authors from 7 institutions across 4 countries. Two institutions published two manuscripts each, including The Hospital for Sick Children in Toronto, Canada and University of Wisconsin in Madison, Wisconsin, USA. The AI software use cases featured in the research topic include three pediatric applications (hydronephrosis due to obstruction, arrhythmia detection, and sleep-wake patterns in neonates), one mental health application (suicide prevention), three general adult applications (30-day readmission, inpatient deterioration, and new-onset atrial fibrillation), and two geriatrics applications (advance care planning, falls risk in the emergency department). One research topic manuscript describes an organizational governance framework that has overseen ten AI software integrations, two decommissions, and one decision to not integrate (Liao et al.). Additional information about the use cases and key takeaways are presented in Table 1.


TABLE 1 Summary of key information from each research topic manuscript.
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AI software lifecycle stages

The research topic features manuscripts that contribute insights related to all four AI software lifecycle stages (problem definition and solution procurement, development and adaptation, technical and clinical integration, and lifecycle management). Two manuscripts describe programs that span all lifecycle stages, including the implementation of an AI quality management system at University Medical Center in Ultrecht, Netherlands and an AI organizational governance process at University of Wisconsin in Madison, USA. Two manuscripts present different frameworks for AI solution development, technical and clinical integration, and lifecycle management. A team from The Hospital for Sick Children in Toronto, Canada presents an approach that adopts language from systems engineering, while a team from University College London in the UK presents an approach that adopts language from therapeutics development (Assadi et al.). Two manuscripts present case studies focused on technical and clinical integration, including an adult deterioration model integrated at St. Michael's Hospital in Toronto, Canada, and a falls risk model integrated at University of Wisconsin in Madison, USA (Pou-Prom et al.). Lastly, three manuscripts present best practices related to specific lifecycle stages. A team from The Hospital for Sick Children in Toronto, Canada describes the use of AI software silent trials during technical integration (Kwong et al.), a team from Stanford Health Care in Palo Alto, USA describes reliability and fairness audits during lifecycle management (Lu et al.), and a team from Vanderbilt Health describes AI solution monitoring and updating during lifecycle management (Davis et al.).



Team composition

In some ways, the research topic authorship teams are similar. All manuscripts feature interdisciplinary teams at academic health centers and graduate students and clinical trainees made significant contributions as co-authors. All manuscripts include clinical and technical expert co-authors. And lastly, all manuscripts build on prior work from authorship teams who have previously published AI solution validation studies.

In other ways, the research topic authorship teams are heterogeneous. The smallest teams were a group of three clinicians and informaticians at Vanderbilt Health who describe AI software monitoring and updating challenges and a group of four engineers, public health experts, and clinicians who describe the AI software organizational governance model at University of Wisconsin. The largest team was a group of twenty-seven engineers, bioinformaticians, managers, public health experts, biological science experts, and clinicians who conducted fairness and robustness audits of multiple models at Stanford Health Care. All teams included experts with formal training in at least three of the disciplines listed in Table 1 and two teams included experts with formal training in six disciplines. Among the 73 authors who contributed to the research topic, two perspectives were unique. There was a single AI ethics expert from The Hospital for Sick Children in Toronto, Canada and there was a senior data scientist at University Medical Center in Utrecht, Netherlands who is also a clinical microbiologist who has implemented and audited laboratory quality management systems.




Discussion

The research topic “Surfacing Best Practices for AI Software Development and Integration in Healthcare” features a remarkably diverse set of insights and learnings from teams around the globe integrating and using AI software into practice (12). Throughout the research topic, teams consistently describe responses to unexpected challenges encountered in the transition from conducting AI software research to translating a technology into practice. The success of AI in healthcare hinges on the ability to adapt and transition from research into routine clinical practice. Sharing challenges, failures and describing promising approaches that were implemented in real-world settings can inform teams around the globe looking to advance the use of AI software in healthcare.

Across the research topic, consensus emerged around three important AI software integration practices. First, many teams highlighted the importance of simulating AI software performance in local, operational settings prior to initial use in clinical care. One method discussed in multiple articles involved the operationalization of a “silent trial,” during which bedside clinicians are initially blinded to the AI software as it is prospectively applied on operational data. While not novel, consensus is emerging around the importance of this activity (13–15). Silent trials can alert AI software developers to potential patient safety risks, bias, or integration concerns prior to clinical testing in a manner that minimizes risk to patients. Another article described the creation of a synthetic clinical deployment environment that anticipates real-world clinical decision making (Harris et al.).

Second, many teams highlighted the importance of AI software governance and management. Articles highlighted the importance of transdisciplinary teams and the need to assign responsibility and accountability to oversee AI software performance and appropriate use. One team used international standards to create a quality management system for AI software lifecycle management (Bartels et al.). Manuscripts in the research topic build upon existing frameworks and broaden the focus from AI software manufacturers to humans within health systems who oversee AI software used in clinical settings. The frameworks complement national efforts to equip the healthcare workforce to effectively adopt AI (16).

Lastly, many teams highlighted the importance of ongoing AI software monitoring and auditing. Some articles used existing standards for evaluating AI, including Health Canada/FDA/MHRA Joint Statement on 10 guiding principles for Good Machine Learning Practices (GMLP), however real-world experience led to additional recommendations, such as emphasizing user engagement, utilizing a silent trial, and creating downtime protocols. Another team described periodic reliability and fairness audits that went beyond quantitative comparison of AI software performance across demographic subgroups to also include stakeholder interviews to better understand the impact of the AI software.

While consensus emerged on the themes described above, the research topic did surface divergent perspectives on the importance of interpretability and explainability of AI software. For example, the teams at University of Wisconsin and University College London explicitly promote the use of explainable models. One team explained that “a desire to ensure we had an interpretable model further influenced our choice to pursue regression rather than tree-based models (Engstrom et al.).” The other team explained that “most AI models that operate as “black-box models” are unsuitable for mission-critical domains, such as healthcare, because they pose risk scenarios where problems that occur can remain masked and therefore undetectable and unfixable” (Harris et al.). This perspective offers a contrasting view from prior work examining the use of “black-box models” in clinical care (17), the limitations of current explainability methods (18), and the approach of regulators at the U.S. Food and Drug Administration (19). The research topic exposes the urgent need for research and policies that help organizations understand whether or not to prioritize AI software interpretability and explainability.



Future directions

The research topic reveals five important opportunities to advance AI software integration in health care, summarized in Box 1. First, governments and health systems must invest in building and sustaining transdisciplinary teams that manage AI software integrations. Best practices did not emerge from the heroic acts of individual scientists, but rather from transdisciplinary teams of experts working with health systems. These types of roles are often funded through health system operations and require significant investment.


BOX 1 Five recommendations that emerged from research topic manuscripts


	1)Governments and health systems must invest in transdisciplinary teams that manage AI software integrations

	2)Health systems must broaden stakeholder engagement to include patients, legal and regulatory experts, and social scientists

	3)Practitioner and research community must standardize AI software integration definitions, processes, and procedures, as well as communication approaches

	4)Governments and health systems must establish durable, multi-stakeholder collaboratives to continue surfacing and disseminating AI software integration best practices

	5)Governments must fund programs designed to foster the adoption of well-validated AI software beyond highly resourced academic health systems





Second, health systems must broaden stakeholder engagement throughout the AI software lifecycle. Unfortunately, only a single instance of direct patient engagement was described in the research topic, occurring at The Hospital for Sick Children in Toronto, Canada. Otherwise, there was limited patient and community engagement. And while the research topic authors were diverse, there was minimal representation of legal and regulatory experts and social scientists. These perspectives are crucial to ensure that AI software integration aligns with rapidly evolving regulations, and unintended consequences of AI software integration and use are anticipated, identified, and mitigated.

Third, there is an urgent need to develop and formalize standard AI software integration definitions, processes, and procedures as well as communication approaches (20). The research topic features teams that used language from different disciplines to describe AI software integration, including drug discovery, systems engineering, and international quality management standards. While it's important to build upon existing work across disciplines, the multiplicity of terms creates unnecessary ambiguity and confusion. Precisely defined steps and procedures need to be specified for rapid diffusion of more mature best practices, such as the “silent trial”.

Fourth, durable, multi-stakeholder collaboratives are needed to continue surfacing and disseminating AI software integration best practices. Efforts that we are directly involved in to achieve this aim are the Health AI Partnership (21) to disseminate best practices across health systems and the development of AI software reporting standards, including DECIDE-AI (22), CONSORT-AI (23), STARD-AI (24), and SPIRIT-AI (25).

Fifth, the research topic highlights the importance of fostering the adoption of well-validated AI software beyond highly resourced academic health systems. Persistence of the status quo, where AI software is best integrated within settings with the most expertise, will undermine the potential benefit of AI software. Business models and public sector programs must be designed to enable academic health systems to support smaller under-resourced settings that do not have the internal capabilities to utilize AI software most effectively. One research topic manuscript described a promising approach: “For smaller entities, such as a single general practitioner, this effort [to establish an AI software quality management system] seems unfeasible. In this situation, complete dependence on the manufacturer is imaginable, making it difficult to establish truly safe performance. Again, inspiration can be found in the regional services of medical laboratories that very often provide access to competences and resources for safe application of diagnostics. Regional AI labs could provide services for the development, acquisition, and quality control of AI/ML for smaller healthcare institutes including general practitioners (Bartels et al.).” Programs that test different approaches of regional, multi-institutional support are urgently needed to ensure equitable diffusion of AI software.



Conclusion

The research topic “Surfacing Best Practices for AI Software Development and Integration in Healthcare” successfully surfaced best practices from 7 organizations across 4 countries. All teams were based at academic health systems and had previously published AI software validation studies. The research topic features insights across the AI software integration lifecycle and contributing authors represent diverse domains of expertise. There was consensus around the importance of local evaluations of AI software in a “silent trial”, establishing organizational governance structures for AI software, and monitoring of technologies post-integration. However, the research topic also exposed limitations of current work and we present five recommendations to further advance AI software integration across settings. We hope our work informs AI software developers and policy makers and contributes to future efforts to broadly engage stakeholders in multi-institutional learning collaboratives.
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ED visit, Furthermore, engaging with constraints to operationalize the Total number of authors: 5
experts in human factors engineering ‘model, model interpretability, model | Total number of domains: 4
and clinicians, the study team designed threshold selection, and model
aworkflow and alerts designed to create placement in the workflow.
a system in which the algorithm
facilitates screening of older adult
patients in the ED and facilitating
referral for fall prevention services
as)”
From compute to care: St Michael's | Canada “In Fall 2020, we deployed “Here, we describe in detail, the Technical « Detailed description of the approach | Engincering, CS, or Physics: |
Lessons learned from Hospital CHARTwatch to the General Internal | system’s infrastructure and assess the | Integration; taken to minimize alert fatigue, Statistics, Biostatistics, or
deploying an carly warning Medicine (GIM) ward at St. Michael's | success of our deployment through ical Integration | including a 48 h snooze, 24 h snooze | Bioinformatics: 1
system into clinical practice Hospital, an inner-city teaching quantitative metrics (such as model after ICU discharge, and silencing | Business or Management: 1
hospital in Canada.” performance, end-user engagement, alerts after the fifth instance. Public Health or Economics:
“We developed a model and adherence to workflows) and by « Description of changes made in 2
[CHARTwatch] to detect inpatient | comparing our deployment to the response to a silent trial, including | Biological or Behavioral
deterioration, defined as in-hospital | GMLP principles. The purpose of this adapting model for high sen sciences: 0
death or transfer to the intensive care | manuscript is to provide concrete troponin. Clinical Doctorate: 2
unit (ICU)." insights into the deployment of ML in « Presents best practices for downtime | Ethics or Bioethics: 0
a healthcare setting and highlight protocols (e, emails to IT team if | Total number of authors: 5
opportunities to strengthen GMLP script fails), end-user engagement, | Total number of domains: 5
guidance.” and training,
« Presents concrete descriptions of how
the team operationalized the 10
GMLP recommendations
Considerations in the Stanford USA “In this work, we illustrate a reliability/ | “We (1) design and report a reliability/ [ Lifecycle + Assessed two models, including an | Engineering, CS, or Physics: 5
reliability and fairness audits | Health Care fairmess audit of 12-month mortality | fairmess audit of the models following | management Epic end-of lfe index and a Statistcs, Biostatistics, or
of predictive models for models considered for use in existing reporting guidelines, (2) homegrown 12-month mortality Bioinformatics: 5
advance care planning supporting team-based advance care | survey decision makers about how the model, by performing a reliability | Business or Management: 1
planning (ACP) in three practice results impacted their decision of audit (model performance and Public Health or Economics:
settings” whether to use the model, and (3) alibration) and faimess audit 3
quantify the time, workflow and data (summary statistics, subgroup. Biological or Behavioral
requirements for performing this performance, subgroup calibration). | sciences: 2
audit. We discuss key drivers and « Present audit results for both Clinical Doctorate: 14
barriers to making these audits algorithms and determined Ethics or Bioethics: 0
standard practice. We believe this may differences in model performance and | Total number of authors: 27
aid other decision makers and alibration across demographic Total number of domains: 6
informaticists in operationalizing subgroups.
regular reliability and fairness audits.” + Presents results of a survey sent to
decision makers to understand the
role of fairness and robustness audits
in algorithmic governance.
+ Discuss the resource requirements
and amount of effort (115 h) required
to conduct the audit.
Open questions and research | Vanderbilt UsA “To explore performance drift in an | “In this paper, we highlight the need | Lifecycle « Presented two different types of Engineering, CS, or Physics: 0
gaps for monitoring and | University operational setting, we evaluated the | for maintaining clinical prediction | management model performance drift patterns | Statistics, Biostatistics, or
updating Al-enabled tools in | Medical Center performance of two models currently [ models and discuss open questions using observed to expected outcome | Bioinformatics: 3
clinical settings implemented in the production EHR | regarding this critical aspect of the Al ratio (O:E) that occurred for a non- | Business or Management: 0
system at Vanderbilt University ‘modeling lfecycle. First, we illustrate proprietary 30-day readmission model | Public Health or Economics:
Medical Center (VUMC): a non- performance drift across models (LACE+) and for a homegrown 1
proprietary, externally developed model | implemented in the production suicide prevention model (VSAIL). | Biological or Behavioral
predicting readmission (LACE+) (23) | electronic health record (EHR) system + Detailed discussion of important | sciences: 0
and a locally developed model at an academic medical center. Second, questions related to three areas of | Clinical Doctorate: 2
predicting suicidal behaviors we discuss several open research lifecycle management: model Ethics or Bioethics: 0
(Vanderbilt Suicide Attempt and questions and describe the nuances ‘maintenance policies (e, how Total number of autho
Ideation Likelihood model, VSAIL) | required for best practice guidance.” should model ownership impact local | Total number of domains: 3
@’ control over maintenance?),
performance monitoring perspectives
(eg. at what level should model
performance be maintained? what
aspects of performance should be
‘monitored?), and model updating
strategies (eg, what updating
approaches should be considered?).
Governance of Clinical AT | University of | USA “At the time of this publication, the | “As we expand our technical abiliy to | Full lifecycle + Describe clinical, operational, and | Engineering, CS, or Physics: 2
applications to facilitate safe | Wisconsin governance framework has overseen ten | provide solutions, more skepticism leadership challenges encountered | Statistis, Biostatistics, or
and equitable deployment in | Health successful deployments, two successful | and questions surface, and at times when establishing an institutional | Bioinformatics: 0
a large health system: Key retirements, and one successful non- | resistance, around the suitability of governance process Business or Management: 0
elements and early successes deployment across nine applications.” | using Al in routine clinical care from + Describes creation of institutional- | Public Health or Economics:
“Applications include diverse use of AI | all levels of the organization, ranging level “Clinical Al and Predictive 3
prediction for outputs including severe | from front-line clinical staff to Analytics Committee” that oversees | Biological or Behavioral
sepsis, clinical deterioration, physician | executive leadership. In response to work conducted by use-case specific | sciences: 0
panel weighting, COVID detection on | these questions and the challenges for algorithm workgroups. Clinical Doctorate: 2
radiographs, emergency department | implementation, the health system « Presents five guiding principles that | Ethics o Bioethics: 0
screening for falls prevention, screening | recognized the need for a governance have emerged for the governance | Total number of author
for opioid abuse, and ED crowding” | structure to endorse and oversee committee. Total number of domains: 3
adoption, implementation, and « Describes approach for ongoing AT
ongoing value evaluation of Al-driven ‘model monitoring, including a
applications. This case study describes successful model retirement, and
the development and nature of ‘mechanisms to incorporate equity and
governance of clinical Al applications ethics concerns related to Al
at our insttution.”
A Perspective on a Quality | University Netherlands | + “Slecp Well Baby...is an in-house “In this perspective we illustrate our | Full lifecycle + Describes an innovation funnel Engincering, CS, or Physics: 1

Statistics, Biostatistics, o
Bioinformatics: 1

Business or Management: 0
Public Health or Economics:
0

Biological or Behavioral
sciences: 3

Clinical Doctorate: 3

Ethics or Bioethics: 0

Total number of authors: 5
Total number of domains: 4
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