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Introduction: Personalization is a much-discussed approach to improve
adherence and outcomes for Digital Mental Health interventions (DMHIs). Yet,
major questions remain open, such as (1) what personalization is, (2) how
prevalent it is in practice, and (3) what benefits it truly has.
Methods: We address this gap by performing a systematic literature review
identifying all empirical studies on DMHIs targeting depressive symptoms in
adults from 2015 to September 2022. The search in Pubmed, SCOPUS and
Psycinfo led to the inclusion of 138 articles, describing 94 distinct DMHIs
provided to an overall sample of approximately 24,300 individuals.
Results: Our investigation results in the conceptualization of personalization as
purposefully designed variation between individuals in an intervention’s
therapeutic elements or its structure. We propose to further differentiate
personalization by what is personalized (i.e., intervention content, content order,
level of guidance or communication) and the underlying mechanism [i.e., user
choice, provider choice, decision rules, and machine-learning (ML) based
approaches]. Applying this concept, we identified personalization in 66% of the
interventions for depressive symptoms, with personalized intervention content
(32% of interventions) and communication with the user (30%) being particularly
popular. Personalization via decision rules (48%) and user choice (36%) were the
most used mechanisms, while the utilization of ML was rare (3%). Two-thirds of
personalized interventions only tailored one dimension of the intervention.
Discussion: We conclude that future interventions could provide even more
personalized experiences and especially benefit from using ML models. Finally,
empirical evidence for personalization was scarce and inconclusive, making
further evidence for the benefits of personalization highly needed.
Systematic Review Registration: Identifier: CRD42022357408.
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1. Introduction

At an estimated lifetime prevalence of more than 10% (1, 2), major depressive disorder

(MDD) is the second leading cause of years lived in disability (3). While this makes efficient

treatments urgently needed, traditional approaches such as face-to-face psychotherapy are

difficult to access for a significant part of patients (4–6). However, providing treatment

through digital channels such as mobile applications and online formats (7) is effective in

reducing depressive symptoms (8, 9) in a cost-effective way (10). Since most of the world
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population has access to the internet (11) and/or a smartphone

(12), digital mental health interventions (DMHIs) bypass barriers

to traditional treatment.

Despite their potential, DMHIs inherit some of the general

problems in depression treatment: Estimates for treatment

dropout, as observed in RCTs, are up to 50% when considering

publication bias (13). Moreover, response rates are unsatisfactory

at less than 50% (14). Therefore, improving outcomes and

reducing dropouts in DMHIs are expected to be highly impactful

in facing the burden of depression.

Luckily, DMHIs’ unique delivery channel provides new

opportunities to improve the treatment of those suffering from

depressive symptoms. Specifically, digital applications can

efficiently be individualized to improve users’ experience and

outcomes, as observable across many other domains, ranging

from e-commerce (15) over e-learning (16) towards social media

(17). Simultaneously, the importance of accommodating patients’

preferences for treatment outcomes in mental healthcare has

been well established (18). Hence, the personalization of

interventions to adapt treatment to individual needs is a

promising approach to improving care, for depressive symptoms

and beyond (19–22).

In line with that idea, a meta-analysis from 2013 showed that

algorithm-based tailoring of DMHIs is associated with better

outcomes (23). A review from 2022 found that none of the 26

reviewed apps for depression used just-in-time (JIT) adaptations,

a mechanism for personalizing the timing of content delivery

based on the individual or the situation (24). Another current

systematic review investigated tailored interventions for

workplace mental health (25), finding benefits on several

outcomes when content or feedback was tailored towards the

individual. Finally, a component network analysis examined the

benefits of common internet-based cognitive behavioral therapy

(iCBT) packages for depression, discovering small interactions

between treatment components and patient characteristics (26).

While these publications are unified in their call for more

personalization in DMHIs, they do not add up to a satisfactory

empirical and theoretical ground for it. Firstly, the fragmented

use of vocabulary fails to demarcate personalization from other

distinct phenomena related to variability in DMHIs. For

example, the term “tailoring” is used across various scopes and

foci (23, 25, 27), while similar mechanisms are elsewhere called

“individualized” (28) or “personalized” (26, 29). This diversity in

vocabulary is shared with non-digital settings, as for traditional

psychotherapy, 15 different terms for the same phenomena of

varying treatment between individuals were reported (30).

Secondly, in contrast to the breadth of used vocabulary, the focus

of mechanisms within studies seems to be relatively narrow,

focusing on specific mechanisms (23, 24) or areas (25, 28) of

personalization. This potentially leads to an underestimation of

variability already in place. Finally, while two of the mentioned

reviews investigated the benefits of personalization through direct

comparisons, they did so without a specific focus on depression

and, related to the aforementioned narrow conceptualizations of

personalization, with few studies being included. In conclusion,

the concept, prevalence, and efficacy of personalization in
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DMHIs for depressive symptoms are not adequately delineated.

Therefore, a disorder-specific review developing a conceptual

framework for personalization and reviewing a wide span of

interventions seems needed.

This systematic review aims to reduce the gap between the

potential of personalization and its actual implementation by

performing a comprehensive review of DMHIs for depressive

symptoms with the following purposes:

1. Extract a conceptual framework that allows a clear and

meaningful way of investigating, discussing, and classifying

personalization.

2. Apply this framework to the available literature and report

current use and mechanisms.

3. Evaluate the available evidence by identifying studies that

directly compare interventions with different degrees of

personalization.

2. Methods

This review was planned and reported following the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines (31). The protocol of this review was

registered in the International Prospective Register of Systematic

Reviews of the National Institute for Health Research

(PROSPERO) under the ID CRD42022357408. The protocol was

updated once after initial piloting to improve the alignment of

the inclusion criteria and data extraction method with the scope

of the review. Specifically, a new classification dimension for

personalization was added that occurred in the literature and did

not fit the pre-defined schema and the exclusion of e.g., prenatal

depression was added to improve the comparability between

included interventions. The final version of the protocol can be

found in the Supplementary Appendix S1.
2.1. Search strategy

In the first step, a search was performed in three major

databases (SCOPUS, PubMed, PsycInfo) to identify all published

studies on DMHIs for depressive symptoms. The full search

strings can be found in Supplementary Appendix S2.

Additionally, three related reviews (13, 14, 32) were screened,

and studies not yet included were added. Finally, papers brought

to the author’s awareness by being discussed in our included

articles, not included yet but fulfilling our selection criteria, were

added.
2.2. Selection criteria

We included empirical studies on DMHIs specifically targeting

depressive symptoms, determining the interventions target by

authors’ self-report. This covered both, patients with diagnosed

major depressive disorder (MDD), as well as with subclinical

levels of symptoms. To be considered a DMHI, interventions
frontiersin.org

https://doi.org/10.3389/fdgth.2023.1170002
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Hornstein et al. 10.3389/fdgth.2023.1170002
needed to be delivered through the internet and/or a smartphone.

We included only empirical, peer-reviewed, English studies and

conference articles with original data and patient cohort. To

ensure a focus on the most relevant interventions for current use,

we start our search from 2015 onwards.

To narrow down the focus of this review, studies on

interventions targeting comorbid disorders such as anxiety were

excluded. The same applied to those targeting a specific subtype

of depression (e.g., prenatal depression), a single sub-symptom

(e.g., rumination), or adolescent or elderly people (below 18

years or >64 years). Finally, those studies using digital

technologies exclusively as a means of communication, such as

one-on-one psychotherapy delivered via the web, were excluded

as well.
2.3. Selection procedure

One of the researchers (S.H.) performed an initial screening

based on the title and abstract of the studies identified through

the search strategy. A second researcher (K.Z.) conducted the
FIGURE 1

PRISMA flowchart of study inclusion.
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same procedure for a randomly chosen subset of 100 studies,

resulting in excellent interrater reliability (0.94). The full

description of the intervention was then read by both reviewers

for all remaining papers to determine the final selection, extract

interventions and code the variables of interest. Disagreements

on any aspect of this process were solved by discussion between

the reviewers until a consensus was reached. If full texts were

unavailable, they were requested from the corresponding author.

This occurred 12 times, with 8 of the articles made available on

request.
2.4. Development of the conceptual
framework

During the initial screening and before the update of the

PROSPERO registration, we developed the proposed framework

in an iterative process, considering usability, conceptual

literature, and the observed interventions. Specifically, we

discussed how we could classify personalization in a way that

allows us to not just cover all mechanisms in the literature but
frontiersin.org
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also maximize usability by defining the dimensions as distinct as

possible. We did this as we needed a method to classify

personalization mechanisms during the systematic review and we

could not find a satisfactory framework in the literature yet.

We departed from a common dictionary definition defining

personalization as “the action of designing or producing

something that meets someone’s individual requirement” (33).

Based on that, we intended to classify personalization in DMHIs

in a broad enough way to cover the diversity of mechanisms

present in related reviews and studies. At the same time, we

intended to narrow down the concept to those mechanisms

affecting the therapeutic content and structure, setting it apart

from superficial sources of variability. Therefore, we excluded

interactivity (34), the sole replay of user input as part of the app

experience. For example, showing each patient their previously

set goal might be a powerful tool, but it does not change the

underlying therapeutic elements delivered. Additionally, we

factored out customization (35), minor aesthetic adaptation such

as users ability to change the color of an avatar. Finally, seeing

personalization as referring to the level of the individual patient,

we excluded group-based variability, such as cultural adaptation

of the entire intervention (36).

Numerous screened interventions used a structured session-

based approach to deliver their intervention—a common

approach among manualized mental health interventions (37).

Therefore, we identified (a) content (what is delivered during a

session) and (b) order (how sessions are ordered) as potential

areas of personalization. Since (c) guidance (level of human

contact) is a highly relevant and variable aspect of DMHIs (38)

we added it as another dimension. Finally, as we discovered

prompts and mechanisms targeting the timing of interventions

not being sufficiently represented in these three categories, we

appended (d) communication as another dimension.

While, as mentioned above, we intended to exclude

customization as minor user-choice-based adaptations of the

intervention, we did not exclude user choice per se from our
FIGURE 2

Personalization in comparison to the terms usage, customization, interactivity
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concept. This differs from the use in fields like marketing, where

anything done by the user is defined as customization, not

personalization (35). However, we saw the inclusion of actively

designed user choice being justified for the following reasons:

Firstly, user choice was a common mechanism described in the

included interventions. Secondly, those mechanisms seem easily

implementable and therefore highly relevant for practitioners

interested in personalizing their intervention. Finally, user agency

has been shown to be particularly relevant in mental healthcare

(18). We also identified provider choice as another mechanism for

guided and blended interventions. For data-driven personalization

mechanisms, we saw rule-based and ML as distinct mechanisms

applying static or learning criteria for personalization.
2.5. Data extraction

The framework developed above was applied to all identified

interventions, coding the presence of personalization for each of

the four (a–d) dimensions and classifying the underlying

mechanism. For this, interventions had to be extracted from the

included studies, and information from several studies on the

same intervention had to be merged. If more than one distinct

intervention was presented in a study, they were coded

separately. Intervention versions in different languages were not

coded separately if not reported to be clearly distinct in their

content. If more than one study was available, a single

observation of personalization resulted in a positive coding, but

conflicting information was noted. Additionally, cited material

such as older papers, weblinks, or appendices were consulted in

the refrained from additional free-hand research on the reported

interventions. In case information was indicative of

personalization but insufficient for our coding, we contacted the

corresponding author and asked for clarification. For this, we

provided a four-week response window, including one reminder.

Out of the seven authors contacted, six responded by providing
and group-based adaption.
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FIGURE 3

Dimensions of personalization.
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additional information. In the single case where authors did not

respond (39) we decided to code restrictively and assume the

simpler of the potential mechanisms involved (rule-based instead

of ML). Finally, for evaluating the evidence for personalization,

we included every study that directly compared intervention

versions that differed in their degree of personalization,

according to our framework. We extracted effect sizes, dependent

variables, and sample sizes for those.
3. Results

3.1. Study selection

Overall, we identified 3.143 potentially relevant publications

and screened the title and abstract. For 213 of those, the full

intervention description was reviewed, resulting in the final

inclusion of N = 138 papers describing k = 94 distinct DMHIs for

depressive symptoms (see Figure 1) (39–175).
FIGURE 4

Mechanisms of personalization.
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3.2. Intervention and study characteristics

While mostly one study per intervention was included, for some

up to seven publications on distinct trials were present and kept for

further analysis. Across all studies, the reviewed interventions were

deployed to approximately 24.300 participants, with an average

sample size of 259 participants per intervention (range 1–2964).

75 of the interventions were used in a randomized controlled trial,

with the remaining evidence coming from feasibility studies,

naturalistic routine care data, and other study designs.

Most interventions had a duration between 6 and 12 weeks,

and around 40 of the interventions report a structured module-/

session-based design, delivering the content in pre-defined

blocks. Finally, 38 interventions were unguided (no human

contact within the intervention), 32 guided (including guidance

from clinician or coach), and 14 blended (combining face-to-face

and digital treatment), with the remaining 10 covering more than

one of those categories. An overview of all characteristics can be

found in Supplementary Appendix S3.
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3.3. Conceptual framework

A conceptual framework of personalization in DMHIs was

synthesized from the reviewed DMHIs and theoretical

considerations. In summary, an understanding of personalization

as purposefully designed variation between individuals in an

intervention’s therapeutic elements or its structure emerged. As

such, personalization is differentiated from customization, usage,

interactivity, and group-based adaptations. Customization

describes minor adjustments, such as visual aspects, leaving the

actual therapeutic ingredients unchanged. Usage refers to possible

user-induced differences in app usage that were not actively or

purposefully designed. For example, variability in the time spent

on a module is usage, the offering of short and long versions of

a module qualifies as personalization. Interactivity, the mere

replay of user input as for example commonly used for goal-

setting exercises, as this leaves the actual therapeutic elements

and structure unchanged. Finally, as we understand

personalization as referring to the level of the individual, we see

it as being distinct from group-based variability, such as the

adaptation for a particular cultural context (see Figure 2).

Within our definition of personalization, four personalizable

intervention dimensions emerged, namely content, guidance

level, order, and communication, as summarized in Figure 3.

Content describes all variability in the delivered intervention

material, such as exercises, psychoeducative material or topics

presented. Order includes cases when patients receive the same

content but in different order. Guidance refers to the extent of

therapeutic support offered. Communication concerns the

channel, timing, and content of actively offered information

outside of the intervention’s content. This primarily includes

prompts or reminder messages. Mechanisms regarding the

frequency and timing of the intervention, such as JIT

mechanisms, also fall under communication.

Further, four different mechanisms beyond personalization

emerged: user choice, provider choice, rule-based and ML-based

personalization (see Figure 4). User choice covers intentionally

designed personalization based on the direct choice of the

participant. For provider choice, either the individual providing

guidance, or the clinician involved in a blended setting makes

the personalization decision. Among automated personalization

mechanisms, rule-based (if-then-decision rules) from Machine

Learning (decisions with “learned” decision criteria)

personalization mechanisms are gathered.
3.4. Results on personalization

Applying the proposed framework for classifying variability in

DMHIs, personalization was reported for 62 of the 94 interventions

(66%). Most prominently, personalization mechanisms were used

in the content for 30 of the interventions (32%). This was

followed by personalized communication (30%), type (25%), and

order (4%). 43 of the 62 (69%) interventions with a reported

personalization mechanism did so for only a single dimension,
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while one DMHI reported a mechanism for all four subdomains

of their intervention (60–66).

Across the 107 reported personalization mechanisms, rule-

based was most prominent, being used in 51 cases (48%). User

choice was observed in 39 cases (36%), and providers were

involved in personalization 14 times (13%). The use of machine

learning was reported three times (3%). Rule-based

personalization was particularly prominent in the communication

domain, accounting for 21 occurrences. Similarly, human

guidance was personalized using decision rules 16 times. For

content, user choice had a more prominent role, being reported

15 times. The use of personalization is summarized in Figure 5,

with examples of the 3 most strategies being presented in

Table 1. The share of interventions applying at least one

personalization mechanism was the highest for guided

interventions (72%), followed by unguided (63%) and tailed by

blended (57%) interventions. Generally, the dimensions of

personalization were equally spread across guidance levels.

However, provider choice was nearly twice as common for

blended than for guided interventions.
3.5. Use of automated decisions for
personalization

Among the 55 automated mechanisms used, most were rule-

based mechanisms of personalization. Here, activity data was

heavily utilized, for example, for reminders in case of inactivity.

Another common pattern was the use of symptom scores like the

PHQ to step up care in the form of additional guidance (57) or

the change from guided to blended care (169). While those

approaches mostly used overall symptom severity, one exemption

was the personalization based on suicide risk as e.g., in the form

of additional prompts (146).

We identified three clear use cases of ML techniques for

personalization. Firstly, EmoRecorder (70) used an activity

recommendation system based on diverse data sources like app

activity, sensor data and past recommendations. However, the

intervention was at an early stage, being tested on a sample of

only 15 healthy individuals. Secondly, the intervention MOSS

(136) built on a JIT framework to assign intervention content

depending on users’ context and preferences. As such, it tested a

recommender system with a sample of 126 adults. A third

recommender system approach, so-called MUBS (137), applied a

combination of ML and user choice by providing the 17 patients

with a set of content recommendations.
3.6. Direct empirical comparison of more
and less personalized interventions

Among the 138 papers in the final review, we identified two

papers that included a direct comparison of a more and a less

personalized version of an intervention. One study had

participants fill out a questionnaire on motivational schemata

and either matched them with an intervention arm to fit their
frontiersin.org
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TABLE 1 Most prominent personalization strategies.

Number of
interventions

Dimension Mechanism Description

21 Communication Rule-based e.g., Reminder for
inactivity/non-completion

16 Guidance Rule-based e.g., Increased guidance/
clinician contact for
symptom changes.

15 Context User choice e.g., Optional content
selectable for patient.

FIGURE 5

Personalization mechanisms per dimension of the intervention.
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motivational preference or a general one (40). Results showed

effects for one of the two included motives (“being supported”)

on anticipated adherence, working alliance, and satisfaction;

however, the overall sample size of this trial was just 55

participants. Secondly, a study compared a program version

including JIT prompts with one without those prompts,

therefore, differing the personalization in the communication

domain between trial arms (93). While both versions showed

significant effects compared to the waitlist, no effects were

reported between the arms. Again, this should be interpreted

with caution, considering the sample size of around 60

individuals per group.
4. Discussion

In recent years, personalization has been widely discussed as a

promising avenue to improve DMHI adherence and outcomes.

Nevertheless, it remains unclear what it entails and how it is

used. In this review, we address this need for the case of
Frontiers in Digital Health 07
depressive symptoms, by defining personalization as purposefully

designed variation in intervention content, order, guidance, or

communication. As possible mechanisms to operationalize

personalization, we extract user choice, provider choice, decision

rules, and ML. Applying this framework to 94 interventions for

depressive symptoms reveals that two-thirds use at least one

technique for personalization. Especially rule-based

personalization of communication and guidance and user choice-

based personalization of content is common. However, among

interventions applying personalization, a majority does so just for

one out of four dimensions of the intervention. Also, the use of

ML models is scarce and limited to feasibility studies.

Additionally, just two of the included studies investigated the

benefits of personalization, both having small samples and just

one finding supporting evidence.

Arguably, the biggest contrast between the proposed potentials

in the personalization of DMHIs (19–22) and the existing literature

is the lack of implemented ML mechanisms. Several of the

implemented non-learning algorithms and decision rules were

well designed. Yet, literature on ML in DMHIs reveals ample

further promising and feasible use cases. Firstly, a notable body

of research provides encouraging results in outcome (176, 177)

and dropout (178, 179) predictions in DMHIs. Adapting the

interventions for assumed non-responders is a low-hanging fruit

and has already been successful for other disorders (180).

Secondly, a prominent algorithmic approach to personalization

in digital products is recommender systems (181–183). While all

included ML approaches were such recommender systems, they

were in early stages and deployed to very small sample sizes.

Finally, all included ML approaches focused on the content of

the intervention. However, ML also is a promising approach to

personalize guidance, communication and order.
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Contrasting theory and observations in another dimension, the

data used for personalization just samples a fraction of the

technically possible. While app usage patterns are an obvious

data option, smartphones can also measure sleep patterns (184),

physical activity (185), social interactions (186), and many other

data points known to be relevant for depressive symptoms.

Readily available toolkits like Apple’s health kit (187) reduce the

effort for implementation significantly. However, particularly

passive sensing was rarely utilized in the reviewed interventions.

Notably, the potential of ML-based personalization is heavily

intertwined with the quality of the data available to them.

Beyond that, aspects such as ethical responsibility in health care

and privacy rights must be strongly considered, especially when

investigating automated decisions (188).

Several interventions used self-reported symptoms for the

personalization of the intervention. Noticeably, these mechanisms

mostly used overall symptom severity. This approach disregards

that symptom profiles can vary massively between patients with

the same overall score (189). Some evidence points toward

distinct symptom patterns being associated with different optimal

treatment procedures (190). Therefore, while overall severity

seems reasonable for varying guidance or communication, the

sub-symptoms might be a promising ground for personalizing

content and order.

The two included trials that manipulated personalization did so

with small sample sizes and inconclusive results. Subsequently, one

barrier to implementing personalization might be the lack of clear

evidence for its benefits. However, RCTs investigating

personalization are likely costly and require large sample sizes

when assuming smaller effect sizes than for waitlist-controlled

studies. Luckily, meta-analytic approaches allow summarizing

evidence across studies, even when personalization is rarely

directly manipulated. While we mentioned one such approach

investigating interactions between individuals and benefits of

iCBT packages (26), we consider similar approaches for other

personalization mechanisms as very promising. However the

identification and comparison of relevant studies in meta-

analyses requires shared vocabulary and a common framework.

We believe that such future work will benefit from the shared

conceptual framework proposed in this article.

There are some limitations of this review that should be

considered. Firstly, published studies are just one marker of what

interventions are in use. While several included interventions

originated in a commercial setting, those from academic settings

will likely still be overrepresented in this review. Secondly, we

focused on personalization within an intervention, excluding the

personalization of interventions themselves. For example, past

approaches investigated the data-driven personalization of

therapy school (191) or the decision between medication and

CBT (192). Thirdly, identifying interventions for depressive

symptoms while excluding those addressing comorbid disorders,

particularly anxiety, has proven challenging. One example is

when anxiety was mentioned as intervention target in a cited

study, but not in the original paper. While this seems

understandable in light of the well-established comorbidity of

depression and anxiety (193), this resulted in several edge cases
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of inclusion. Fourthly, we took interactivity, customization, and

group-based adaptions out of the scope of this review due to

their difference in nature to personalization. This should not be

misunderstood as an assumed inferiority, and we call for the

further investigation of these approaches to complement or even

substitute personalization. Fifthly, we did not evaluate our

framework by any methods besides the literature review.

Approaches like expert interviews could help to determine and

improve the usability of the proposed conceptualization. Sixthly,

to provide a wide and less biased picture of the state of

personalization, a broad search strategy was used. However,

studies using more specific terminologies might be

underrepresented. For example, a study on ecological momentary

interventions (EMI) was not identified by our search strategy

(194) as EMI was not used as a search term. Also, as pointed out

by one of the reviewers, the mesh term “Telemedicine” was not

used. Future approaches could therefore benefit from the

application of additional techniques for iterating on the search

strategy, such as the wider use of sentinel articles. Finally, as we

developed our framework exclusively with studies on depressive

symptoms, it remains unclear whether there are more aspects to

consider with other disorders. However, we expect this

framework to provide value beyond the use case of depressive

symptoms and encourage future studies to investigate

personalization strategies in other domains.

In conclusion, our conceptual development and empirical

evaluation holistically characterizes the current use of

personalization for DMHIs for depressive symptoms. A broad

conceptualization of personalization reveals that most

interventions incorporate personalization mechanisms. However,

we conclude that we are barely scratching the surface of what is

technically possible and already gold standard in other research

and business areas. At the same time, we see the thin empirical

ground as a barrier to implementation and call for more direct

and meta-analytic evidence to delineate the benefits

personalization has over an “one size fits all”-approach. Finally,

as we see this question as equally pressing for other disorders, we

hope for similar-minded approaches for those in the future.
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