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Background: Natural language processing (NLP) has the potential to automate the
reading of radiology reports, but there is a need to demonstrate that NLP methods
are adaptable and reliable for use in real-world clinical applications.
Methods: We tested the F1 score, precision, and recall to compare NLP tools on a
cohort from a study on delirium using images and radiology reports from NHS Fife
and a population-based cohort (Generation Scotland) that spans multiple National
Health Service health boards. We compared four off-the-shelf rule-based and
neural NLP tools (namely, EdIE-R, ALARM+, ESPRESSO, and Sem-EHR) and
reported on their performance for three cerebrovascular phenotypes, namely,
ischaemic stroke, small vessel disease (SVD), and atrophy. Clinical experts from
the EdIE-R team defined phenotypes using labelling techniques developed in
the development of EdIE-R, in conjunction with an expert researcher who read
underlying images.
Results: EdIE-R obtained the highest F1 score in both cohorts for ischaemic stroke,
≥93%, followed by ALARM+, ≥87%. The F1 score of ESPRESSO was ≥74%, whilst
that of Sem-EHR is ≥66%, although ESPRESSO had the highest precision in both
cohorts, 90% and 98%. For F1 scores for SVD, EdIE-R scored ≥98% and ALARM+
≥90%. ESPRESSO scored lowest with ≥77% and Sem-EHR ≥81%. In NHS Fife, F1
scores for atrophy by EdIE-R and ALARM+ were 99%, dropping in Generation
Scotland to 96% for EdIE-R and 91% for ALARM+. Sem-EHR performed lowest
for atrophy at 89% in NHS Fife and 73% in Generation Scotland. When
comparing NLP tool output with brain image reads using F1 scores, ALARM+
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scored 80%, outperforming EdIE-R at 66% in ischaemic stroke. For SVD, EdIE-R performed
best, scoring 84%, with Sem-EHR 82%. For atrophy, EdIE-R and both ALARM+ versions were
comparable at 80%.
Conclusions: The four NLP tools show varying F1 (and precision/recall) scores across all
three phenotypes, although more apparent for ischaemic stroke. If NLP tools are to be
used in clinical settings, this cannot be performed “out of the box.” It is essential to
understand the context of their development to assess whether they are suitable for the
task at hand or whether further training, re-training, or modification is required to adapt
tools to the target task.

KEYWORDS

natural language processing, brain radiology, stroke phenotype, electronic health records
1https://en.wikipedia.org/wiki/NHS_Scotland
1. Introduction

Natural language processing (NLP) can support the automated

reading of radiology reports (1, 2). Research on clinical NLP has

focused on improving the phenotyping of coded health data

routinely collected during healthcare visits (3), enhancing cohort

identification for research studies (4, 5), and improving

healthcare quality (6, 7). However, a gap in translation from

research to clinical application remains.

Deploying NLP tools out of the box in clinical settings is

challenging because these tools are often built on datasets with

limited population characteristics. This issue emerges because

access to large, diverse datasets representative of demographics

and clinical contexts is restricted because of the highly sensitive

nature of these data and privacy concerns in releasing data for

research. Limited access to data also inhibits the validation of

NLP tools on datasets beyond those used to train and develop

them. There are some accessible free-text radiology electronic

health records (EHRs) from the US that researchers can use, but

these are different from UK healthcare data and may result in

NLP tools that do not work well in the UK context (8). In

addition, initiatives such as those of Mitchell et al. (9) and

Bender and Friedman (10) have seen limited uptake within the

clinical NLP community. These initiatives support more

transparent and uniform methods of sharing information about

the intended use of a model and minimising its use in contexts

where it would not be appropriate. Furthermore, employing these

frameworks can address issues related to exclusion and bias,

resulting in models with improved generalisation abilities.

Reluctance to embrace these frameworks could be because of the

lack of access to the linked demographic data required.

Nonetheless, it could be a useful approach to help support the

transition of NLP tools to clinical use.

Our study, which compares four NLP tools across two different

cohorts, highlights how hard it is to deploy NLP tools out of the box.

We show the importance of gaining a deeper understanding of the

context a model is developed within and how this context relates

to its performance and usage parameters. The two cohorts we

used are (1) a study of patients with delirium in one UK hospital

system (NHS Fife) and (2) a population-based cohort study

(Generation Scotland), spanning multiple National Health Service

(NHS) Scotland health boards (11). The four off-the-shelf NLP
02
tools compared (EdIE-R, ALARM+, ESPRESSO, and Sem-EHR)

include rule-based and neural methods and focused on three

phenotypes found in brain radiology reports, namely, ischaemic

stroke, small vessel disease (SVD), and atrophy. We include two

versions of ALARM+, with one including uncertainty predictions.

We evaluate the performance of these tools in comparison to

clinical experts annotating the original radiology reports and

research radiologists reading the brain images. Our findings reveal

the differences in demographic variables, such as age and language

used in reporting. In addition, the geographical areas of reports

and the clinical settings under which the annotation labels

(ground truth) are applied all influence how NLP tools perform

when faced with new data.
2. Material and methods

2.1. Data cohorts

We utilised two data cohorts, and all data were obtained from

the Scottish NHS health boards1. NHS health boards are

responsible for delivering frontline healthcare services within

specific regions of Scotland. Clinically, there will be regional

differences in the data, for example, between urban and rural

areas and richer and poorer areas. There may also be linguistic

differences and variations in data recording styles because of

local conventions or individual writing styles.

NHS Fife is a cohort of acute medical inpatients aged >65 years

admitted to a district general hospital who underwent an Older

People Routine Acute Assessment and a head CT scan reported by

a radiologist as part of their clinical care (routine clinical report).

Following data linkage, this dataset contained 2,345 routine clinical

reports with corresponding research image reads. Age was collected

during the time of the scan. Following data pre-processing of the

routine clinical reports (described in Section 2.3), we selected 750

CT reports for annotation in our study, with the selection of this

number constrained by limits on annotation time.
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Generation Scotland2 (GS) is a cohort of 24,000 participants

from both the Scottish Family Health Study and the 21st Century

Genetic Health study. This cohort consists of data from different

Scottish NHS health boards. The data from NHS Fife are

combined with GS data from NHS Tayside—we denote this subset

as Tayside & Fife data throughout the paper. We received routine

clinical brain imaging reports for all brain scans conducted on GS

participants since these reports began to be stored digitally

(around the year 2007 for most boards to 2021). After data pre-

processing (described in Section 2.3), the final number of CT

reports used in this study was 1,487 (635 from Greater Glasgow

and Clyde, 368 from Grampian, 341 from Tayside & Fife, and 70

from Lothian). Age was collected during the time of the scan.
2.2. Data annotation

Alex et al. (12) reported the annotation schema used in this

study. We defined three phenotypes, namely, any ischaemic

stroke (cortical or deep, old or recent, or unspecified ischaemic

stroke), atrophy, and SVD. Using this labelling schema with the

BRAT annotation tool (13), annotators highlighted named

entities within the text and any related modifiers of location and

time and annotated negation, if present. The annotator then

selected the relevant document-level phenotype labels (see an

annotation example in Figure 1).

Training was carried out for all annotators on 115 files from the

subset of GS for NHS Tayside & Fife in an iterative process

involving weekly meetings to discuss discrepancies and answer

questions. The annotators consist of a consultant neurologist, a

clinical fellow, a junior doctor, a clinical laboratory scientist, and

a medical student. The consultant neurologist and clinical fellow

performed the NHS Fife annotation, with a 10% overlap for

double annotation. All annotators conducted the GS annotation

on each NHS health board within the GS dataset, with a 10%

overlap on all NHS health boards, except for NHS Lothian,

which was double annotated. Supplementary 1 Tables S1, S2

report the kappa values for annotators for atrophy, SVD, and

subtype level for ischaemic stroke. The consultant neurologist

resolved any disagreements in the double annotated data.
2.3. Data pre-processing

The raw reports and associated meta-fields from each study,

supplied in CSV, were prepared with parts of the EdIE-R

pipeline, as Alex et al. (12) described, by converting text into

XML and identifying section structures such as clinical history,

report, and conclusion (see Figure 2). During the process, if a

report was found to contain no or minimal text, e.g., “see

previous report,” it was excluded from this study. The clinical
2https://www.ed.ac.uk/generation-scotland
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history sections were filtered out. Therefore, only the body of a

report and the conclusion were used as input into any NLP tool

in predicting outcomes. The ALARM+ input underwent further

processing using the Python NLTK3 package to split the

document-level report into sentences.
2.4. Research image reads

An expert researcher for the NHS Fife cohort read the brain

images. They recorded infarcts, SVD, and atrophy in a

standardised way as part of a study to understand neuroimaging

correlates of delirium (we refer to this as a research image read).

Two expert neurologists mapped these research image reads to

the three stroke phenotypes. Supplementary 2 shows the values

of the research image reads recorded and how these were

mapped to the three stroke phenotypes.
2.5. NLP tools

Four different tools that predict cerebrovascular phenotypes

were used, namely, EdIE-R, Sem-EHR, ESPRESSO, and ALARM+.

All tools were used out of the box and not modified for this

study. For the ALARM+ model, we compare two output

configurations.

EdIE-R4 is a rule-based system that first performs named entity

recognition, negation detection, and relation extraction and then

classifies reports at a document level using 13 phenotypes and

two time and two location modifier labels. The rules for using

this tool were originally developed on radiology reports of a

consented cohort of the Edinburgh Stroke Study for NHS

Lothian patients using both CT and MRI scans and further fine-

tuned on routine radiology reports from NHS Tayside (12, 14).

Whilst data from these NHS health boards are included in GS,

the likelihood of an overlap for NHS Lothian is very low because

the GS cohort includes patients of all ages and not specifically

those who suffered from stroke. In addition, the data for the

stroke study were collected before 2008, and most of its patients

have already passed away. It is possible for NHS Tayside data to

be included in the GS data. However, we cannot verify duplicates

because these datasets were processed in separate safe research

environments as part of different projects and cannot be merged

because of data governance. This study uses the annotation

schema developed in conjunction with this tool.

Sem-EHR5 identifies various biomedical concepts within the

clinical text based on the Unified Medical Language system. It

then uses rules to determine if the phenotypes of interest are

present at a document level. The version used in this work was
3http://www.nltk.org
4https://www.ltg.ed.ac.uk/software/EdIE-R/
5https://github.com/CogStack/CogStack-SemEHR
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FIGURE 1

Example radiology report in BRAT annotation tool. Example shows the document (report labels) and individual phenotype labels (location, entities of
interest, and time).

6https://icaird.com/about/
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developed mainly on CT scans with a small number of MRI scans

using data from EMR in UK NHS Trusts in London and further

extended on Scottish imaging datasets. Rannikmäe et al. (3)

described the model.

ESPRESSO is a rule-based system designed to identify silent

brain infarction (SBI) and white matter disease from radiology

reports. The tool was developed from multi-site hospital data

within the US using both CT and MRI scans (15, 16).

ALARM+ (17) is a per-label attention neural network

model based on PubMedBERT. This model was developed on

an NHS Glasgow and Greater Clyde dataset from patients

diagnosed with stroke, as extracted for the Industrial Centre
Frontiers in Digital Health 04
for AI Research in Digital Diagnostics project.6 This part of

the project aimed to detect indications and contra-indications

for giving thrombolysis treatment to patients with acute

stroke. ALARM+ was trained on anonymised radiology

reports corresponding to non-contrast head CT scans from

the stroke event and the 18 months preceding and following

that event and on synthetic text data (18). This model
frontiersin.org
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FIGURE 2

Data processing pipeline.
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provides sentence-level predictions regarding whether a

phenotype is present, negative, uncertain, or not mentioned.

In two ways, we evaluate two output configurations for the

ALARM+ model by aggregating the sentence-level outputs to

a document-level output in two ways. The first is referred to

as ALARM+, without uncertainty, where we only take the

predictions of a phenotype being present. The second is

ALARM+U, with uncertainty, where we consider both the

present and uncertain predictions to indicate that the

phenotype is present.
7https://docs.scipy.org/doc/scipy/reference/stats.html
2.6. Mapping NLP tool outcomes to
phenotypes

One of the challenges of this work was that the NLP tools have all

been developed according to varying annotation schemas. For this

work, we focused on the common predictions between them,

including ischaemic stroke (all types), SVD, and atrophy. Clinically,

our phenotypes of interest are related. They all occur more

frequently with advancing age and have similar lifestyle and genetic

risk factors, but they are readily distinguishable on imaging.

Patients may develop one of these conditions or any combination.

EdIE-R, ALARM+, and Sem-EHR identify all three outcomes. In

contrast, ESPRESSO only predicts SBI, which is an asymptomatic

ischaemic stroke seen on imaging (CT or MRI scan). Thus, the

clinical picture is relevant in determining SBI. In the ESPRESSO

study, the cohort consisted of patients who did not have any

clinically evident stroke any time before or up to 30 days after the

imaging exam (15).

Except ALARM+, all tools generate document-level output to

determine whether a phenotype was present in each report.

Sentence-level predictions for ALARM+ were aggregated to

establish document-level labels. In cases where there were

contradictory sentence-level predictions about the presence or

negation of a phenotype in ALARM+ output, we marked the
Frontiers in Digital Health 05
phenotype as present. This approach also matched the supervision

(labelling) performed by ALARM+ authors where word-level

contradictions occurred in a sentence.
2.7. Comparisons and performance
measures

Comparisons of performance by phenotype across GS and NHS

Fife cohorts were carried out for each NLP tool and the three

phenotypes. We reported the F1 score (harmonic mean of precision

and recall), precision (also known as positive predictive value,

i.e., PPV), and recall. Metrics were reported for the total

populations and subdivided within the GS dataset based on age

groups (<50, 50–70, and 71+ years) and the NHS health board. We

did not divide the NHS Fife data by age group since all the patients

were >65 years of age, and only 4% (or 35 records) from the NHS

Fife data were below 71 years. The Supplementary Material

presents the 95% confidence intervals (CIs) for results. We used

CIs estimated using a beta distribution and calculated them using

the Python package scipy.stats7 and the beta.ppf function across the

reports to give readers an approximation of CIs. Our decision to

apply this method is based on the work by Goutte and Gaussier

(19), which compares the results of different methods for precision

and recall. They argue that summary statistics such as precision and

recall do not always correspond to sample medians or means.

Thus, a bootstrap method may fail to give accurate CIs. Their

approach instead estimates the distribution for precision and recall

and uses this to compare results for different methods.

Precision∼Be (TP + λ, FP + λ) Recall∼Beta (TP + λ, FN + λ), where

λ is an adjustment factor for prior information, and we assume
frontiersin.org
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TABLE 1 Prevalence rate of all phenotypes in NHS Fife and Generation
Scotland cohorts, numbers of scans with phenotype present, % of total
number of scans with phenotype present out of the full number of
scans in the dataset, and number of scans in each age group per data
cohort.

NHS Fife Generation Scotland

Phenotype
Ischaemic stroke (all) 272 (37.50%) 225 (15.13%)

Small vessel disease 488 (67.40%) 362 (24.34%)

Atrophy 476 (65.75%) 308 (20.71%)

Age group (years)
<50 0 293

50–70 35 650

71+ 686 544

Casey et al. 10.3389/fdgth.2023.1184919
uniform priors (1,1) for both precision and recall. However, there is

no consensus in the field yet regarding the derivation of CIs.

Supplementary 3 provides the CIs for the breakdown by age and

NHS health board. However, this breakdown leads to small

partitions of data with even smaller numbers of people having one

or more of the three phenotypes, leading to broad CIs, which can

make it difficult to draw definitive conclusions based on the

reported CIs. Nonetheless, we provide them for completeness.

Using research image reads from NHS Fife, we compare each

NLP tool to the research image read by phenotype and compare

the human-annotated labels to the research image reads using

the research image reads as ground truth. We also compare the

NLP tools to the human annotations using the annotations as

ground truth.
3. Results

3.1. Prevalence of phenotypes by annotated
labels

Table 1 shows the prevalence rate of the three phenotypes, using

the annotated labels, and the distribution of scans by age group for

both cohorts. More SVD and atrophy than ischaemic stroke are

identified in both cohorts, particularly in NHS Fife. This finding is

expected as NHS Fife is a cohort for elderly patients with delirium;

95% of the scans were from patients aged 71 or above, whereas

only 37% of the patients in the FS data were in this age range.
3.2. Ischaemic stroke

3.2.1. F1 performance
The four tools had varying F1 scores, and all performance levels

dropped in the GS data compared with that of NHS Fife, except

ESPRESSO. EdIE-R had the highest F1 score on both cohorts at

≥93%, with Sem-EHR scoring the lowest at ≥66%. ESPRESSO

achieved the same performance level as Sem-EHR on the NHS

Fife cohort, both scoring 74%, which increased to 77% on the GS

data. Both versions of ALARM+ performed the same on the NHS

Fife, with scores of 90%, but differed on the GS, where ALARM+

scored 87% and ALARM+U scored 83% (Figure 3A).

3.2.2. Precision and recall performance
In both cohorts, EdIE-R had a fairly high precision of ≥88% and

high recall of ≥98%. Sem-EHR had a low precision of ≥50% but a

high recall of ≥96%. ESPRESSO had the highest precision of all

tools in both cohorts at ≥90% but the lowest recall in both cohorts

at ≥58%. ALARM+ and ALARM+U had a modest precision of

80% and 71%, respectively, and high recall at ≥94% (Figure 3B).

3.2.3. Performance across age groups
All the tools had lower F1 scores in the <50 age group except

ALARM+, which performed best in this group with a score of 92%.

However, when uncertainty was added to ALARM+U, the

performance dropped to 12% compared with that without
Frontiers in Digital Health 06
uncertainty. EdIE-R had the highest F1 score in the 50–70 and

71+ age groups at 92% and 91%, respectively, closely followed by

ALARM+, which was 5% lower in the 50–70 group and only 1%

lower in the 71+ age group. Both Sem-EHR and ESPRESSO

performed better as the age group increased, with Sem-EHR

rising 13%, from 57% to 70%, and ESPRESSO 18%, from 63% to

81%, respectively, across the age groups (Table 2).
3.2.4. Performance across health boards
EdIE-R performed best in the NHS health boards it was trained

and tuned on (Lothian and Tayside & Fife), with a 100% F1 score,

which dropped to 9% in NHS Grampian and 11% in GCC.

ALARM+ performed more consistently than EdIE-R across the

health boards, varying 2%, from 86% to 88%. ALARM+U varied

more, with the lowest score in Lothian at 81% and highest score

in GCC (the health board it was trained on) at 92%. The

performance of Sem-EHR and ESPRESSO varied across the health

boards, both lowest on Lothian at 42% and 73%, respectively.

Sem-EHR performed higher on Tayside & Fife with 77%

compared with 76%, and ESPRESSO performed 8% higher than

Sem-EHR on GCC at 75% and 19% higher on Grampian (Table 2).
3.2.5. Error analysis
All tools had more false positives in the GS data compared with

NHS Fife, largely due to words or phrases that do not clearly

indicate whether a phenotype was present and are open to

annotator interpretation, e.g., “This may be an old infarct.” These

phrases were found more often in scans of younger people.

Therefore, this finding reflected the differences in age between

the two cohorts. For most of these false positives, we found that

the annotator would mark the phenotype not present, whereas

the tool would take it as a positive incidence. EdIE-R was less

likely to do this as it was designed with the annotation guidelines

used in this study. Emphasising this problem of uncertainty,

adding uncertainty with ALARM+U increases false positives even

further.

ESPRESSO recall was expected to score lower as this tool only

predicts asymptomatic brain infarctions, which means it is more

likely to miss more instances, resulting in higher false negatives.

Another factor in the lower precision for ALARM+ in

predicting ischaemic stroke was the difference in the definitions
frontiersin.org
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FIGURE 3

(A) F1 performance of NLP tools on both NHS Fife and Generation Scotland data for ischaemic stroke. (B) Precision and recall performance of NLP tools
on both NHS Fife and Generation Scotland data for ischaemic stroke and 95% CIs.

TABLE 2 NLP tool F1 score (%) for ischaemic stroke performance across
age groups (<50, 50–70, and 71+ years) and NHS health boards (Tayside
& Fife, Lothian, GGC, and Grampian) in Generation Scotland data,
excluding the NHS Fife dataset.

Age group EdIE-R Sem-EHR ESPRESSO ALARM+ ALARM+U
<50 0.89 0.57 0.63 0.92 0.80

50–70 0.92 0.61 0.73 0.87 0.81

71+ 0.91 0.70 0.81 0.90 0.84

Tayside & Fife 1.0 0.77 0.76 0.86 0.85

Lothian 1.0 0.42 0.73 0.87 0.81

GGC 0.89 0.67 0.75 0.88 0.92

Grampian 0.91 0.63 0.82 0.87 0.83

The precision, recall, and 95% CIs can be found in Supplementary 3. Bold figures

indicate the highest F1 score.

Casey et al. 10.3389/fdgth.2023.1184919
of the labelling model. ALARM+ identified phrases as ischaemic

stroke that annotators labelled as small vessel diseases, e.g.,

“ischaemic change” and “micro-vascular change.”
Frontiers in Digital Health 07
3.3. SVD

3.3.1. F1 performance
For the prediction of SVD on reports of brain CT scans, there

was very little difference in the performance between the two

cohorts for each tool except for Sem-EHR. EdIE-R had the

highest F1 score of 98% in both cohorts. Sem-EHR scored high

at 92% but dropped to 81% on GS. ESPRESSO was lowest in

both cohorts at 77%, rising 1% on GS. ALARM+ had a high F1

score of ≥90% over both cohorts, with very little difference, 1%,

between the two ALARM+ versions (Figure 4A).
3.3.2. Precision and recall performance
EdIE-R had a high precision of ≥98% and a recall of

≥97%. Sem-EHR had a modest to higher precision, 72%

and 92%, but a high recall of ≥91%. ESPRESSO has a high
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FIGURE 4

(A) F1 performance of NLP tools on both NHS Fife and Generation Scotland data for SVD. (B) Precision and recall performance of NLP tools on both NHS
Fife and Generation Scotland data for SVD and 95% CIs.

TABLE 3 NLP tool F1 score (%) for SVD performance across age groups
(<50, 50–70, and 71+ years) and NHS health boards (Tayside & Fife,
Lothian, GGC, and Grampian) in Generation Scotland data, excluding
NHS Fife dataset.

Age group EdIE-R Sem-EHR ESPRESSO ALARM+ ALARM+U

<50 0.89 0.08 0.29 0.40 0.40

50–70 0.96 0.72 0.73 0.85 0.86

71+ 0.98 0.88 0.80 0.92 0.93

Tayside & Fife 0.99 0.73 0.68 0.83 0.83

Lothian 1.0 0.49 0.88 0.88 0.91

GGC 0.97 0.88 0.67 0.91 0.92

Grampian 0.98 0.80 0.89 0.89 0.90

The precision, recall, and 95% CIs can be found in Supplementary 3. Bold figures

indicate the highest F1 score.
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precision of ≥90% but a low recall of 68%, and ALARM+ and

ALARM+U had a high precision of ≥96% and modest recall

of ≥85% (Figure 4B).
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3.3.3. Performance across age groups
EdIE-R performed best across age groups with the highest

F1 scores, although it is 9% lower in the <50 group compared

with the 71+ group. The difference in F1 performance was

much higher for all the other tools when comparing the

<50 group to the 71+ group. There was an 80% difference

across the age groups in F1 score for Sem-EHR from 8% to

88%, 51% for ESPRESSO from 29% to 80%, 52% for

ALARM+ from 40% to 92%, and 53% for ALARM+U from

40% to 93% (Table 3).
3.3.4. Performance across health boards
EdIE-R performs the best across all health boards at ≥98%.

Sem-EHR performance was lowest on Lothian data at 49%, rising

to 88% in GCC. ESPRESSO performed the same as ALARM+ on

Lothian, 88% and 89% on Grampian, but lower on Tayside &
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Fife at 68% and 67% on GCC. ALARM+U outperformed ALARM+

by a small margin on every health board but Tayside & Fife, with

both versions reaching ≥83% (Table 3).
3.3.5. Error analysis
SVD is often mentioned in relation to age (e.g., “normal for

age”), and this led to some tools predicting SVD even when the

annotator did not label it as such because it was not considered

pathological. EdIE-R was again at an advantage, tuned to the

annotation schema used. Sem-EHR also incorrectly labelled

mentions of the word “vessel” and related abbreviations as

SVD, which increased false positives.

The lower recall for ALARM+ is again an artefact of the

annotation schema used and shows the opposite effect of that

seen in predicting ischaemic stroke. Texts that an annotator

would label as SVD are labelled by ALARM+ as ischaemic

stroke, creating more false negative predictions.
FIGURE 5

(A) F1 performance of NLP tools on both NHS Fife and Generation Scotland d
NHS Fife and Generation Scotland data for atrophy and 95% CIs.
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3.4. Atrophy

3.4.1. F1 performance
For the prediction of atrophy on reports of brain CT scans,

EdIE-R and both versions of ALARM+ achieved identical scores

of 99% on NHS Fife. However, their performance declined in

GS, with EdIE-R dropping to 96% and both ALARM+ versions

dropping to 91%. Sem-EHR scored lowest at 89% on NHS Fife

and 73% on GS (Figure 5A).
3.4.2. Precision and recall performance
EdIE-R had high precision of ≥98% and recall of ≥93%.

Sem-EHR had a modest precision, 72% and 92% but a high

recall of ≥91%. ALARM+ and ALARM+U had high

precision in NHS Fife at 99%, dropping to 84% in GS,

but have the highest recall in both datasets at 100%

(Figure 5B).
ata for atrophy. (B) Precision and recall performance of NLP tools on both
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TABLE 4 NLP tool F1 score (%) for atrophy performance across age groups
(<50, 50–70, and 71+ years) and NHS health boards (Tayside & Fife,
Lothian, GGC, and Grampian) in Generation Scotland data, excluding
the NHS Fife dataset.

Age group EdIE-R Sem-EHR ALARM+ ALARM+U
<50 0.94 0.26 0.72 0.72

50–70 1.0 0.68 0.87 0.87

71+ 0.96 0.80 0.93 0.93

Tayside & Fife 0.98 0.79 0.96 0.96

Lothian 1.0 0.29 0.81 0.81

GGC 0.95 0.70 0.93 0.93

Grampian 0.97 0.83 0.87 0.87

The precision, recall, and 95% CIs can be found in Supplementary 3. Bold figures

indicate the highest F1 score.
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3.4.3. Performance across age groups
EdIE-R performed more consistently across the age

groups, differing by 6%, starting at 94% in the <50 group,

rising to 100% in the 50–70 group, and dropping again to

96% in the 71+ group. Sem-EHR performed much lower

than both tools at 26% in the <50 group, rising to 80% in

the 71+ age group. Both versions of ALARM+ scored the

same but varied 21% across the age groups, starting at 72%

(<50 age group) and rising to 93% for the 71+ age group

(Table 4).
3.4.4. Performance across health boards
Again, EdIE-R performed best in the health boards it was

trained and tuned on, scoring 100% in Lothian and dropping to

95% in GCC. Sem-EHR, as with all the other phenotypes,

performed lowest on the Lothian data at 29% and much higher

on the other health boards, reaching 83% in Grampian. Both

ALARM+ versions performed the same across all the health

boards, lowest on Lothian 81% and reaching 96% in Tayside &

Fife (Table 4).
3.4.5. Error analysis
Similar to SVD, atrophy is often mentioned in relation to the

age of a patient. Sem-EHR and ALARM+ correctly label

statements such as “mild age related generalised cerebral atrophy”

as indicating atrophy, but they also label “brain volume is

preserved for age” and “cerebral volume is normal for age” as

indicating the presence of atrophy. In contrast, the annotator can

distinguish that these phrases state that atrophy is not present.

Both instances occur more in the GS data and younger patients

and are the main reason for more false positives, resulting in

worse precision scores between the two cohorts and in age groups.
TABLE 5 The number of phenotypes labelled during the research image
reads of the brain image and the number of phenotypes labelled during
human annotation of the radiology reports and precision and recall
values for each phenotype comparing research image read as ground
truth to human-annotated labels in reports.

Phenotype Image Report Precision Recall
Ischaemic stroke 459 272 0.88 0.53

Small vessel disease 548 488 0.90 0.80

Atrophy 516 476 0.83 0.77
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3.5. Research image reads

3.5.1. Data description of research image reads
More instances of ischaemic stroke are identified in the brain

image reads than what human annotators have identified in the

reports (Table 5). Approximately 70% of these additional

ischaemic stroke labels are “old ischaemic strokes.” Routine

clinical reports do not always contain every aspect of what might

be included in a brain image read. For example, a radiologist

reading a routine clinical image may have prior information

about old strokes from existing images or, conversely, address a

specific request and leave out details not pertinent to the request

at hand. This largely accounts for the discrepancies between the

image reads and annotated labels.
3.5.2. Comparison of results for research
image reads

Table 5 shows the precision and recall when comparing

research image reads as ground truth to human-annotated labels

in the radiology reports. In contrast to the results of the NLP

tools and human-annotated labels, atrophy precision is lowest at

83% and SVD is highest at 90%. The recall for SVD and atrophy

was higher than that for ischaemic stroke, which is expected as

we know more old ischaemic strokes were found in the brain

image reads than those mentioned in the reports.

Table 6 compares research image reads to NLP tool outputs.

Compared with the results of NLP tools against the human-

annotated labels, all tools are much more comparable, with almost

no difference between EdIE-R and both ALARM+ versions in

atrophy and Sem-EHR being much closer in performance. Recall

was high for ALARM+ but declined by 18% in ALARM+U when

we added uncertainty for ischaemic stroke. Notably, the

performance of ALARM+ measured from F1 was much higher

than that of EdIE-R because of the better recall. Sem-EHR and

EdIE-R were much closer in performance compared with human

report labels in SVD, with ALARM+ having the highest precision.

Comparing Tables 5 and 6 for ischaemic stroke, the EdIE-R

precision performance is identical to that of human annotators,

and ESPRESSO precision is 1% higher. Comparing recall in this

way, Sem-EHR and both versions of ALARM+ exceed the recall

of human annotators. For SVD, EdIE-R, ESPRESSO, and both

ALARM+ versions have the same or slightly higher precision

than human annotators, but the recall of all NLP tools is lower

than that of human annotators. Finally, for atrophy, EdIE-R

matches the precision and recall of human annotators, and both

ALARM+ versions match the performance of human annotators

in precision and perform better in recall.
4. Discussion

4.1. Summary of results

Our work compared the performance of four out-of-the-box

NLP tools, one of which had two output configurations, across
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TABLE 6 The precision, recall, and F1 scores comparing the NLP tools for each phenotype to the brain image reads.

Ischaemic stroke Small vessel disease Atrophy

Precision Recall F1 Precision Recall F1 Precision Recall F1
EdIE-R 0.88 0.53 0.66 0.90 0.78 0.84 0.83 0.77 0.80

Sem-EHR 0.77 0.72 0.74 0.87 0.77 0.82 0.81 0.68 0.74

ESPRESSO 0.89 0.32 0.47 0.92 0.53 0.67 – – –

ALARM+ 0.85 0.57 0.68 0.91 0.69 0.78 0.83 0.78 0.80

ALARM+U 0.84 0.59 0.69 0.91 0.70 0.79 0.83 0.78 0.80

Bold figures indicate the highest F1 score.
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two different cohorts of data, focused on three phenotypes, namely,

ischaemic stroke, SVD, and atrophy. Comparing the performance of

the tool in two cohorts usually resulted in lower performance levels

in the GS dataset. However, error analysis on false positives and

negatives, looking across age groups and NHS health boards,

revealed important insights into the tools and highlighted that the

comparison of F1 scores should always be interpreted within the

context of the different NLP tools and how they were developed.

We found that three main factors affected tool performance,

namely, uncertainty in language, particularly occurring in lower

age groups; adaptability to different health board data; and

training of the tools, including variations in annotation schema.

Our work also showed the value of using image reads and labelled

reports when comparing differing tools.
4.2. Language indicating diagnostic
uncertainty

The GS cohort had a broader age range than NHS Fife, which

was an elderly cohort, and we found that scan reports of younger

people frequently used uncertain language, particularly for

ischaemic stroke, e.g., “this may possibly be an ischemic infarct.”

The use of uncertain language led to discrepancies between

ground truth and NLP tool predictions and is a known problem

for NLP using radiology reports, with studies such as Callen et al.

(20) characterising where uncertain language is used. To address

this issue, more consideration is needed when handling

uncertainty in training NLP tools. In developing CheXpert data

(chest radiology reports), Irvin et al. (21) investigated different

approaches to incorporating uncertainty within model predictions.

They showed that the approach, similar to ALARM+U, of treating

uncertain outcomes as certain provides better prediction in

detecting some phenotypes (e.g., atelectasis and oedema).

However, for other phenotypes (e.g., cardiomegaly), using a model

specifically trained to include uncertain labels allows for better

disambiguation. It is also worth noting that adding uncertainty to

ALARM+ for atrophy did not result in any difference in the

prediction outcomes of ALARM+. A better understanding of how

NLP tools can best approach uncertain language and studying

how uncertain language is applied when describing specific

phenotypes would help improve prediction models.

Uncertain language may also affect annotator labelling, as does

the number of annotators used. The number of annotators can

lead to inconsistency between annotators and amplify this issue

when making decisions around uncertain language. Despite the
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use of guidelines for annotation, there is still subjectivity when it

comes to deciding a label based on uncertain language (e.g.,

maybe, probably, or possibly). Work in the annotation field has

suggested using annotator inconsistencies to improve annotation

labelling (22). Chapman et al. (23), who developed ConTEXT,

which looks for contextual features (negation, temporality, or who

has experienced the condition, e.g., patient, family, and member),

have shown how this may assist annotators when labelling by

identifying these uncertain conditions to support classification.

Other work, such as that by the ALARM+ authors, considered

how a template method could improve understanding of uncertain

terminology (18). They defined terminology that should be used

to map to uncertain, positive, and negative entities, and this

vocabulary was gathered throughout the annotation. The authors

then used a template mechanism to explicitly teach the model

how to change its prediction based on small changes in the

language and phrasing. Given the subjectivity of radiology

language, improving consistency and reliability of radiology report-

labelling is important for development.
4.3. Different health board data

We observed that, in general, NLP tool performance across

different NHS health board data impacted the rule-based system

EdIE-R more, although this varied across phenotypes, with less

impact seen on SVD and atrophy. This suggests that a neural-

based model may be more generalisable for some phenotypes.

There is potential for exploration with other types of machine

learning models that may perform better across different data

sources. Schrempf et al. (18) compared the EdIE-R and ALARM+

approaches on their dataset and found similar findings. However,

the reason for the differences could relate to other variances in the

training data, such as underlying population characteristics.
4.4. Annotation schema and training
of tools

The datasets NLP tools are trained on and any annotation

schema used for testing and refining the tool also influence tool

performance. A poorer performance level may relate to

differences in training data that the tools were exposed to. For

example, being trained on data from different age groups affected

the performance on SVD and atrophy phenotypes, which tend to

be described in the report text in relation to whether they are
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“normal for age” or “advanced for age.” The rules of EdIE-R were

designed based on the guidelines used by the annotators in this

study. Therefore, EdIE-R outcomes will more readily align to the

annotated labels than the other tools, e.g., Sem-EHR and

ALARM+ predicted these as positive for atrophy and SVD. EdIE-

R, Sem-EHR, and ALARM+ were trained on elderly cohorts

(aged over 71 years), and this signifies the need to broaden the

training exposure when developing a tool. We also observed that

most ALARM+ false positives in ischaemic stroke and false

negatives in SVD result from the annotation schema ALARM+

was trained on, which considered all mentions of atrophy to be

positive including “normal for age,” compared with the

annotation schema applied in our study. These differences in

training and annotation make it difficult to adequately cross-

compare tools. Moreover, these differences also highlight how

adaptation or re-training would be needed to apply tools for

purposes different from what they were originally designed for.

Clinical practice and guidelines will also impact how

annotation is performed and phenotypes defined. For example,

annotation protocols for the NLP tools may be specifically

designed to identify phenotypes relevant to specific clinical

scenarios (e.g., to fit with particular treatment guidelines or to

identify people for clinical trials). In addition, clinical practice

and the use of clinical guidelines may vary between settings, e.g.,

NHS health boards, and could determine what information is

included in radiology reports and how they are presented. The

clinical indication for imaging is another factor to consider. The

GS dataset contains scans conducted for any indication. In

contrast, the NHS Fife dataset contained scans conducted for

people with delirium. Therefore, the reports may differ in

content and focus. Variation in terminology and formatting is a

recognised issue for NLP of radiology reports (Pons et al. 2016),

and considering these contextual differences is important when

comparing different bodies of radiological text.
4.5. Alternative methods for measuring
performance

Interestingly, our comparison of the NLP tools to the research

image reads removes much of the ambiguity around the tools

trained on different annotation schemas. Accordingly, this showed

that the results of the tools were much more similar, with

relatively no difference between ALARM+ and EdIE-R for some

phenotypes (e.g., atrophy). This demonstrated the value of using

an alternative method to report-labelling when comparing tools

developed on different annotation schemas. However, comparing

the research image reads to the report annotated labels highlighted

that this type of comparison is not without difficulties as more

phenotypes are observed in the image than are written up in a

single report. This is because a person may have multiple scans

and a radiologist may only write up what has not been previously

mentioned or may focus on a specific reason for the scan. Wood

et al. (24) also reported similar differences between medical

images and corresponding radiology reports.
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4.6. Implication for clinical practice and
NLP research

This work implies that if these tools are applied to clinical

settings, it cannot be performed “out of the box.” In addition, it is

essential to understand the context of their development to assess

whether they are suitable for the task at hand or whether further

training is required. For NLP practice, we highlighted several areas

for future work to improve NLP tool performance. First, it is

crucial to investigate uncertainty in language and understand how

to deal with this for different phenotypes. Second, there is a need

to understand annotation schemas that NLP tools are built on,

particularly when comparing tools, and investigate alternative

approaches, such as brain image reads, which could support

evaluation and promote confidence in using NLP tools.

Works such as Mitchell et al. (9) and Bender and Friedman (10)

promote frameworks for understanding cases of model use, outlining

the contexts where a model is suited to a specific use and ensuring

transparency about data characteristics used when models are

developed. Application of such frameworks in health-related NLP

tools is scarce. However, if published alongside models, they could

support stronger claims of how these models would generalise to

unseen data and how the results can be reproduced. For example,

it would have been useful to have a more detailed understanding

of the characteristics of the data all four models were trained on,

as the level of detail differed within each published paper and was

not comparable, e.g., age bands of patients. Regularly adopting

these frameworks would also support the deployment and use of

NLP tools in clinical use. Model developers could use the

framework to more explicitly define the parameters within which

a model was developed and expected to operate within to

maintain the performance level.

Finally, there is a continuing need to pursue access to radiology

reporting datasets using additional demographic variables to test

and refine these tools on alternative, unseen data.
4.7. Limitations

The comparison of the models in this study has limitations

because of the restricted access to data in our cohorts. We did not

have access to ethnicity or specific geographical details besides the

NHS health board. In addition, because of the restrictions imposed

by the bodies that release health data, we have no way of

establishing if some of the data used in this study from either

cohort could have been within the data used when developing

tools. In addition, we specified that this was a document-level study

at the outset. Although ALARM+ predicts at the sentence level, we

point out that it would have been time-consuming and out of the

scope of the paper to do a sentence-level comparison to annotation

labels. Further analysis of the NHS Fife data is no longer possible

because of the access restrictions and additional costs. It is also

impossible to do sentence-level comparisons against the image

reads as image reads provide a complete output of the entire image

and can only be compared at the document output level.
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5. Conclusions

We conclude that the different NLP tools vary in F1 (and

precision/recall) scores for the three phenotypes, especially for

ischaemic stroke compared with SVD or atrophy. Several factors

influence the performance of the NLP tools: uncertainty in

language, which occurs more for younger patient age groups; the

data and annotations that a model was trained on; and the

different NHS trusts from which data was obtained. If these tools

are to be applied to clinical settings, it is important to understand

the context of their development to assess if they are suitable for

the task and environment they are being applied within.
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