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Debarshi Datta1*, Safiya George Dalmida1, Laurie Martinez1,
David Newman1, Javad Hashemi2, Taghi M. Khoshgoftaar2,
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Introduction: The SARS-CoV-2 (COVID-19) pandemic has created substantial
health and economic burdens in the US and worldwide. As new variants
continuously emerge, predicting critical clinical events in the context of relevant
individual risks is a promising option for reducing the overall burden of COVID-19.
This study aims to train an AI-driven decision support system that helps build a
model to understand the most important features that predict the “mortality” of
patients hospitalized with COVID-19.
Methods: We conducted a retrospective analysis of “5,371” patients hospitalized for
COVID-19-related symptoms from the South Florida Memorial Health Care System
between March 14th, 2020, and January 16th, 2021. A data set comprising patients’
sociodemographic characteristics, pre-existing health information, and medication
was analyzed. We trained Random Forest classifier to predict “mortality” for
patients hospitalized with COVID-19.
Results: Based on the interpretability of the model, age emerged as the primary
predictor of “mortality”, followed by diarrhea, diabetes, hypertension, BMI, early
stages of kidney disease, smoking status, sex, pneumonia, and race in descending
order of importance. Notably, individuals aged over 65 years (referred to as “older
adults”), males, Whites, Hispanics, and current smokers were identified as being at
higher risk of death. Additionally, BMI, specifically in the overweight and obese
categories, significantly predicted “mortality”. These findings indicated that the model
effectively learned from various categories, such as patients’ sociodemographic
characteristics, pre-hospital comorbidities, and medications, with a predominant
focus on characterizing pre-hospital comorbidities. Consequently, the model
demonstrated the ability to predict “mortality” with transparency and reliability.
Conclusion: AI can potentially provide healthcare workers with the ability to stratify
patients and streamline optimal care solutions when time is of the essence and
resources are limited. This work sets the platform for future work that forecasts
patient responses to treatments at various levels of disease severity and assesses
health disparities and patient conditions that promote improved health care in a
broader context. This study contributed to one of the first predictive analyses
applying AI/ML techniques to COVID-19 data using a vast sample from South Florida.

KEYWORDS

COVID-19 pandemic, random forest classifier, gini index, feature analysis and prediction,

SHAP (Shapley additive explanation), SMOTE (Synthetic minority over-sampling

techniques), AI/ML, caring data science
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2023.1193467&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fdgth.2023.1193467
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1193467/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1193467/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1193467/full
https://www.frontiersin.org/articles/10.3389/fdgth.2023.1193467/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2023.1193467
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Datta et al. 10.3389/fdgth.2023.1193467
1. Introduction

As of March 2023, the United States has the highest number of

global cumulative SARS-CoV-2 (COVID-19) cases reported at over

100 million and is ranked first for COVID-19 cumulative deaths at

over 1 million (1). Florida alone accounts for over 7.5 million

confirmed COVID-19 cases and over 88,000 deaths (2). To date,

there appears to be a dearth of information published about

COVID-19 in South Florida that describes COVID-19 patient

characteristics and identifies and validates factors that predict

COVID-19 disease progression and “mortality.” This is one of

the earlier studies that can be used to predict “mortality” and

understand features important to patients hospitalized with

COVID-19 who are at risk of dying.

The overwhelming influx of COVID-19-infected patients with

severe illness continues to cause unprecedented clinical and direct

medical cost burdens. Early prediction of the “mortality” of

patients hospitalized with COVID-19 can improve patient

outcomes and decrease death rates by guiding treatment plans and

assuring efficient resource allocation (3). There is a need to

investigate factors associated with poor prognosis for patients in

South Florida to assist in identifying patients with COVID-19 who

are at higher risk of severe illness and subsequent “mortality.”

Identifying such factors is pivotal in monitoring disease

progression and targeting individualized interventions. Predicting

critical clinical events in the context of relevant individual risks is

a promising option for guiding clinical care, optimizing patient

outcomes, and allocating scarce resources to reduce “mortality”

with a subsequent decline in the overall COVID-19 burden.

Clinical care largely depends on manifestations of COVID-19

symptomology. The diverse clinical spectrum of COVID-19

ranges from asymptomatic presentation to severe acute

respiratory syndrome and death. Common classifications of

COVID-19 illness are mild (i.e., no pneumonia), severe (i.e.,

dyspnea, oxygen saturation ≤93%, the proportion of arterial

partial pressure of oxygen to fraction of inspired oxygen

<300 mm Hg), and critical (i.e., respiratory failure, multiple

organ dysfunction) (4). Cumulative evidence indicates that

manifestation and the prognosis for severe disease are associated

with comorbidities, age, and sex (5–8). Chronic comorbidities

posing a significant risk for severe disease progression appear to

include cancer, heart failure, coronary artery disease, kidney

disease, chronic obstructive pulmonary disease, obesity, sickle cell

anemia, and diabetes mellitus (9–13). Extant literature indicates

that individuals ≥60 years with comorbidities are at greater risk

of severe disease and subsequent death, with “mortality” being

highest among individuals ≥70 years, regardless of comorbidities

(10, 14). Further, males consistently have a higher “mortality”

rate when compared to females, regardless of preexisting

comorbidities or age group (15, 16).

Direct medical costs associated with COVID-19 treatment are

primarily associated with the severity of the disease (17, 18).

Evidence indicates that the cost of care for patients with severe

symptomology has higher direct costs than those with less severe

infections (19). Moreover, higher costs appear to be driven by
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the increased use of hospital resources and a higher risk of

“mortality” (17, 19, 20). Literature suggests that predictive

modeling can optimize the future treatment of patients

hospitalized with COVID-19 by guiding early time-sensitive

clinical interventions that improve the quality of care, decrease

“mortality”, and rationalize resource allocation (21, 22).
1.1. COVID-19 mortality and machine
learning

According to the extant literature, numerous retrospective

analyses have investigated the statistical significance of various

features in relation to COVID-19 “mortality”. These features

include demographics such as race/ethnicity, age, gender, BMI, as

well as comorbidities like diabetes, hypertension, COPD, among

others (23). Many of these demographics and comorbidities have

emerged as key determinants of COVID-19-related “mortality”.

Similarly, several ML-based models have been developed to

predict COVID-19-related “mortality” by considering the severity

of the disease (22, 24, 25). For example, Kirby et al. 2021 (24),

created a logistic regression model to forecast disease severity

and “mortality”. The severity score was derived from a literature

survey of COVID-19 patients, categorizing them based on

comorbidity conditions, ICU admissions, and the need for

mechanical ventilation, among other factors. Multivariate logistic

regression was utilized to classify patients into four severity

categories using the newly adopted “COVID-related high-risk

Chronic Conditions” (CCCs) scale (24), with the model

achieving an accuracy of approximately 66%. It is worth

mentioning that the CCC scale was manually constructed,

assigned scores to individual patients, and the model

incorporated other statistical patient information to predict these

scores. Based on statistical analysis, the study concluded that age

and gender served as significant risk predictors for COVID-19

disease severity. However, the study did not examine the model’s

interpretability for its decision-making process.

In a more detailed predictive analysis conducted by Zhu et al.

2020 (26), a deep learning approach was employed to identify key

factors from a pool of 181 data points in a multicenter study. The

identification of important features involved permuting different

feature values and observing the impact on model performance.

By determining the top 5 most important features, the study

trained a new model to predict “mortality,” which yielded higher

accuracy for the top 5 important features. However, it is

important to note that this analysis presented potential

limitations as it relied on sophisticated lab biomarkers—such as

O2 Index, D-dimer, and neutrophil-lymphocyte count—which

may not be universally available and thus should not serve as a

common platform for understanding risk factors.

In another study by Zhao et al. 2020 (22), a logistic regression

analysis was utilized to classify ICU admission and “mortality”

among COVID-19 patients. The researchers achieved improved

outcomes by incorporating a broader range, rather than specific,

of lab biomarkers and patient medical reports from a relatively
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small cohort of 641 patients. The Area Under the Curve (AUC)

scores were reported as 0.74 for predicting ICU admission and

0.83 for “mortality.” However, it is important to consider the

limitations of the study’s small cohort size. The observed success

of the model could potentially be attributed to overfitting and

may not be generalizable to a larger population.

In the realm of retrospective analysis regarding “mortality” in

COVID-19 patients, Kirby et al. 2021 (24), investigated the

performance of various models in predicting “mortality”. The study

compared models such as Random Forest (RF) classifier, Support

Vector Machine (SVM), logistic regression, and gradient boosting.

Notably, the RF emerged as the top-performing model among the

others in predicting “mortality”. The RF classifier achieved an

accuracy of 79% on the test dataset. However, it is important to

consider that the higher accuracy might be influenced by the

utilization of a small population and potential overfitting.

Furthermore, the investigation delved into determining the most

important features indicative of “mortality” risk. Lime-SP (model

agnostic) prediction analysis revealed that age and gender were the

most important predictors within the specific patient demographics

(25). The study also identified Blood Urea Nitrogen levels (BUN),

creatinine, and neutrophils-lymphocyte levels as predictive of

“mortality” risk. Nevertheless, it is noteworthy that this study’s

dataset comprised 797 data points and was solely focused on

predicting “mortality” for ICUpatients on their admission day to ICU.
1.2. Purpose

This study aims to develop an AI-driven decision support system

that effectively predicts “mortality” of patients hospitalized with

COVID-19 by identifying the most significant features. It aims to

contribute to predictive analyses in applying AI/ML techniques to

COVID-19 data, utilizing a substantial sample from South Florida.

The study further seeks to facilitate the development of

quantitative AI-based techniques by integrating statistics, data

science, and machine learning methods. Through this integration,

the study aims to explore the variables influencing “mortality” and

contribute to the creation of objective, data-driven decision-

support systems to enhance disease management practices.
2. Materials and methods

2.1. Dataset collection and subject
information

The study was approved by our respective Institutional Review

Board (IRB) with the exemption of informed consent and HIPAA

waiver. IRB also determined that this project is exempt from further

review. Data were obtained from the South Florida Memorial Health

Care System between March 14th, 2020, and January 16th, 2021, and

analyzed by the co-authors from Christine E. Lynn College of

Nursing and College of Engineering and Computer Science at

Florida Atlantic University. For this project, retrospective data on

“5,371” patients were confirmed cases of COVID-19 as defined by an
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RT-PCR assay of nasal and pharyngeal swab specimens, and

hospitalized for COVID-19-related symptomology, was collected

from the large extensive healthcare system in South Florida. Data

initially contained 203 columns (independent variables) which

included “patients” sociodemographic characteristics’ (e.g., age, sex,

BMI, smoking status.), “pre-hospital comorbidities” (e.g., diarrhea,

diabetes, pneumonia.), and “medications” (e.g., Angiotensin

Receptor Blockers (ARBs), Angiotensin Converting Enzyme (ACEs)

inhibitors).
2.2. Study design considerations

Figure 1 presents the flowchart outlining the patient selection

process. Out of the “5,594” hospitalized patients, “5,371” individuals

had confirmed tests for COVID-19-positive. These “5,371,” who

were admitted to the hospital with COVID-19, formed the input

data set in our analysis. The comparison was made with a subgroup

of “615” admitted patients who “expired”, while the remaining

“4,765”patients were discharged from the hospital.

To ensure data quality, preprocessing steps were performed.

This involved removing independent variables with repeated

value entries and excluding attributes with over 10% (27) missing

values from the list of potential predictors. As a result, 25

variables, including 24 independent variables and one dependent

variable (“mortality”), were utilized for model training.
2.3. Data classification

The current work was based on binary classification problems,

meaning the dependent variable was segmented into “survival” and

“mortality,” which were either classified as “survived” (“0”) or

“expired” (“1”) and was mapped to numerical values before

being provided for modeling. A classification model sought to

draw conclusions from the observed values when the inputs were

one or many, and the model predicted the outputs of one or many.

Among the 24 independent variables used in the current research,

2 variables—age, and BMI—were transformed from continuous to

categorical. Age was categorized based on age matrices (28) where

“younger adults” ranged between 20 and 34, “middle adults” ranged

between 35 and 64, and “older adults” ranged between 65 and 90

years. Similarly, BMI was categorized based on the BMI metrics

(29), with “underweight” defined as below 18.50, “normal weight”

ranged between 18.5 and 24.9, “overweight” ranged between 25 and

29.9, and “obese” defined as 30 or greater.

Additionally, this study employed overwriting the dummy

coding rather than relying on computer-generated methods like

“one-hot-encoding.” (30) This unique approach leveraged

interpretability and domain knowledge while benefiting from the

power and efficiency of AI modeling. This approach allowed

clinicians to interpret the results (features) more effectively.

Although it might introduce a slight bias into the model,

potentially impacting its optimal performance (discussed in

Section 3.3), it provided clinicians with a better understanding of

health status based on the features analyzed. For instance, the
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FIGURE 1

Work flowchart. Flowchart depicts the data inclusion strategy. Of the “5,594” hospitalized cases, “5,371” are confirmed COVID-19 cases. After excluding
variables for missing data, 25 variables (among them, 24 are independent variables, and “mortality” is a dependent variable) meet the inclusion criteria.
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study investigated which age group or sex had a more significant

impact, whether hypertensive medications (ARBs, ACEIs) were

beneficial, or if individuals with diabetes were more vulnerable to

“mortality”.
2.4. Correlation check

To further understand the efficiency and adequacy of 24

independent variables in characterizing “mortality”, a tetrachoric

correlation (31) analysis was performed, and the resultant

correlation coefficients of all pairs of variables showed a

low correlation (<0.50) except for a correlation between Chronic

Kidney Disease (CKD, stage 5) and dependence on renal dialysis;

they were positively correlated (0.66). Correlation analysis was

completed only for exploratory data analysis. However, this

research did not use correlation as a guideline for selecting

features, as two correlated features can further improve the

model accuracy when they are part of the same data set (32).
2.5. Data splitting

For performance evaluation, data were divided into training

and testing sets. The Scikit-learn library (33) randomly splits the

dataset into two input sets. Among the “5,371” patients, 80%

(N = 4,296) of data were split into a training data set, and the

rest, 20% (N = 1,075) were split into the test data set. Both
Frontiers in Digital Health 04
“train” and “test” datasets contained 89% from the “survival”

class and 11% from the “expired” class.
2.6. Resampling data

The training dataset was imbalanced; “3,804” cases were classified

as “survived”, and “492” were “mortality”. Oversampling was

performed to modify uneven datasets to create balance. A method

that performs over-sampling is the Synthetic Minority Over-

sampling Technique (SMOTE), by synthesizing new examples as

opposed to duplicating examples (34). The SMOTE was applied to

the training data set in the cross-validation to avoid the possibility of

over-fitting; however, this technique was not applied to the test data

set for model evaluation that prevents data leakage (32).
3. Results

3.1. Cohort description

Included within the model were “5,371” patient entries

(including training and test data) who were COVID-19-positive

and 24 variables. Patients’ data were categorized into “patients”

sociodemographic characteristics’ (e.g., age, sex, BMI, smoking

status, etc.), “pre-hospital comorbidities” (e.g., diarrhea, diabetes,

pneumonia, etc.), and “medications” (e.g., ARBs & ACEs) (See

Table 1).
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TABLE 1 Parameters and characteristics.

Dependent variables
Mortality

Categories
Expired
Survived

n
615
4,756

%
11.45
88.55

Independent variables Categories Expired Survived

n % n %

Patients’ sociodemographic characteristics
Age Young adults 10 0.19 621 11.56

Middle adults 158 2.94 2,345 43.66

Older adults 447 8.32 1,790 33.33

Sex Female 256 4.77 2,400 44.68

Male 359 6.68 2,356 43.87

Race Black 158 2.94 1,518 28.26

Others 325 6.05 2,444 45.50

White 132 2.46 794 14.78

Ethnicity Hispanic 220 4.10 1,572 29.27

Non-Hispanic 395 7.35 3,184 59.28

Smoking status Never 459 8.55 3,992 74.33

Former 139 2.59 642 11.95

Current 17 0.32 122 2.27

Pre-hospital comorbidities
COPD No 512 9.53 4,388 81.70

Yes 103 1.92 368 6.85

Kidney disease (stages 1 to 4) No 398 7.41 4,112 76.56

Yes 217 4.04 644 11.99

Kidney disease (stg5) No 584 10.87 4,606 85.76

Yes 31 0.58 150 2.79

Diarrhea No 420 7.82 4,133 76.95

Yes 195 3.63 623 11.60

Hypertension No 82 1.53 1,731 32.23

Yes 533 9.92 3,025 56.32

Diabetes No 266 4.95 2,931 54.57

Yes 349 6.50 1,825 33.98

Pneumonia No 307 5.72 2,858 53.21

Yes 308 5.73 1,898 35.34

Heart failure No 462 8.60 4,166 77.56

Yes 153 2.85 590 10.98

Cardiac arrhythmias No 484 9.01 4,213 78.44

Yes 131 2.44 543 10.11

Coronary artery disease No 439 8.17 4,072 75.81

Yes 176 3.28 684 12.74

Dependence on renal dialysis No 585 10.89 4,643 86.45

Yes 30 0.56 113 2.10

Cerebrovascular disease No 563 10.48 4,471 83.24

Yes 52 0.97 285 5.31

BMI Underweight 16 0.30 59 1.10

Normal weight 120 2.23 755 14.06

Overweight 179 3.33 1,379 25.67

Obesity 267 4.97 2,252 41.93

Liver disease No 592 11.02 4,661 86.78

Yes 23 0.43 95 1.77

Asthma No 600 11.17 4,606 85.76

Yes 15 0.28 150 2.79

HIV No 612 11.39 4,703 87.56

Yes 3 0.06 53 0.99

Cancer No 556 10.35 4,502 83.82

Yes 59 1.10 254 4.73

Medications
ARBs No 423 7.88 3,555 66.19

(Continued)

TABLE 1 Continued

Dependent variables
Mortality

Categories
Expired
Survived

n
615
4,756

%
11.45
88.55

Independent variables Categories Expired Survived

n % n %
Yes 192 3.57 1,201 22.36

ACEIs No 364 6.78 3,147 58.59

Yes 251 4.67 1,609 29.96

Datta et al. 10.3389/fdgth.2023.1193467
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3.2. Statistical analysis

To estimate the predictive value of the 24 variables on

“mortality”, 24 individual binary logistic models were conducted

(35). As shown in Table 2, all 24 predictors except for ethnicity

and asthma were statistically significant in predicting the

likelihood of “mortality”. The highest risk factors were older

adults (OR = 15.51) and early stages of CKD (OR = 3.48).

Using a traditional statistics approach, several options are

available for selecting the optimal set of key features to

include in the model. One of the more common methods

includes both forward and backward stepwise approaches. Of

these methods, the backward Wald stepwise binary logistic

regression was selected for this study as it was considered

more conservative and less likely to introduce false positives to

the model (36–38).

To avoid overfitting of the model for our specific sample, a 10-

fold cross-validation approach was used with Wald’s backward

binary logistic regression (39). As can be seen in Table 3, of the

initial 24 features, the following 11 were retained by the model:

age, sex, smoking status, diabetes, hypertension, CKD stages 1–4,

heart failure, pneumonia, ARBs, ACEIs, and diarrhea. These

features were statistically significant in predicting “mortality” and

accounted for approximately 19% of the variability in the model

[χ2(13) = 547.88, p < .001, Nagelkerke R 2= .19]. Of these retained

variables, age had the largest impact in the multivariate binary

logistic regression, with older adults being 7.53 times more likely

to die than those younger adults when controlling for all other

predictors.
3.3. Model performance evaluation

In the previous section, we explored descriptive statistics. The

following will assess model accuracy based on the F1-score

([2� precission� recall]=[ precissionþ recall]) (Figure 2A) and

Area Under the Curve (AUC) (Figure 2C) from RF classifier

performance on the test data to interpret the imbalanced data set

better.

The AUC scoring system was most appropriate for the

imbalanced data set as it accounted for True Positives (TP), True

Negatives (TN), False Positives (FP), and False Negatives (FN)

(40–43). The model accurately classified “916” instances and

misclassified “159” test data (Figure 2B). Upon training our RF
frontiersin.org
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TABLE 2 Individual Chi-squaree results of the 24 demographic features predicting “mortality”.

No “mortality”
(N = 4,756)

“Mortality”
(N = 615)

N % N % χ2 df p OR

Age - - - - 286.3 2 <.001 15.51

Young adult 621 13.1 10 1.6 - - - -

Middle adult 2,345 49.3 158 25.7 - - - -

Older adult 1,790 37.6 447 72.7 - - - -

BMI - - - - 14.3 3 .002 0.76

Underweight 59 1.2 16 2.6 - - - -

Normal 755 15.9 120 19.5 - - - -

Overweight 1,630 34.3 210 34.1 - - - -

Obese 2,312 48.6 269 43.7 - - - -

Sex (Male) 2,356 49.50 359 58.4 17.0 1 <.001 1.43

Race - - - - 14.2 2 <.001 1.60

Black 1,518 31.9 158 25.7 - - - -

Other 2,444 51.4 325 52.8 - - - -

White 794 16.7 132 21.5 - - - -

Ethnicity (Not Hispanic) 3,184 66.9 395 64.2 1.8 1 .178 0.89

Smoking status - - - - 36.8 2 <.001 1.88

Never 3,992 83.9 459 74.6 - - - -

Former 642 13.5 139 22.6 - - - -

Current 122 2.6 17 2.8 - - - -

Diabetes 1,807 0.38 351 0.57 76.3 1 <.001 2.11

Hypertension 3,044 0.64 535 0.87 129.5 1 <.001 3.72

COPD 380 0.08 105 0.17 55.3 1 <.001 2.40

Asthma 143 0.03 12 0.02 0.9 1 .334 0.77

CKD stage 1 to 4 666 0.14 215 0.35 191.3 1 <.001 3.48

CKD stage 5 to ESRD 143 0.03 31 0.05 6.0 1 .015 1.63

Heart failure 571 0.12 154 0.25 71.1 1 <.001 2.34

Cancer 238 0.05 62 0.1 17.9 1 <.001 1.88

Cardiac arrythmias 523 0.11 129 0.21 48.5 1 <.001 2.10

Cerebrovascular disease 285 0.06 49 0.08 5.6 1 .018 1.45

Coronary artery disease 666 0.14 178 0.29 82.1 1 <.001 2.39

Liver disease 95 0.02 25 0.04 7.7 1 .006 1.91

HIV 48 0.01 0 0 2.1 1 .150 0.44

Pneumonia 1,902 0.4 308 0.5 23.3 1 <.001 1.51

ARBs 1,189 0.25 191 0.31 10.1 1 .001 1.34

ACEIs 1,617 0.34 252 0.41 11.7 1 <.001 1.35

Diarrhea 618 0.13 197 0.32 146.1 1 <.001 1.19

Dependence on renal dialysis 95 0.02 31 0.05 13.2 1 <.001 2.11

Datta et al. 10.3389/fdgth.2023.1193467
classifier to distinguish between “survival” and “mortality”, we

achieved an F1-score (Figure 2A) (weighted) of 84% (Precision:

83% & Recall: 85%) and an AUC (Figure 2C) of 76% in the test

data. Consequently, the model demonstrated favorable Bias-

Variance and Precision-Recall tradeoffs. It is important to note

that the False Positive Rates (FPR) were obtained by subtracting

the specificity (True Negative Rate; TPR) from “1”, meaning that

a lower FPR indicates higher sensitivity (TPR). Therefore, the

optimal values for specificity and sensitivity were laid in the top

left corner of the ROC curve (Figure 2C).

Challenges encountered in the study included overfitting

concerns, dataset pre-treatment, and the model’s performance in

different classes. We encountered an overfitting issue in our

study due to the pre-treatment of the “training dataset.”

Specifically, we applied oversampling techniques using SMOTE

analysis to address the imbalance in the minority class

(“mortality”) while the “test data” remained unaltered.
Frontiers in Digital Health 06
Additionally, to assess the model’s performance on an unbiased

dataset, the test accuracy was evaluated on a smaller cohort

size (N = 1,075). However, it is important to note that for the

feature importance, SHapley Additive exPlanations (SHAP)

analysis (discussed in section 4) was conducted on the “training

dataset”.

As for the model’s performance in different classes, one

challenge addressed was the model’s inadequate performance in

the positive class. This was attributed to training the model using

a dataset where 50% of the population experienced expiration

(“mortality”), while the remaining 50% were discharged

(“survival”) from the hospital. Consequently, the model was

optimized for two distinct cohorts: “mortality” and “survival”.

Given that the dataset was balanced, both groups held equal

importance during the model’s training process.

Nevertheless, we observed an imbalance in the model’s

performance on the new (“test”) dataset. Specifically, the model
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TABLE 3 Predicting “mortality” using backward logistic regression results feature selection.

95% CI for OR

B SE Wald df p OR Lower Upper
Age (young adult) 117.35 2 <.001

Age (Middle adult) 0.96 0.34 8.19 1 .004 2.62 1.35 5.06

Age (Older adult) 2.02 0.34 36.04 1 <.001 7.53 3.90 14.56

Sex (Male 0.34 0.09 12.83 1 <.001 1.40 1.16 1.68

Smoking status (Never) 6.97 2 .031

Smoking status (Former) 0.26 0.12 5.27 1 .022 1.30 1.04 1.63

Smoking status (Current) 0.42 0.28 2.22 1 .136 1.52 0.88 2.64

Diabetes 0.35 0.10 13.13 1 <.001 1.42 1.17 1.72

Hypertension 0.60 0.15 16.78 1 <.001 1.82 1.37 2.42

CKD stage 1–4 0.64 0.11 36.33 1 <.001 1.89 1.54 2.33

Heart failure 0.29 0.12 5.89 1 .015 1.33 1.06 1.68

Pneumonia 0.28 0.09 9.53 1 .002 1.33 1.11 1.59

ARBs −0.36 0.11 11.66 1 <.001 0.70 0.57 0.86

ACEIs −0.31 0.10 9.41 1 .002 0.74 0.60 0.90

Diarrhea 1.03 0.10 98.66 1 <.001 2.79 2.28 3.41

Constant −4.74 0.33 206.70 1 <.001 0.01
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exhibited good performance in the majority class (“survival”) but

relatively poor performance in the minority class (“mortality”).

This discrepancy could be attributed to the imbalanced nature

of the dataset, where it was easier to predict someone as

“survival” than correctly label them as “mortality” due to the

predominance of “survival” instances in the test data. To

account for this issue, we considered additional metrics to

assess the model’s performance. These metrics included
FIGURE 2

Confusion matrices & AUC curve of the model. (A) depicts the model’s F1-sco
instances and misclassifies “159” instances of test data. “Survival” and “mortality
comparing TPR and FPR. The Area Under the Receiver Operating System (RO
which is better than a no-skill classifier with a score of 0.50.
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F1-score, precision, recall, and AUC. Recall represents the ratio

of correctly classified positive samples to the total number of

positive samples, while precision measures the model’s accuracy

in predicting the positive class. The F1-score combines

precision and recall into a single metric, representing the test’s

accuracy by taking the harmonic mean of precision and

recall. By considering these metrics collectively, we gained a

comprehensive understanding of the model’s performance.
re (weighted) as 84%. (B) depicts that the model accurately classifies “916”
”, classifies respectively as “0” or “1”. (C) indicates an ROC curve created by
C) Curve (AUC) for the RF classifier on the testing dataset is about 0.76,
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4. Model interpretation

4.1. Global feature interpretation

The study established two post hoc methods to determine the

importance of individual features and their contribution to the

model’s outcome on the “training dataset”. These methods were

based on either the model-based (also known as “built-in”)

feature importance (Figure 3A) or SHAP global feature

importance method (Figure 3B). Figure 3A displays the

importance of each feature analyzed using the model’s “built-in”

method (41, 44, 45). The model-based feature importance plot

highlighted the model’s ability to determine classification by the

“Gini index,” which measured the inequality among the values of

a variable. It established the significance of reducing the “Gini

index” in classification. The “Gini index” of a model’s input

features was summed to “1” (41, 45). The importance was

measured by the mean decrease in “Gini impurity,” which could

represent the probability of a new sample being incorrectly

classified at a given node (weighted by the probability of

attaining the node) in a tree, averaged over all trees together in

the model (46).

However, a SHAP global importance plot considered each

feature’s mean absolute value or weights assigned to the model,

over all instances of the current dataset (47–50). The SHAP

interpretation, being model-agnostic, provided a means to

compute feature importance from the model (51). It used

Shapley values, based on game theory (52), to estimate how each

feature contributed to the prediction (49). By taking the mean

absolute value of the SHAP for each feature, we were able to

construct a stacked bar plot to visualize importance (Figure 3B).

This approach allowed us to focus on feature importance rather
FIGURE 3

Feature importance. In (A), RF’s “built-in” method allows us to look at feature im
each split. Notably, the Gini coefficient is used to evaluate the degree of ine
becomes more important (41, 45). (B) indicates the SHAP global feature im
difference shows the binary classes; 0 (“blue”) indicates “survival”, and “1” (
actual importance of each feature given by the two methods is similar but no
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than comparing multiple models to determine the most accurate

results for the model’s best accuracy.

The graph’s x-axis (Figure 3B) depicted how individual features’

SHAP values contributed to predicting a classification problem’s

outcomes. The features were positioned along the y-axis based on

their decreasing importance, where a higher position indicated a

higher Shapely value or higher risk of “mortality”. The color

scheme represented binary variables, with “blue” indicating

“survival” and “red” indicating “mortality”. A skewed distribution

indicated the greater importance of the feature (45).

The depicted plot (Figure 3B) illustrates the significance of each

feature in relation to “mortality”. After analyzing individual “feature

inputs” contribution to the model, a ranking order of the top five

features with the most significant contributions emerged: age,

diarrhea, diabetes, hypertension, and BMI (Figure 3B). The

average effect of age was positive or negative (±) 0.25, with

reference to the baseline prediction of “survival” (0). Among the

first five features with the highest importance scores, age, and BMI

fell under the category of “patients” sociodemographic

characteristics,’ while diarrhea, diabetes, and hypertension were

categorized as “pre-hospital comorbidities” (See Table 1).

SHAP served as an alternative to the model’s “built-in” feature

importance method based on “Gini impurity”. A notable

distinction between these important measures was that the

importance of the model-based “built-in” feature relied on

decreased model performance. In contrast, SHAP provided

insights into how individual features contributed to the model’s

output. Both plots were valuable for assessing feature importance,

but they did not provide additional information beyond the

importance itself, such as the direction of effect of each attribute

of the variable (53). We examined the summary plot in the next

section to address this limitation.
portance, corresponding to the decrease in the Gini index of a feature at
quality within these features. As the Gini index decreases for a feature, it
portance. The important features are in the sequence where the color
“red”) indicates “mortality”. From the diagrams above, we note that the
t identical.
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4.2. SHAP summary plot

Beeswarm plot (Figure 4A) (54, 55), indicated the range across

the SHAP value and pointed out the degradation probability,

expressed as the logarithm of the odds (56). We could get a

general idea of the directional impact of the features in relation to

the distribution of “red” and “blue” dots. The colors of the points

were related to the relative scaling of feature values. A SHAP value

of “0” meant that the feature did nothing to move the decision

away from the reference point “0”; thus, the feature had no

contribution toward the decision of the model’s prediction. The

plot shows how features were highly influential, with strong

“positive” or “negative” SHAP values for the predicted outcomes,

and how the higher and lower values affected the result.

Values of each row to the right were “positive”, and those to the

left had a “negative” impact on the model output. The “positive”

and “negative” aspects were simply terms of the guideline and

related to the direction in which model output was affected,

which does not indicate how well the model performed. Along

the y-axis, the features were arranged in decreasing order of

importance. X-axis represented the SHAP value (e.g., the impact

of the features on the model outcomes for the patients) (54). The

color corresponded to the value of the function. As discussed

before, the “red” color depicted a higher SHAP value of a feature
FIGURE 4

Summary plots for SHAP values. (A) indicates 20 features with the highest mean
feature (row). A position of the point along the x-axis (i.e., SHAP value) represe
higher SHAP value has a higher impact on “mortality” relative to a lower SHAP
axis, i.e., the more important features are placed at the top, given by their abso
disease, COPD, dependence on renal dialysis, etc., are also visible (green arro
negative SHAP values indicate an impact in predicting “survival” outcomes. (
compare the color coding [lower no represents a “cool” color, and higher
beeswarm plot. (A) depicts “mortality” includes both linear-dominated relation
dominated relations, such as age, BMI, race, etc.
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that fell within the right distribution; on the other hand, “blue”

color mapped a lower SHAP value of a feature that fell within

the left distribution of the reference point “0” (32). For binary

categorical variables (e.g., sex, diarrhea, diabetes, etc.), “red”

meant “yes” and “blue” meant “no” depending on how they were

coded (see “Dummy Coding”, Figure 4B). Each dot on the plot

represented a single observation, vertically jittered when too close

to each other. Figure 4A also revealed that “mortality” included

both linear-dominated relationships (in a box, Figure 4A), such

as diarrhea, sex, heart failure, etc., and non-linear-dominated

relations, such as age, BMI, race, etc (56).

SHAP summary plot showed the top 20 features in ranking

order and their impact on the “mortality” classification. For

instance, the age variable had a high positive contribution to

high and a low negative contribution to low values. This

indicated that higher values for age led to higher predicted

“mortality”, i.e., ages above 65 years old (“older adults”), and

contributed the most to predicting death. Medicines (ARBs,

ACEIs) appeared to have a reverse relationship. Using

hypertension medications had a high “negative” contribution to

“mortality”; while not using them had a high “positive”

contribution to “mortality”. We also saw that no occurrence of

diarrhea significantly reduced predicted “mortality” (“blue” dots),

but the rise (extended “red” dots) was more significant than the
absolute SHAP values. Each point refers to each patient for the respective
nts the features’ influence on the model output for the explicit patient. A
value (54, 55). The features are arranged in order of importance on the y-
lute Shapley values. Some outliers characterized by early stages of kidney
ws). Positive SHAP values indicate an impact in predicting “mortality”, and
B) indicates the dummy coding, which could be used as a reference to
no represents a “hot” color per category, as seen in (A)] of the SHAP
ships (in a box), such as diarrhea, sex, heart failure, etc., and non-linear-
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FIGURE 5

SHAP waterfall plot. The importance of each feature for predicting “mortality” in an RF classifier. The most important feature is age, resulting in a
composition ratio of 20% (x-axis, top). The top 15 variables accumulate 95% of the model’s cumulative ratio (x-axis, below). A cumulative ratio
combines a composition ratio of 2 or more variables.
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drop, i.e., the larger values for this feature were associated with

higher SHAP values.

From the SHAP summary plot, large values of BMI; i.e.,

“obese” and “overweight” contributed to the probability of

belonging to one class (“mortality” or “survival”) and, in select

cases, to another class (See the overlapping of “red” and “pink”

colors in Figure 4A). We made this assertion based on the

understanding that the impact of the feature’s value depended on

the entire sample. This is why we observed some “red” dots on

the left side and some “blue” dots on the right side of the

reference point “0”. (54). Effectively, SHAP showed us the global

contribution by utilizing the feature importance and the local

contribution for each feature instance through scattering the

beeswarm plot.
4.3. Model explanation

The effect of input variables on predicting the RF classifier for

“mortality” was explored in more detail with the SHAP tool, as

illustrated in the SHAP waterfall plot (Figure 5). The

compositional ratio was estimated as the mean of absolute Shapley

values per feature across the data (x-axis, top). The input variables
Frontiers in Digital Health 10
were ordered according to their importance—the higher the mean

SHAP value, the greater the importance of the variable (32).

The plot indicated that the top 15 features accounted for

approximately 95% of the model’s interpretation (x-axis, below).

Furthermore, these top 20 features collectively contributed to

nearly 100% of the model’s interpretation. Among the top 15

most important features, 5 belonged to the “patients”

sociodemographic characteristics’, 8 pertained to “pre-hospital

comorbidities”, and 2 were related to “medications”, as depicted

in Table 1.

These findings suggested that the model could effectively

capture the features within each category, with a primary

emphasis on the “pre-hospital comorbidities”. As a result, it

exhibited the ability to predict “mortality” accurately while

maintaining transparency and reliability.
5. Discussion

Model performance of this study was aligned with the other

Machine Learning (ML) tools utilized in various healthcare

domains (7, 41, 44, 50, 54, 57, 58). It demonstrated the

beneficial capabilities in predicting the severity of illness
frontiersin.org
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related to COVID-19, where disease progression remains

unpredictable, both at the beginning of the virologic phase and

the end of the inflammatory phase.

This study employed a traditional ML classifier to investigate

the clinical variables associated with COVID-19 “mortality”

among hospitalized patients in Southern Florida. To the best of

our knowledge, this study contributed to one of the initial

predictive analyses that applied AI/ML techniques to COVID-19

data using a vast sample from South Florida. Using the current

ML approach, we confirmed the reported factors and expanded

knowledge predicting the “mortality” outcome for “5,371”

hospitalized patients with COVID-19.

In this exploratory data analysis, we trained an RF-based

classification model to predict the prevalence of COVID-19

“mortality” using patients’ pre-existing health conditions, such as

“patients” sociodemographic characteristics’, “pre-hospital

comorbidities”, and “medications”. We demonstrated the utility

of both the model’s “built-in” technique and SHAP analysis to

enhance the interpretation of factors associated with the

“mortality” of in-patients with COVID-19.

For this study, 24 independent variables were selected to train a

predictive model based on the learning from eHR data to analyze

the data of the prospective cohort. Despite extensive work on

optimizing feature importance, the AUC yielded 0.76 for

predicting “mortality” in the test dataset where AUC scores were

reported, in the previous studies, as 0.74 for predicting ICU

admission and 0.83 for “mortality” (22). The model performance

might differ due to the availability of a smaller number of

features and populations.

As already mentioned, the training dataset was imbalanced

initially, which referred to datasets where the target class had an

uneven distribution of observations, i.e., the “survival” class had

a very high number of observations, and “mortality” had a very

low number of observations. Imbalanced classifications

represented a challenge for predictive modeling since most of the

ML algorithms used for classification have been built based on

the assumption of an equal distribution for each class. As a

result, models had poor predictive performance, particularly for

the minority class. However, the minority class was more

important; consequently, the problem was more sensitive to the

misclassification of the minority class than the majority class. We

did not balance the test data set for the model evaluation

because we knew the real-world data set could be imbalanced in

the specific scenario.

The SHAP functions for each variable indicated the individual

feature’s influence on the model for predicting “mortality”. Our

study identified age as the most important clinical feature in

COVID-19 patients, followed by diarrhea, diabetes,

hypertension, BMI, CKD stages 1–4, smoking status, sex,

pneumonia, and race in ranking order for “10” key factors.

These findings aligned with previous studies regarding clinical

features and the frequency of comorbidities in patients with

COVID-19. Consistent with previous reports, advanced age

emerged as the most significant predictor of severe outcomes

(48, 55, 59–63). Male sex was identified as a high-risk factor

in in-patients with COVID-19 (15, 16, 24, 59–62, 64).
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Our analyses also suggested a higher frequency of “mortality”

from COVID-19 infection among “Whites” and “Hispanic

populations.”

This study evaluated the role of patients’ immunocompromised

status in exacerbating the severity of COVID-19, leading to death.

It demonstrated a coherent association between COVID-19-related

“mortality” and the underlying cause of immune suppression, such

as diarrhea, diabetes, and hypertension. The study also reported

that regular use of medicines, such as ARBS and ACEs, to treat

high blood and heart failure could reduce the high incidence of

“mortality” (65–67).

As can be noticed, these key features were slightly different

from those selected by the statistical methods. According to

statistical analysis, the following features were statistically

significant. i.e., age, sex, smoking status, diabetes, hypertension,

CKD stages 1–4, heart failure, pneumonia, ARBs, ACEIs, and

diarrhea. However, of the above features, only 3 features (heart

failure and medications such as ARBs and ACEIs) were not

included in the top 10 features of the SHAP analysis. Similarly,

race was included in the top 10 features of SHAP analysis but

not statistically significant. The purpose of a statistical method is

to find and explain the relationships between variables;

alternatively, the ML model works on lesser assumptions and

caters to patterns of data without an a priori understanding of

the relationship between data and results (68). Thus, the ML

model would demonstrate improved predictive potency in clinical

settings.
5.1. Future work

The existing model is currently undergoing further

refinement to enhance its accuracy. We have trained the model

using a dataset of over 5,000 patients with COVID-19 in South

Florida to predict “mortality” and assess disease severity based

on patient characteristics. Our team is actively refining the

algorithm and incorporating additional data points from diverse

socio-demographic backgrounds to improve the model’s

robustness and enhance its ability to forecast disease outcomes

accurately. As such, this work establishes the foundation for

future research intending to forecast patient responses to

treatments across different levels of disease severity and

examine health disparities and patient conditions to enhance

healthcare in a broader context. For example, future work can

continue to utilize the same cohort, independent variables, and

tree-based model design, such as Decision Trees and RF

classifier, but focus on different outcome variables (e.g., ICU,

MICU, and Mechanical Ventilation). By comparing different

outcome variables, the intent can be to identify common

features and assess the combined effects of two or more key

features on the outcomes.

Furthermore, this research aims to provide comprehensive

reports in a visual format, such as descriptive charts, tables, and

plots, to offer valuable insights into various health issues. These

reports will benefit clinicians and patients, as well as enable

them to gain a deeper understanding of the health problems at
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hand and make informed decisions based on the available

information.
5.2. Limitations

It is important to acknowledge that the data used in this study were

derived from medical records, which had limitations and “built-in”

constraints regarding the candidate variables. Additionally, symptoms

were present before arrival at the hospital, but it was not determined

at that time whether they were related to COVID-19. These

limitations could have affected the strict adherence to the data

collection protocol, potentially leading to the overestimation or

underestimation of comorbidity and its impact on COVID-19

exacerbation. As a result, there is a possibility of false outcomes or

errors. Additionally, due to the longitudinal nature of the study

paradigm, patient selection bias and incomplete, missing, or

inaccurate data were inevitable. Furthermore, it is crucial to highlight

that the data used in this study did not account for the vaccination

status of the patients. Considering the impact of vaccinations on

COVID-19 outcomes is important when interpreting the results.

Moreover, it is important to note that the overall performance

of the model does not indicate the precise risk probability

determined by the algorithm at each time frame. Clinicians

should not solely rely on the punctual predictability score as a

diagnosis but rather assess the trend measurement by integrating

the data within the context of clinical judgment.
6. Conclusion

This approach has the potential to offer practical clinical value

to the healthcare system by utilizing a straightforward and objective

tool, such as AI-based feature analysis, to stratify patients based on

risk. This enables clinicians to triage patients with COVID-19 more

efficiently, particularly in situations where resources may be

limited. Additionally, this work provides insights to frontline

workers by identifying the key contributors to COVID-19-related

death in the South Florida region. Consequently, it holds the

potential to aid in controlling the “mortality” rate associated with

this disease. Moreover, by identifying comorbidities in advance,

proactive healthcare activities can be initiated prior to hospital care.

We also noted that with adequate training, the model could

effectively classify “mortality” and other disease severities, such as

ICU admission and mechanical ventilation, using similar data and

tools. Furthermore, as the dataset continues to grow, it will be

possible to gain improved insights into the relationships between

comorbidities and COVID-19 illness. In the future, the predictive

model’s capabilities will be established using a global-scale dataset.

Our hope is that this work will encourage the healthcare sector

to integrate such explanatory tools into their workflow, thereby

enhancing personalized healthcare. Subsequently, computer-aided

platforms can utilize novel AI architecture to generate insights
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into the enduring clinical impact and discover better solutions to

combat the ongoing pandemic.
Data availability statement

The data analyzed in this study is subject to the following

licenses/restrictions: This dataset is provided by the South Florida

Memorial Health Care System for analysis. We can not make

this publicly available without their permission. You can contact

the corresponding author to send a request to the contact person

at South Florida Memorial Health Care System to get permission

to access the data.
Ethics statement

This project was reviewed by the Institutional Review Board at

Florida Atlantic University. The board determined that the

project’s procedures and protocols were exempt from a formal

ethical review, and consistent with ethical guidelines and

regulations; thus, the exemption did not compromise the rights,

welfare, or safety of the participants. Written informed consent

was not required for this study in accordance with the national

legislation and the institutional requirements.
Author contributions

DD: Conceptualization, Methodology, Validation, Formal

analysis, Visualization, Writing—Original Draft, Review &

Editing. SGD: Supervision, Project administration, Review &

Editing. LM: Review & Editing. DN: Statistical Analysis, Review

& Editing. JH: Review & Editing. TK: Review & Editing. CS:

Review & Editing. CS: Investigation, Review & Editing. PE:

Investigation, Review & Editing. All authors contributed to the

article and approved the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fdgth.2023.1193467
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Datta et al. 10.3389/fdgth.2023.1193467
References
1. CDC Covid data tracker. Centers for disease control and prevention. Centers for
disease control and prevention. Available at: https://covid.cdc.gov/covid-data-tracker
(Accessed June 21, 2023).

2. COVID-19 weekly situation report: state overview (2023). Available at: https://
ww11.doh.state.fl.us/comm/_partners/covid19_report_archive/covid19-data/
covid19_data_latest.pdf (Accessed June 21, 2023).

3. Mahdavi M, Choubdar H, Zabeh E, Rieder M, Safavi-Naeini S, Jobbagy Z, et al. A
machine learning based exploration of COVID-19 mortality risk. Plos One. (2021) 16
(7):e0252384. doi: 10.1371/journal.pone.0252384

4. Sun C, Bai Y, Chen D, He L, Zhu J, Ding X, et al. Accurate classification of
COVID-19 patients with different severity via machine learning. Clin Transl Med.
(2021) 11(3):2. doi: 10.1002/ctm2.323

5. Anca PS, Toth PP, Kempler P, Rizzo M. Gender differences in the battle against
COVID-19: impact of genetics, comorbidities, inflammation and lifestyle on
differences in outcomes. Int J Clin Pract. (2021) 75(2):1, 3. doi: 10.1111/ijcp.13666

6. Gao Z, Xu Y, Sun C, Wang X, Guo Y, Qiu S, et al. A systematic review of
asymptomatic infections with COVID-19. Journal of microbiology. Immunol Infect.
(2021) 54(1):12–6. doi: 10.1016/j.jmii.2020.05.001

7. Honardoost M, Janani L, Aghili R, Emami Z, Khamseh ME. The association
between presence of comorbidities and COVID-19 severity: a systematic review and
meta-analysis. Cerebrovasc Dis. (2021) 50(2):132–40. doi: 10.1159/000513288

8. Hu J, Wang Y. The clinical characteristics and risk factors of severe COVID-19.
Gerontology. (2021) 67(3):255–66. doi: 10.1159/000513400

9. Centers for Disease Control and Prevention. Underlying medical conditions
associated with higher risk for severe COVID-19: information for healthcare
professionals. Atlanta, GA, USA: Centers for disease control and prevention (CDC)
(2022). p. 3–6

10. Stokes EK, Zambrano LD, Anderson KN, Marder EP, Raz KM, Felix SE, et al.
Coronavirus disease 2019 case surveillance—united States, January 22–may 30,
2020. Morb Mortal Wkly Rep. (2020) 69(24):759. doi: 10.15585/mmwr.mm6924e2

11. Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R, et al.
Hospitalization rates and characteristics of patients hospitalized with laboratory-
confirmed coronavirus disease 2019—cOVID-NET, 14 states, march 1–30, 2020.
Morb Mortal Wkly Rep. (2020) 69(15):458. doi: 10.15585/mmwr.mm6915e3

12. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics
of coronavirus disease 2019 in China. N Engl J Med. (2020) 382(18):1708–20. doi: 10.
1056/NEJMoa2002032

13. Palaiodimos L, Kokkinidis DG, Li W, Karamanis D, Ognibene J, Arora S, et al.
Severe obesity, increasing age and male sex are independently associated with worse
in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with
COVID-19 in the Bronx, New York. Metab Clin Exp. (2020) 108:154262. doi: 10.
1016/j.metabol.2020.154262

14. Dadras O, SeyedAlinaghi S, Karimi A, Shamsabadi A, Qaderi K, Ramezani M,
et al. COVID-19 mortality and its predictors in the elderly: a systematic review.
Health Sci Rep. (2022) 5(3):e657. doi: 10.1002/hsr2.657

15. Li G, Liu Y, Jing X, Wang Y, Miao M, Tao L, et al. Mortality risk of COVID-19 in
elderly males with comorbidities: a multi-country study. Aging. (2021) 13(1):27.
doi: 10.18632/aging.202456

16. Nguyen NT, Chinn J, De Ferrante M, Kirby KA, Hohmann SF, Amin A. Male
gender is a predictor of higher mortality in hospitalized adults with COVID-19. PLoS
One. (2021) 16(7):e0254066. doi: 10.1371/journal.pone.0254066

17. DeMartino JK, Swallow E, Goldschmidt D, Yang K, Viola M, Radtke T, et al.
Direct health care costs associated with COVID-19 in the United States. J Manag
Care Spec Pharm. (2022) 28(9):936–47. doi: 10.18553/jmcp.2022.22050

18. Darab M G, Keshavarz K, Sadeghi E, Shahmohamadi J, Kavosi Z. The economic
burden of coronavirus disease 2019 (COVID-19): evidence from Iran. BMC Health
Serv Res. (2021) 21(1):1–7. doi: 10.1186/s12913-020-05996-8

19. Richards F, Kodjamanova P, Chen X, Li N, Atanasov P, Bennetts L, et al.
Economic burden of COVID-19: a systematic review. Clinicoecon Outcomes Res.
(2022) 14:293–307. doi: 10.2147/CEOR.S338225

20. Bartsch SM, Ferguson MC, McKinnell JA, O’shea KJ, Wedlock PT, Siegmund SS,
et al. The potential health care costs and resource use associated with COVID-19 in
the United States: a simulation estimate of the direct medical costs and health care
resource use associated with COVID-19 infections in the United States. Health Aff.
(2020) 39(6):927–35. doi: 10.1377/hlthaff.2020.00426

21. Kang J, Chen T, Luo H, Luo Y, Du G, Jiming-Yang M. Machine learning
predictive model for severe COVID-19. Infect Genet Evol. (2021) 90:104737. doi: 10.
1016/j.meegid.2021.104737

22. Zhao Z, Chen A, Hou W, Graham JM, Li H, Richman PS, et al. Prediction model
and risk scores of ICU admission and mortality in COVID-19. PloS One. (2020) 15(7):
e0236618. doi: 10.1371/journal.pone.0236618
Frontiers in Digital Health 13
23. Chao JY, Derespina KR, Herold BC, Goldman DL, Aldrich M, Weingarten J,
et al. Clinical characteristics and outcomes of hospitalized and critically ill children
and adolescents with coronavirus disease 2019 at a tertiary care medical center in
New York city. J Pediatr. (2020) 223:14–9. doi: 10.1016/j.jpeds.2020.05.006

24. Kirby JJ, Shaikh S, Bryant DP, Ho AF, d’Etienne JP, Schrader CD, et al. A
simplified comorbidity evaluation predicting clinical outcomes among patients with
coronavirus disease 2019. J Clin Med Res. (2021) 13(4):237. doi: 10.14740/jocmr4476

25. Jamshidi E, Asgary A, Tavakoli N, Zali A, Setareh S, Esmaily H, et al. Using
machine learning to predict mortality for COVID-19 patients on day 0 in the ICU.
Front Digit Health. (2022) 3:210. doi: 10.3389/fdgth.2021.681608

26. Zhu JS, Ge P, Jiang C, Zhang Y, Li X, Zhao Z, et al. Deep-learning artificial
intelligence analysis of clinical variables predicts mortality in COVID-19 patients.
J Am Coll Emerg Phys Open. (2020) 1(6):1364–73. doi: 10.1002/emp2.12205

27. Bennett DA. How can I deal with missing data in my study? Aust N Z J Public
Health. (2001) 25(5):464–9. doi: 10.1111/j.1467-842X.2001.tb00294.x

28. Statsenko Y, Al Zahmi F, Habuza T, Almansoori TM, Smetanina D, Simiyu GL,
et al. Impact of age and sex on COVID-19 severity assessed from radiologic and
clinical findings. Front Cell Infect Microbiol. (2022) 11:1395. doi: 10.3389/fcimb.
2021.777070

29. Weir CB, Jan A. BMI classification percentile and cut off points. [Updated 2022
Jun 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing (2023).
Available from: https://www.ncbi.nlm.nih.gov/books/NBK541070/

30. Hancock JT, Khoshgoftaar TM. Survey on categorical data for neural networks.
J Big Data. (2020) 7(1):1–41. doi: 10.1186/s40537-019-0278-0

31. Kubinger KD. On artificial results due to using factor analysis for dichotomous
variables. Psychol Sci. (2003) 45(1):106–10. https://citeseerx.ist.psu.edu/document?
repid=rep1&type=pdf&doi=ebd863cc6b1432dd45f4abadf8c0c64b11cdf512

32. Deb D, Smith RM. Application of random forest and SHAP tree explainer in
exploring spatial (in) justice to aid urban planning. ISPRS Int J Geoinf. (2021) 10
(9):629. doi: 10.3390/ijgi10090629

33. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: machine learning in python. J Mach Learn Res. (2011) 12:2825–30.
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/

34. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority
over-sampling technique. J Artif Intell Res. (2002) 16:321–57. doi: 10.1613/jair.953

35. Field A. Discovering statistics using IBM SPSS statistics. University of Sussex,
Sussex, UK: Sage (2013).

36. Harrell FE. Regression modeling strategies: With applications to linear models,
logistic regression, and survival analysis. New York: Springer (2001).

37. Hosmer DW Jr, Lemeshow S, Sturdivant RX. Applied logistic regression. John
Wiley & Sons (2013). https://www.wiley.com/en-us/Applied+Logistic+Regression%
2C+3rd+Edition-p-9781118548387

38. Steyerberg EW, Eijkemans MJ, Habbema JD. Stepwise selection in small data
sets: a simulation study of bias in logistic regression analysis. J Clin Epidemiol.
(1999) 52(10):935–42. doi: 10.1016/S0895-4356(99)00103-1

39. Bewick V, Cheek L, Ball J. Statistics review 14: logistic regression. Crit Care.
(2005) 9(1):1–7. doi: 10.1186/cc3045

40. Biondi R, Curti N, Coppola F, Giampieri E, Vara G, Bartoletti M, et al.
Classification performance for COVID patient prognosis from automatic AI
segmentation—a single-center study. Appl Sci. (2021) 11(12):5438. doi: 10.3390/
app11125438

41. Kim Y, Kim Y. Explainable heat-related mortality with random forest and
SHapley additive exPlanations (SHAP) models. Sustain Cities Soc. (2022) 79:103677.
doi: 10.1016/j.scs.2022.103677

42. Silva MP. Feature selection using SHAP: an explainable AI approach. (2021).

43. Sanghvi HA, Patel RH, Agarwal A, Gupta S, Sawhney V, Pandya AS. A deep
learning approach for classification of COVID and pneumonia using DenseNet-201.
Int J Imaging Syst Technol. (2023) 33(1):18–38. doi: 10.1002/ima.22812

44. Zhai B, Perez-Pozuelo I, Clifton EA, Palotti J, Guan Y. Making sense of sleep:
multimodal sleep stage classification in a large, diverse population using movement
and cardiac sensing. Proc ACM interact Mobile Wearable Ubiquitous Technol.
(2020) 4(2):1–33. doi: 10.1145/3397325

45. Gómez-Ramírez J, Ávila-Villanueva M, Fernández-Blázquez MÁ. Selecting the
most important self-assessed features for predicting conversion to mild cognitive
impairment with random forest and permutation-based methods. Sci Rep. (2020) 10
(1):1–5. doi: 10.1038/s41598-020-77296-4

46. Rodríguez-Pérez R, Bajorath J. Interpretation of compound activity
predictions from complex machine learning models using local approximations
and shapley values. J Med Chem. (2019) 63(16):8761–77. doi: 10.1021/acs.
jmedchem.9b01101
frontiersin.org

https://covid.cdc.gov/covid-data-tracker
https://ww11.doh.state.fl.us/comm/_partners/covid19_report_archive/covid19-data/covid19_data_latest.pdf
https://ww11.doh.state.fl.us/comm/_partners/covid19_report_archive/covid19-data/covid19_data_latest.pdf
https://ww11.doh.state.fl.us/comm/_partners/covid19_report_archive/covid19-data/covid19_data_latest.pdf
https://doi.org/10.1371/journal.pone.0252384
https://doi.org/10.1002/ctm2.323
https://doi.org/10.1111/ijcp.13666
https://doi.org/10.1016/j.jmii.2020.05.001
https://doi.org/10.1159/000513288
https://doi.org/10.1159/000513400
https://doi.org/10.15585/mmwr.mm6924e2
https://doi.org/10.15585/mmwr.mm6915e3
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1016/j.metabol.2020.154262
https://doi.org/10.1016/j.metabol.2020.154262
https://doi.org/10.1002/hsr2.657
https://doi.org/10.18632/aging.202456
https://doi.org/10.1371/journal.pone.0254066
https://doi.org/10.18553/jmcp.2022.22050
https://doi.org/10.1186/s12913-020-05996-8
https://doi.org/10.2147/CEOR.S338225
https://doi.org/10.1377/hlthaff.2020.00426
https://doi.org/10.1016/j.meegid.2021.104737
https://doi.org/10.1016/j.meegid.2021.104737
https://doi.org/10.1371/journal.pone.0236618
https://doi.org/10.1016/j.jpeds.2020.05.006
https://doi.org/10.14740/jocmr4476
https://doi.org/10.3389/fdgth.2021.681608
https://doi.org/10.1002/emp2.12205
https://doi.org/10.1111/j.1467-842X.2001.tb00294.x
https://doi.org/10.3389/fcimb.2021.777070
https://doi.org/10.3389/fcimb.2021.777070
https://www.ncbi.nlm.nih.gov/books/NBK541070/
https://doi.org/10.1186/s40537-019-0278-0
https://citeseerx.ist.psu.edu/document?repid=rep1&amp;type=pdf&amp;doi=ebd863cc6b1432dd45f4abadf8c0c64b11cdf512
https://citeseerx.ist.psu.edu/document?repid=rep1&amp;type=pdf&amp;doi=ebd863cc6b1432dd45f4abadf8c0c64b11cdf512
https://doi.org/10.3390/ijgi10090629
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/
https://doi.org/10.1613/jair.953
https://www.wiley.com/en-us/Applied+Logistic+Regression%2C+3rd+Edition-p-9781118548387
https://www.wiley.com/en-us/Applied+Logistic+Regression%2C+3rd+Edition-p-9781118548387
https://doi.org/10.1016/S0895-4356(99)00103-1
https://doi.org/10.1186/cc3045
https://doi.org/10.3390/app11125438
https://doi.org/10.3390/app11125438
https://doi.org/10.1016/j.scs.2022.103677
https://doi.org/10.1002/ima.22812
https://doi.org/10.1145/3397325
https://doi.org/10.1038/s41598-020-77296-4
https://doi.org/10.1021/acs.jmedchem.9b01101
https://doi.org/10.1021/acs.jmedchem.9b01101
https://doi.org/10.3389/fdgth.2023.1193467
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Datta et al. 10.3389/fdgth.2023.1193467
47. Lucas A, Carvalhosa S. Renewable energy community pairing methodology
using statistical learning applied to georeferenced energy profiles. Energies. (2022)
15(13):4789. doi: 10.3390/en15134789

48. Noy O, Coster D, Metzger M, Atar I, Shenhar-Tsarfaty S, Berliner S, et al. A
machine learning model for predicting deterioration of COVID-19 inpatients. Sci
Rep. (2022) 12(1):1–9. doi: 10.1038/s41598-021-99269-x

49. Dandolo D, Masiero C, Carletti M, Dalle Pezze D, Susto GA. AcME—accelerated
model-agnostic explanations: fast whitening of the machine-learning black box. Expert
Syst Appl. (2023) 214:119115. doi: 10.1016/j.eswa.2022.119115

50. Loh DR, Yeo SY, Tan RS, Gao F, Koh AS. Explainable machine learning
predictions to support personalized cardiology strategies. Eur Heart J Digit Health.
(2022) 3(1):49–55. doi: 10.1093/ehjdh/ztab096

51. Piparia S, Defante A, Tantisira K, Ryu J. Using machine learning to improve our
understanding of COVID-19 infection in children. Plos one. (2023) 18(2):e0281666.
doi: 10.1371/journal.pone.0281666

52. Fadel S. Explainable machine learning, game theory, and shapley values: a
technical review. Ottawa: Statistics Canada (2022).

53. Lubo-Robles D, Devegowda D, Jayaram V, Bedle H, Marfurt KJ, Pranter MJ.
Machine learning model interpretability using SHAP values: application to a
seismic facies classification task. In SEG international exposition and annual
meeting. OnePetro (2020). p. D021S008R006. https://mcee.ou.edu/aaspi/
publications/2020/Lubo_et_al_2020-Machine_learning_model_interpretability_using_
SHAP_values-Application_to_a_seismic_classification_task.pdf

54. Moncada-Torres A, van Maaren MC, Hendriks MP, Siesling S, Geleijnse G.
Explainable machine learning can outperform cox regression predictions and
provide insights in breast cancer survival. Sci Rep. (2021) 11(1):6968. doi: 10.1038/
s41598-021-86327-7

55. Passarelli-Araujo H, Passarelli-Araujo H, Urbano MR, Pescim RR. Machine
learning and comorbidity network analysis for hospitalized patients with COVID-19
in a city in southern Brazil. Smart Health. (2022) 26:100323. doi: 10.1016/j.smhl.
2022.100323

56. Wieland R, Lakes T, Nendel C. Using SHAP to interpret XGBoost predictions
of grassland degradation in Xilingol, China. Geosci Mod Dev Discuss. (2020)
2020:1–28. doi: 10.32473/flairs.v35i.130670

57. Shorten C, Khoshgoftaar TM, Hashemi J, DaLmida SG, Newman D, Datta D,
et al. Predicting the severity of COVID-19 respiratory illness with deep learning. The
International FLAIRS Conference Proceedings; 2022 May 4.
Frontiers in Digital Health 14
58. Shorten C, Cardenas E, Khoshgoftaar TM, Hashemi J, Dalmida SG, Newman D,
et al. Exploring language-interfaced fine-tuning for COVID-19 patient survival
classification. 2022 IEEE 34th International Conference on Tools with Artificial
Intelligence (ICTAI); 2022 Oct 31: IEEE. p. 1449–54.

59. Magunia H, Lederer S, Verbuecheln R, Gilot BJ, Koeppen M, Haeberle HA, et al.
Machine learning identifies ICU outcome predictors in a multicenter COVID-19
cohort. Crit Care. (2021) 25:1–4. doi: 10.1186/s13054-021-03720-4

60. Garcia-Gutiérrez S, Esteban-Aizpiri C, Lafuente I, Barrio I, Quiros R, Quintana JM,
et al. Machine learning-based model for prediction of clinical deterioration in hospitalized
patients by COVID 19. Sci Rep. (2022) 12(1):7097. doi: 10.1038/s41598-022-09771-z

61. Ryan C, Minc A, Caceres J, Balsalobre A, Dixit A, Ng BK, et al. Predicting severe
outcomes in COVID-19 related illness using only patient demographics, comorbidities
and symptoms. Am J Emerg Med. (2021) 45:378–84. doi: 10.1016/j.ajem.2020.09.017

62. Patel D, Kher V, Desai B, Lei X, Cen S, Nanda N, et al. Machine learning based
predictors for COVID-19 disease severity. Sci Rep. (2021) 11(1):4673. doi: 10.1038/
s41598-021-83967-7

63. Ferrari D, Milic J, Tonelli R, Ghinelli F, Meschiari M, Volpi S, et al. Machine
learning in predicting respiratory failure in patients with COVID-19 pneumonia—
challenges, strengths, and opportunities in a global health emergency. PLoS One.
(2020) 15(11):e0239172. doi: 10.1371/journal.pone.0239172

64. Paiva Proença Lobo Lopes F, Kitamura FC, Prado GF, Kuriki PE, Garcia MR,
COVID-AI-Brasil. Machine learning model for predicting severity prognosis in
patients infected with COVID-19: study protocol from COVID-AI brasil. Plos One.
(2021) 16(2):e0245384. doi: 10.1371/journal.pone.0245384

65. Ebinger JE, Achamallah N, Ji H, Claggett BL, Sun N, Botting P, et al. Pre-existing
traits associated with COVID-19 illness severity. PloS One. (2020) 15(7):e0236240.
doi: 10.1371/journal.pone.0236240

66. Şenkal N, Meral R, Medetalibeyoğlu A, Konyaoğlu H, Köse M, Tükek T.
Association between chronic ACE inhibitor exposure and decreased odds of severe
disease in patients with COVID-19. Anatol J Cardiol. (2020) 24(1):21. doi: 10.
14744/AnatolJCardiol.2020.57431

67. Zhang X, Cai H, Hu J, Lian J, Gu J, Zhang S, et al. Epidemiological, clinical
characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings.
Int J Infect Dis. (2020) 94:81–7. doi: 10.1016/j.ijid.2020.03.040

68. Ley C, Martin RK, Pareek A, Groll A, Seil R, Tischer T. Machine learning and
conventional statistics: making sense of the differences. Knee Surg Sports Traumatol
Arthrosc. (2022) 30(3):753–7. doi: 10.1007/s00167-022-06896-6
frontiersin.org

https://doi.org/10.3390/en15134789
https://doi.org/10.1038/s41598-021-99269-x
https://doi.org/10.1016/j.eswa.2022.119115
https://doi.org/10.1093/ehjdh/ztab096
https://doi.org/10.1371/journal.pone.0281666
https://mcee.ou.edu/aaspi/publications/2020/Lubo_et_al_2020-Machine_learning_model_interpretability_using_SHAP_values-Application_to_a_seismic_classification_task.pdf
https://mcee.ou.edu/aaspi/publications/2020/Lubo_et_al_2020-Machine_learning_model_interpretability_using_SHAP_values-Application_to_a_seismic_classification_task.pdf
https://mcee.ou.edu/aaspi/publications/2020/Lubo_et_al_2020-Machine_learning_model_interpretability_using_SHAP_values-Application_to_a_seismic_classification_task.pdf
https://doi.org/10.1038/s41598-021-86327-7
https://doi.org/10.1038/s41598-021-86327-7
https://doi.org/10.1016/j.smhl.2022.100323
https://doi.org/10.1016/j.smhl.2022.100323
https://doi.org/10.32473/flairs.v35i.130670
https://doi.org/10.1186/s13054-021-03720-4
https://doi.org/10.1038/s41598-022-09771-z
https://doi.org/10.1016/j.ajem.2020.09.017
https://doi.org/10.1038/s41598-021-83967-7
https://doi.org/10.1038/s41598-021-83967-7
https://doi.org/10.1371/journal.pone.0239172
https://doi.org/10.1371/journal.pone.0245384
https://doi.org/10.1371/journal.pone.0236240
https://doi.org/10.14744/AnatolJCardiol.2020.57431
https://doi.org/10.14744/AnatolJCardiol.2020.57431
https://doi.org/10.1016/j.ijid.2020.03.040
https://doi.org/10.1007/s00167-022-06896-6
https://doi.org/10.3389/fdgth.2023.1193467
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

	Using machine learning to identify patient characteristics to predict mortality of in-patients with COVID-19 in South Florida
	Introduction
	COVID-19 mortality and machine learning
	Purpose

	Materials and methods
	Dataset collection and subject information
	Study design considerations
	Data classification
	Correlation check
	Data splitting
	Resampling data

	Results
	Cohort description
	Statistical analysis
	Model performance evaluation

	Model interpretation
	Global feature interpretation
	SHAP summary plot
	Model explanation

	Discussion
	Future work
	Limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	References


