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In the past decades there has been a substantial evolution in data management
and data processing techniques. New data architectures made analysis of big
data feasible, healthcare is orienting towards personalized medicine with digital
health initiatives, and artificial intelligence (AI) is becoming of increasing
importance. Despite being a trendy research topic, only very few applications
reach the stage where they are implemented in clinical practice. This review
provides an overview of current methodologies and identifies clinical and
organizational challenges for AI in healthcare.
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1. Introduction

In the past decade there has been an exponential increase in the number of publications

on artificial intelligence (AI) applications in healthcare (Figure 1). However, only a small

proportion of these are successfully implemented in clinical practice. AI is expected to

impact the entire healthcare system in the next decades, but awareness of the limitations

is needed. The aim of this narrative review is to provide a comprehensive overview of

current methodologies, applications, and challenges of AI in healthcare, both clinical and

organizational (Figure 2).
2. Big data, digital health and AI

Healthcare has always been data-driven and with increased healthcare digitization, an

overwhelming amount of data is generated. Not only from hospitals and healthcare

providers, but also from other healthcare stakeholders, such as insurance and medical

research. With technological advancements and the big data revolution, there is a huge

potential for using this data to transform healthcare (1). Big data represents information

characterized by “the 6 V’s” (Figure 3), including a high volume, velocity and variety of

data that require specific analysis methods to render data into value (2). Besides big data,

there has been a surge in digital health applications where contemporary information and

communication technologies are used to manage illnesses, health risks and to promote

wellness (3). This includes wearable devices, mobile health, telehealth, and telemedicine.

This evolution has the promise to improve access to healthcare, reduce inefficiencies and

provide a more personalized healthcare (3).

Before AI applications can be used in healthcare, they must be “trained” using clinical or

synthetic data. There is a large variety in clinical data, such as demographics, medical notes,

physical examinations, and clinical laboratory results. In the past, the AI literature has
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FIGURE 1

Number of publications on “artificial intelligence in healthcare”
according to PubMed.
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mainly focused on data from diagnostic imaging, genetic testing,

and electrocardiograms, whereas data from monitoring, mass

screening initiatives and administrative data have been less

popular (4). Along with the emergence of advanced analytics,

machine learning, and artificial intelligence techniques, there are

numerous possibilities for transforming this data into meaningful

and actionable results. Healthcare stakeholders can use analytical

techniques to harness the power of data not only for analyzing

historical data (descriptive analytics), but also for predicting

future outcomes (predictive analytics) and determining the best

action for the current situation (prescriptive analytics) (1).

Despite thewide availability of clinical data, there is a need formore

precise and focused data which can be achieved by generating synthetic

data. Synthetic data refers to any production data applicable to a given

situation that is not obtained by direct measurement, but generated to
FIGURE 2

Overview of development and implementation of AI applications.
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meet specific needs or conditions (5). The generation of realistic,

synthetic, behavior-based sensor data is a critical step in testing

machine learning techniques for healthcare applications. Many

existing methods to generate synthetic data are limited in complexity

and realism. One of the preferred approaches is to use hidden

Markov and regression models that are initially trained on real

datasets to generate synthetic time series data composed of nested

sequences (6). Time series distance measures can be used as a

baseline to assess how realistic the synthetic data is in comparison to

real data. It has been shown that this produces more realistic data

when compared to random data generation, data from another

device, and data from another time period (6). Even in the problem

of limited available real data, synthetic data methods have shown

sufficient reliability to be used in real world machine learning

applications (6).
3. Technical overview of common AI
methods in healthcare, focused on
cardiology

AI can be defined as the ability of a computer to complete tasks

in a manner typically associated with a rational human being

(Figure 4) (7). Machine learning (ML) is the ability for AI

systems to acquire their own knowledge by extracting patterns

from labelled data (supervised learning) or raw data without

labels (unsupervised learning) (7). Deep learning is a machine

learning method in which neural networks are created to mimic

the functionality of a human neural system (7). Lastly, natural

language processing is an area within AI that applies ML and

deep learning techniques, among others, to analyze, interpret and

transform text (7).
frontiersin.org

https://doi.org/10.3389/fdgth.2023.1201392
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 4

The relation between artificial intelligence, machine learning, deep
learning, and natural language processing.

FIGURE 3

The cardinal features of big data. Variability refers to the consistency of
the data over time, while variety reflects the wide range of types of data,
such as images or videos. Volume refers to the magnitude of data which
is generated in short time periods (velocity). The generated data yield
high value, both scientific and economic, but depends on the
reliability and accurateness (veracity). Adapted from Pablo et al. (2).
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3.1. Machine learning

The objective of ML is to train a model that relates input data,

referred to as features, to labeled outcomes (8, 9). The typical

workflow in ML is presented in Figure 5. Traditional supervised

ML includes training the model by learning relationships

between data features and the labels. The models are based on

supervised ML classification algorithms, which are capable of
Frontiers in Digital Health 03
learning linear and nonlinear relationships (7). However, the

most critical component to the performance of a model is the

feature engineering and selection. As it is unpredictable which

algorithm will give the best results, model development is an

empiric process that involves algorithm selection and

hyperparameter adjustment. Hyperparameters are parameters

defined by the user to control the learning process which should

be finetuned during the learning process. Lastly, the evaluation of

a model’s performance, including assessment for bias and

overfitting, is dependent on the extent of the available data after

partitioning into training, validation, and testing sets (10).

In contrast, unsupervised ML does not use the traditional

training approach, but rather tries to find an underlying structure

or natural patterns in the data (11). Many of these unsupervised

ML models are based on cluster analysis and dimensionality

reduction. Dimensionality reduction includes techniques that

reduce high-dimensional data into lower-dimensional

representations but preserving relevant variations and structure.

Therefore, these techniques facilitate cluster analysis. Cluster

analysis tries to find subgroups withing complex data, by for

example hierarchical or k-means clustering (11).
3.2. Deep learning

In contrast to ML, deep learning (DL) is capable of

automatically computing and selecting relevant features from raw

input data. As DL does not require manual feature engineering,

the actual strength of DL is its freedom and flexibility to use the

raw input data in the most potent way possible. DL models are

based on artificial neural networks, which represents

computational systems that are designed like biological neuronal

connections. The input data is transformed by a layer of nodes,

which represent neurons, to represent the data and ultimately

connects the input data with the labeled output. The nodes are

organized in layers, with either fully connected layers or hidden

layers. The latter are the layers between the input and output

layer. The connections between the nodes represent neuronal

synapses and are quantified by weights. The success of DL can

be explained by the fact that in these advanced neuronal

networks the layers do not need to be fully connected, as in not

all nodes of one layer must be connected to the next layer, as

well as the use of many successive hidden layers (7). In

cardiology DL often involves the use of deep convolutional

neural networks (CNN) which predict a categorical outcome

based on raw input data, such as echocardiography images or

electrocardiograms (12). In CNNs the building blocks of the DL

model are convolutional layers where each layer uses as set of

mathematical filters that detect data features to construct feature

maps. Each convolutional layer is followed by a pooling layer

creating feature maps. By repeating convolutional layers and

feature maps, a hierarchical representation of the data is created,

which can learn how particular shapes add up to complex

representations and eventually generates global data

classifications. Due to their high processing and mathematical

potential, CNNs are the standard models in recent research (13,
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FIGURE 5

Schematic overview of a typical workflow in machine learning.
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14). Further advances have resulted in the ability to process data in

time by adding a temporal sequence to a recurrent neuronal

network and the use of transfer learning where layers and

weights from a previous trained model form the basis for a new

model with a different, but slightly related task (15).
3.3. Interpretability

In medicine, the black box nature of DL is considered a major

limitation as it limits the interpretability of the feature selection

process and relative weights (16). Interpretability is defined as the

extent to which a human can understand the model, which

includes it being unambiguous and not too complex (17). Lack of

interpretability and transparency has been identified as one the

main barriers to implementation of AI in clinical practice (18).

Many different methods to achieve interpretability have been

described. On one hand there is explainable modelling, where the

internal functioning of the AI model is open and accessible to the

user (17). However, explainable modeling comes with a trade-off

between interpretability and model performance. On the other

hand, one can use post-hoc explanations, either model-agnostic

applicable to any type of model or model-specific, to render an AI

model partly explainable without opening the black box. Overall, 3

classes of explanations are available (17).

• Model-based: A separate model is used to explain the AI model.

This can either be applied as explainable modelling or as a post-

hoc method when a more interpretable, surrogate model is

created of the full AI model.

• Attribution-based: The explanatory power of each feature is

ranked, measured and/or visualized. The majority of post-hoc

explanations methods are considered attribution-based

explanations.

• Example-based: A selected part of the dataset is used to explain

the model by, for example, illustrating both excellent and poor

predictions.
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Overall, interpretability of AI models is limited by several factors.

First, explainability of AI models is influenced by the

comprehensibility of input features. Second, in case of post-hoc

explanations the black box remains closed and there is no ground

truth available for comparison. In healthcare explainable modelling

has advantages over post-hoc explanations as the first goal is to

create trustworthy AI models ready for implementation. However,

DL with post-hoc explanation may be more powerful, even though

the usefulness of interpretable DL models may be limited (16).

3.4. Natural language processing

Natural language processing (NLP) dates to the 1950s at the

intersection of linguistics and AI. Initially, NLP was focused on

standard parsing approaches. As the goal of NLP evolved to extract

meaning from text which would be eligible for further analysis, a

more statistical approach was required. This task is further

complicated by the desire to extract causal relationships, temporal

inferences and true information extraction (19). NLP uses common

supervised or unsupervised ML methods, such as support vector

machines, hidden Markov models, conditional random fields or N-

grams (19). Each of these result in a specific structure and may be

used in particular situations. NLP has a huge potential to facilitate

clinical and research activities. Vaid et al. illustrated this potential by

using NLP to extract non-numerical data from unstructured

echocardiography reports (20). Using an iteratively expending rule-

based approach they captured right ventricular function and

valvular disease severity with an overall accuracy of 99.7% (20).
4. Clinical applications of AI in
healthcare

Currently, clinical AI applications in healthcare are focused on

5 main domains. To provide a practical overview, these 5 domains

are explored using recent AI applications.
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4.1. Diagnostic applications

AI applications are improving the diagnostic potential of

known and newer technologies, such as wearables and mobile

health. Some of the best examples of the potential of AI is in the

detection of atrial fibrillation based on wearable technologies.

Atrial fibrillation screening in asymptomatic subjects using

photoplethysmography (PPG) technology in wristbands and

watches paired with AI machine learning yielded a positive

predictive value of 92% (21). While an electrocardiogram with

visual interpretation is a poor screening test for left ventricular

dysfunction, a convolutional neural network trained on paired

echocardiogram and electrocardiogram data had an AUC of 0.93

and is currently being tested in a prospective randomized clinical

trial (13, 22).
4.2. Imaging and data visualization

In the last decade, diagnostic imaging studies such as magnetic

resonance (MR), have achieved a major role in medicine.

Analyzing cardiac MR data includes time-consuming and error-

prone labor, such as tissue fibrosis quantification, and atrial or

ventricular segmentation. However, deep learning techniques

have shown to be useful for image processing and segmentation,

reducing the processing time and inter-observer variability (23).

A different approach is using clinical data, such as

electrocardiograms and echocardiograms, to train machine

learning algorithms or deep neural networks to detect and

visualize disease-specific features. Recently, EchoNet-Labs, a

video-based deep learning algorithm, was presented. Using

routine apical 4-chamber 2D videos, the application was able to

detect anemia, elevated brain natriuretic peptide and elevated

troponin I (24).
4.3. Clinical decision support applications

Clinical decision support systems (CDSS) combine patient

information and evidence-based medicine to improve healthcare

delivery by enhancing medical decisions. They can be used to

successfully implement clinical guidelines, such as the Lucia

Atrial Fibrillation Application which combines improved

electrocardiogram-based diagnosis of atrial fibrillation with the

calculation of CHA2DS2-VASc (congestive heart failure,

hypertension, age ≥75 (doubled), diabetes, stroke (doubled),

vascular disease, age 65–74, and female sex) and HAS-BLED

(hypertension, abnormal liver/renal function, stroke history,

bleeding history or predisposition, labile INR, elderly, drug/

alcohol usage) scores, to support the decision for guideline-

recommended anticoagulation (25, 26). CDSS can also deliver

evidence-based support in differential diagnoses or clinical

management. For example, the MISSION Syncope application

(Multilevel Implementation Strategy for Syncope optImal care

thrOugh eNgagement) integrates patient information with
Frontiers in Digital Health 05
clinical findings to provide an evidence-based differential

diagnosis, a prognosis and recommendations based on current

clinical guidelines (27).
4.4. Novel characterization of diseases for
precision medicine

In 2015 the Precision Medicine Initiative (PMI) was launched in

order to develop an innovative healthcare model which tailors disease

prevention and treatment at a patient level while incorporating

variability in environments, genetics, and lifestyles (28). Therefore,

precision medicine requires AI models incorporating available data

from individual patients, preferably with interpretability of the

models to improve our understanding of the disease. The added

value of AI goes beyond routine clinical interpretation.

Using coronary CT angiography, a machine learning method

was able to significantly improve the prediction of major adverse

cardiac events beyond traditional risk factors by profiling the

perivascular adipose tissue (29). In this study 167 patients

scheduled for cardiac surgery underwent coronary CT

angiography. During surgery epicardial fat biopsies were

performed, which were investigated for inflammation, fibrosis,

and vascularity. Subsequently, the radiographic signature of the

epicardial fat was extracted using 843 radiomic features

expressing, amongst others, the shape and texture of the

epicardial fat, and correlated these with the biopsy findings. In a

subsequent case-control study, a random forest machine learning

model was trained to predict major adverse cardiovascular events

and subsequently validated in an independent study cohort

reaching a C-statistic of 0.77 (95% CI 0.62–0.93) (29).

Traditionally, predicting clinical responders to cardiac

resynchronization therapy beyond the guideline-directed

indications of bundle branch block and QRS duration, has been

challenging. A machine learning model on the COMPANION

study (Comparison of Medical Therapy, Pacing, and

Defibrillation in Heart Failure trial) data using 45 commonly

available baseline variables improved differentiation of patients

with all-cause mortality (30, 31). While the conventional model

failed to predict all-cause mortality (logistic regression AUC 0.67,

95% CI 0.65–0.69), the random forest model reached an AUC of

0.74 (95% CI 0.72–0.76) (30).
4.5. Characterization of rare diseases

Rare diseases are defined as disease with a prevalence less than

1 in 2,000, and currently over 7,000 rare diseases are defined

worldwide (32). Approximately 80% of these have a genetic

etiology and about 75% affect children. In genome-wide

association studies, noncoding regions account for approximately

90% of causal disease loci. This suggests that penetrant

noncoding variants and multilocus genetic patterns may be the

underlying substrate in rare diseases. The use of AI applications

has shown to improve the detection of these patterns. For

example, SpliceAI (Illumina 2019, Cambridge, MA), a deep
frontiersin.org
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residual neural network, identified a pathogenic variant in the

MYBPC3 intron associated with hypertrophic cardiomyopathy (33).

In general, deep learning models require large amounts of data

for training and validation, which is rarely available in rare diseases.

In such cases, transfer learning might be an option to work on

smaller datasets. Bleijendaal et al. reported on 155 patients with

phospholamban mutations and 155 age- and sex-matched

controls (34). First, they found that machine learning and deep

learning models trained on the available data outperformed the

experts, who were only presented the anonymized ECG, with

regards to accuracy and AUC (34). In a second study, they

showed that the performance of the deep learning models could

be increased by transfer learning (15). Using a prior deep

learning model to identify sex trained on 256 278 ECGs, and the

same dataset described in their first study, they were able to

further improve the performance of the model significantly

(AUC 0.87 vs. 0.71) (15). Similar findings have been reported for

diagnosing long QT syndrome (14).
4.6. Drug discovery

Drug discovery is a costly and time-consuming process, but

over 90% of drug molecules fail to pass phase II trials (35). AI

applications have the potential to facilitate drug repositioning

and development of new drugs, by simulating drug properties

and activity prediction, which is of particular interest in rare

diseases. A first potential for AI is the drug-target interaction

modeling which involves 3-dimensenional modeling of the target

(36). A second potential for AI is prediction of side effects, such

as QT prolongation by human ether-à-go-go-related gene

(hERG) potassium-channel blocking effects (37, 38). Siramshetty

et al. predicted hERG effects of over 9,000 compounds using a

random Forest machine learning model and compared the results

with a deep neural network (37). They found that in a

prospective validation set the deep neural network slightly

outperformed the machine learning models when predicting the

hERG effect of new compounds (37).
5. Organizational applications of AI in
healthcare

AI has the potential to be transformative regarding healthcare

delivery and the organizational management processes. Specifically,

AI may facilitate better patient outcomes, and improve the

efficiency of care delivery through augmenting and automating

AI applications (39). Given the data access required to power AI

algorithms, the safety and privacy of the patients will need to be

protected at all costs, which will present challenges for

deployment of AI within health systems. Block chain technology,

well known from the bitcoin era, may provide solid and reliable

data safety mechanisms. This section includes an overview of (a)

optimization of health system processes and (b) concerns related

to data safety and security.
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5.1. Health system management and
process optimization

The full potential of AI and its impact on the organizational

processes within healthcare have yet to be realized. However, early

adoption is likely targeted at addressing routine and repetitive

tasks that improve clinician workflow. For example, like

preliminary computer-based interpretations that accompany 12-

lead electrocardiograms, AI-facilitated cardiac imaging

interpretation, as described in Section 4.2, may allow for enhanced

throughput, faster interpretation without compromising quality,

and the optimization of repetitive tasks such as reporting.

Although these AI applications are targeted at the clinician-level,

health system benefits may include improved organization

efficiency, reduced costs, and potentially improved clinical outcomes.

Other clinical applications with potential impact at the health

system level include AI-powered risk stratification and clinical

triaging. For example, Adedinsewo and colleagues validated an AI-

enabled ECG algorithm to identify severe left ventricular (LV) systolic

dysfunction (defined as an LV ejection fraction ≤35%) among

patients presenting to the emergency department with the common

clinical symptom of dyspnea (40). Patients with left ventricular

systolic dysfunction may require frequent health care resources in the

future, such as emergency department visits or hospitalization for

decompensated heart failure (41, 42). Earlier identification and

initiation of goal directed medical therapy may alter the disease

course and prevent future burden on the health care system.

Another potentially disruptive algorithm includes a ML

software produced by the company Corti (Corti.ai, Denmark).

Corti’s software is designed to “listen” into emergency responder

calls and facilitate clinical-decision making by emergency

dispatchers by improving time of recognition of impeding out-

of-hospital cardiac arrests through voice analysis of tone,

breathing patterns and other metadata. In a training and

validation study using 108,607 calls to the Emergency Medical

Dispatch Center of Copenhagen in 2014, time-to-recognition was

shorter using Corti’s algorithm compared to traditional dispatch

(43). Corti has subsequently partnered with the European

Emergency Number Association for deployment of the algorithm

at two pilot sites in Italy and France (44).

Despite the promise of improved healthcare processes and

improved patient care, there remain concerns regarding the

unintended consequences of large-scale deployment of AI

technologies. For example, deployment of wearables that detect

atrial fibrillation led to concerns with over-diagnosis and

unnecessarily subsequent health resource use and testing due to

false positive readings (45). Ongoing assessment of health system

impacts following AI deployment will be critical to ensure

successful implementation into clinical health systems.
5.2. Security and data safety

A substantial barrier to AI deployment within health systems is

the concern related to data privacy and security. That is, AI
frontiersin.org
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potentially may require integration of multiple data elements (i.e.,

descriptors from EHRs, wearable devices, genetic information, etc.)

in large central repositories for data analysis. Traditional large

clinical databases, particularly those that aggregate big data, face

growing security challenges. Blockchain technologies, pioneered

by the financial sector, may help address these concerns given

the prerequisite data storage and access necessary for clinical AI

applications (46).

While a distinct concept from AI (i.e., data analytics),

blockchain technology ensures that data is valid, secure, and

decentralized. The primary difference between traditional

databases and the blockchain is how the data is structured, where

the blockchain is a system of recording information that is

decentralized. It is a digital ledger of transactions (grouped into

blocks) that are duplicated and distributed across a network of

computers on the blockchain. The integrity and data security of

the block of information is assured cryptographic algorithms

known as hash functions (47). However, blockchains are not

infallible regarding security. While difficult to hack, a potential

weakness is the “51% Attack” where blockchain miners control

over 50% of the network’s computer power, thus circumventing

the data security assured through decentralization of data;

individuals have stolen almost $2 billion in cryptocurrencies by

exploiting this weakness (48, 49). However, the risk of a

successful “51% Attack” is believed to be low given the

computing power and coordination required to take over the

hash power of adequately-sized blockchains (47).

Nevertheless, as AI deployment within health care systems

becomes increasingly frequent, blockchain technology will

become an important part of health care infrastructure. One

implementation example is MedRec (2018, Cambridge, MA),

which was developed in partnership between Beth Israel

Deaconess Medical Center and Massachusetts Institute of

Technology (MIT) Media Lab (46). The MedRec platform

leverages blockchain technology to authorize and manage data

sharing between healthcare systems in a decentralized approach.

That is, while audit logs are maintained in the blockchain itself,

identifiable health care information is not stored in the

blockchain and retained in the source EHR systems (50).

In summary, blockchains (a) may provide high levels of data

security through its unique data storage patterns, (b) can

maintain the fidelity of health care data due to the difficulty in

manipulating the blockchain itself, and (c) could facilitate

accountability and authentication for data access (51). Alternative

security and data protection measures are likely required but

should function as part of an overarching framework.
6. Implementation of AI into clinical
care models

The future of AI faces many challenges when implementing AI

applications into daily clinical routine and patient care. Clinical

care informed by AI will require a new economic framework in

healthcare, taking into account the costs and liability of AI

applications. Additionally, ethical concerns have been raised
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regarding how and when AI should be applied (52). This section

includes an overview of (a) funding models and reimbursement

processes for AI applications, (b) assessing the value proposition

of AI within healthcare and (c) ethical considerations for AI

implementation.
6.1. Healthcare funding models to facilitate
uptake of AI

In value-based payment models, where it becomes increasingly

important to improve quality care and efficiency at decreased

operating costs, AI becomes a valuable tool for health care

systems. It is unsurprising that health systems that historically

have attempted to implement value-based care programs are now

assessing reimbursement models for AI. For example, the Centers

for Medicare and Medicaid Services in the United States recently

established payment codes for specific AI tools for diagnosis of

diabetic retinopathy, IDx-RX (Digital Diagnostics, Coralville, IA)

and the use of Viz.ai software (2016, San Francisco, CA), which

facilitates the diagnosis management of ischemic stroke (53).

In the United Kingdom, the National Health Service (NHS) of

England has implemented the use of an AI-power FFRCT Analysis

(HeartFlow, Inc.). The HeartFlow Analysis is applied to CT

coronary images and uses AI technology to assess severity of

stenoses by simulating blood flow and providing estimated

fractional flow rates, which is a marker of severity used in

invasive coronary angiography. This information facilitates

clinician-decision making whether a coronary blockage is severe

enough to warrant invasive management (i.e., FFRCT values

≤0.80) (54, 55). The NHS mandate for implementation of the

HeartFlow Analysis at the health system level was based on an

economic analysis by the National Institute of Clinical Excellence

(NICE), the UK national health technology assessment body.

NICE found that the HeartFlow Analysis could save NHS

England approximately £391 per patient by reducing unnecessary

invasive diagnostic procedures and cutting hospital waiting

times (56).

Funding models for clinical applications are in their infancy.

However, well-defined criteria for potential reimbursement of AI

tools and applications will be critical for wide-scale adoption.

Creative funding models may need to be developed to promote

enthusiasm at both the health care provider level and health care

organization level. For example, HeartFlow was adopted as one

of four initial technologies through a special NHS MedTech

Funding Mandate policy designed to improve uptake of selected

innovative medical devices, diagnostics and digital products (57).
6.2. Evaluating the healthcare value of AI

As a strategic investment, AI may require reconfiguration of

existing clinical care models or development of new models of

health service delivery. Implementation may be expensive such as

the potential added human resource costs of personnel re-

training in addition to the initial costs of deploying AI into
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clinical practice. Since healthcare spending continues to consume

an increasing proportion of national gross domestic products, it

is increasingly important that new health technologies

demonstrate health care “value”. That is in the context of finite

health resources, assessment of value weighs the incremental

costs associated with a new technology by the potential clinical

benefits, such as improvement in quality of life or increased life

expectancies (58). These costs are then compared to societal

thresholds for health care value. However, there are few available

economic evaluations of cardiovascular AI technologies (59). A

notable exception is the early adoption of HeartFlow within NHS

England, driven by NICE health technology assessment as

previously described.

The accelerated development and iterative nature of AI technology

may require novel frameworks for assessing health care value compared

to traditional health technologyassessment. For example,NICE recently

a comprehensive health technology assessment framework specific to

AI and other digital health technologies, which provides

recommendations on the level and quality of assessment of these

technologies (60). Similar digital health and AI frameworks for health

technology assessment have been developed by France, Germany,

Finland and South Korea (59, 61).
6.3. Ethical considerations

Implementation of AI implies continuous data collection of

health information in centralized databases to facilitate AI

analyses. This requirement raises ethical concerns regarding data

ownership (i.e., the patient as an owner of their data, private

sector as a technology vendor, or the health system responsible

for technology reimbursement), scope of data use, safety and

algorithmic fairness and bias.

As previously described, any ML-algorithm is only as effective

as the data it was trained with. In fields such as healthcare, where

clinical AI-power tools directly impact patient safety, accuracy of

AI algorithms is critical, and proper validation with high-quality

datasets is essential (62). The source of the training dataset also

has implications with regards to AI bias and discrimination. For

example, a disease-detection algorithms trained on datasets

derived from primarily Caucasian populations, may provide less

accurate or potentially inaccurate diagnosis for other populations,

where training and validation data was underinclusive (63). Thus,

without concerted attempts to improve inclusiveness, through

training on datasets representative across race/ethnicity, gender

and socioeconomic status, ML- and AI-technologies may

potentially exacerbate existing health inequities (64).

Data privacy and confidentially issues have been previously

discussed in Section 5.2. Another ethical consideration surrounds

patient informed consent when integrating AI into clinical

practice. That is, what are the circumstances where informed

consent is required, and what are the responsibilities of the

clinician to educate patients around AI? Specifically, do clinicians

have a responsibility to discuss the type of ML-algorithm used

and short-comings or potential biases of the data used analogous

to describing the risks, benefits, and operation characteristics of
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cardiac procedures such as coronary angiography? Although

aimed to improve data protection rules in a “digital age”, the

European Union’s General Data Protection Regulation (GDPR)

have highlighted the complexities of decision making through AI

and black-box algorithms that defy human understanding (65).

With requirements for the provision of “meaningful information

about the logic involved as well as the significance and the

envisaged consequences of such processing for the data subject”,

it is currently unclear how regulatory frameworks such as GDPR

will interact with the implementation of AI tools in healthcare (66).
7. Regulatory approval and
commercialization of AI in healthcare

The processes related to market approval of AI products in

healthcare are evolving. The Food and Drug Administration

(FDA) released the AI/ML-Based Software as a Medical Device

(SaMD) Action Plan in 2021 in response to feedback from

stakeholders (67). This document discusses a variety of issues,

including a tailored regulatory framework for AI/ML-based

SaMD, Good Machine Learning Practice (GMLP), patient-

centered approach incorporating transparency to users, regulatory

science methods related to algorithm bias and robustness, and

real world performance. The GMLP describes a set of best

practices for AI/ML models (e.g., data management, feature

extraction, training, interpretability, evaluation and

documentation) that are akin to good software engineering

practices or quality system practices. Development and adoption

of these practices is important not only for guiding the industry

and product development, but also for facilitating oversight of

these complex products, through manufacturer’s adherence to

well established best practices and/or standards. There have been

many efforts to date to describe standards and best practices that

could comprise GMLP, including those mentioned below.

Stakeholders generally provided strong support for the idea and

importance of GMLP. Additionally, there was a request for FDA

to encourage harmonization of the numerous efforts to develop

GMLP, including through consensus standards efforts, leveraging

already existing workstreams, and involvement of other

communities focused on AI/ML.
8. Future directions of AI in healthcare

In the next decades, AI has the potential to provide us with

scientific discoveries, improved risk prediction models and

amelioration of health care system processes. However, this will

require additional funding and organizational frameworks to guide

AI applications from development to successful implementation

(Figure 3). Future clinical innovations by AI depend on extensive

collaborations between medicine and engineering departments,

with an important added value for interpretability to enhance

knowledge, understanding and scientific progress. To achieve the

full potential of AI, data collection and access are of major

importance. Generalizability of AI applications depend on the
frontiersin.org

https://doi.org/10.3389/fdgth.2023.1201392
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Vandenberk et al. 10.3389/fdgth.2023.1201392
quality and representativeness of the available data on which AI

models are trained. To manage all this efficiently, and successfully

implement novel AI applications in clinical practice, multilevel

frameworks are required with a focus on patient privacy, and data

safety, regulatory approval, and reimbursement.
9. Conclusions

AI is a fast-growing, multi-disciplinary part of healthcare with

the potential to alter biomedical research, clinical practice, and

healthcare organization significantly. Translating and deployment

of AI applications into clinical reality remains challenging,

illustrating the need for a structural framework to facilitate the

entire process from the beginning. The healthcare professionals

of the future should gain knowledge in AI to interpret the

results, understand the limitations and adopt promising

applications into clinical practice.
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