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Medical devices (MDs) have been designed for monitoring the parameters of
patients in many sectors. Nonetheless, despite being high-performing and
reliable, they often turn out to be expensive and intrusive. In addition, MDs are
almost exclusively used in controlled, hospital-based environments. Paving a
path of technological innovation in the clinical field, a very active line of
research is currently dealing with the possibility to rely on non-medical-graded
low-cost devices, to develop unattended telemedicine (TM) solutions aimed at
non-invasively gathering data, signals, and images. In this article, a TM solution
is proposed for monitoring the heart rate (HR) of patients during sleep. A
remote patient monitoring system (RPMS) featuring a smart belt equipped with
pressure sensors for ballistocardiogram (BCG) signals sampling was deployed. A
field trial was then conducted over a 2-month period on 24 volunteers, who
also agreed to wear a finger pulse oximeter capable of producing a
photoplethysmography (PPG) signal as the gold standard, to examine the
feasibility of the solution via the estimation of HR values from the collected BCG
signals. For this purpose, two of the highest-performing approaches for HR
estimation from BCG signals, one algorithmic and the other based on a
convolutional neural network (CNN), were retrieved from the literature and
updated for a TM-related use case. Finally, HR estimation performances were
assessed in terms of patient-wise mean absolute error (MAE). Results retrieved
from the literature (controlled environment) outperformed those achieved in the
experimentation (TM environment) by 29% (MAE = 4.24 vs. 5.46, algorithmic
approach) and 52% (MAE = 2.32 vs. 3.54, CNN-based approach), respectively.
Nonetheless, a low packet loss ratio, restrained elaboration time of the collected
biomedical big data, low-cost deployment, and positive feedback from the
users, demonstrate the robustness, reliability, and applicability of the proposed
TM solution. In light of this, further steps will be planned to fulfill new targets,
such as evaluation of respiratory rate (RR), and pattern assessment of the
movement of the participants overnight.
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1. Introduction

There is an ever-pressing need in the medical field to acquire

data, signals, and images related to the health status of patients

when they are not hospitalized, and therefore correlated to their

instrumental activities of daily living (IADLs) (1, 2). Specific

medical devices (MDs) have been designed for clinical trials in

many sectors, which are capable of properly acquiring high-

quality data, yet quite often such devices are both expensive and

intrusive (3–5). Finding new ways to achieve comparable results,

therefore, becomes critical. In this regard, a promising way

focuses on reengineering low-cost, non-MD technologies already

available on the market. These make it possible to realize non-

invasive patient parameter monitoring systems, although they are

characterized by lower performance than that achieved by

systems embedding MDs (6, 7).

A recent trend focuses on sleep-related diseases — such as

sleep-disordered breathing (SDB), better known as obstructive

sleep apnea syndrome (OSA) — and associated cardiovascular

complications, which are among the most common clinical sleep

disorders (8). Polysomnography is the gold-standard approach to

accurately diagnose OSA, but MDs currently deployed to

monitor the parameters of patients during sleep are among the

most expensive and intrusive. This means that in a hospital-

based, controlled environment (i) monitoring activities are only

feasible for a few patients at a time (or even for one single

patient) and (ii) monitoring periods usually do not exceed one

single night. Further, the results of observations may be affected

by inaccuracy induced by the intrusiveness of the monitoring

device (9–11).

Based on these premises, ballistocardiography (BCG) is a

viable, cost-effective approach that allows the measurement of

body movements and small vibrations coming from various

sources, including respiration and the contractions of the heart

(12). Thanks to both recent advancements in terms of vibration

sensing technology and the unobtrusiveness of the sensing

devices, a remote patient monitoring system (RPMS) making use

of BCG signals can be deployed in different kinds of

environments and seamlessly collect biomedical parameters,

without burdening patients and clinical personnel. As the interest

in the impact of RPMSs on current eHealth dynamics is rapidly

increasing (13), the principle according to which well-gathered

data can become well- and easily-processed data, once working

in real/realistic remote monitoring contexts, likely demands

seeking solutions relying on different paradigms to be proved.

The present article aims at figuring out and deploying a

telemedicine (TM) solution for a non-intrusive, continuous

remote monitoring of the status of patients during sleep, which

features the following fundamental aspects:

• an unattended RPMS able to collect continuous BCG signals for

heart rate (HR) estimation;

• use of unobtrusive sampling devices that can be well-tolerated

by the monitored patients, so as to minimize the impact on

measurement accuracy and allow a better integration with

patients’ IADLs;
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• low costs for set up and implementation, so as to spread it out to

wider cohorts of patients.

A field trial was conducted in the period between September and

November 2022 in a cohort of 24 volunteers differing in gender,

weight, and age who were asked to place under their bed sheets,

during sleeping hours, a band equipped with pressure sensors

suitable for sampling BCG signals. A dedicated prototype RPMS

architecture, based on machine-to-machine (M2M)

communication (14), was then designed for remote gathering of

the BCG signals. Different, well-acknowledged methodologies to

extract the heart rate (HR) from the BCG signals from data not

gathered via RPMSs have been developed in the literature [see

e.g. (15–17),]. In line with this, Pröll proposed two approaches

for HR estimation, one algorithm-based (18) and one deploying

deep learning networks (19): in both cases, they proved their

approach outperforms those coming from the previous

contributions. Therefore, recognizing Pröll’s work as the field’s

state of the art, the authors tried to reinterpret the two

mentioned approaches for a TM-related, non-controlled

environment. For each of them, HR was extracted from the BCG

signals, and the mean absolute error (MAE) was calculated. The

results were then compared with the errors retrieved from the

literature so as to validate the overall robustness and feasibility of

the proposed TM solution.

The article is articulated as follows: after the introduction, an

analysis of the literature is reported concerning either heart rate

estimation from BCG signals or the architectures for remote

monitoring of vital signs. The prototype architecture, along with

the field trial conducted (including the main results), are

described. The discussion and conclusions are then shown in the

final sections.
2. Related work

The study of the literature mainly focused on the following two

aspects: the evolution of signal processing techniques for HR

estimation from BCG; and trend analysis of telemedicine for

measuring biomedical parameters.
2.1. Heart rate estimation from BCG

Ballistocardiography, as the measurement of the body’s

micromovements due to blood ejected from the heart and moved

in the large vessels, is a promising alternative for pulse rate and

heart rate variability (HRV) assessment (12–20). Current

technologies such as electrocardiography (ECG) or

echocardiography proved in the past to be more reliable in

clinical practice because of better reproducibility and fewer inter-

individual differences. On the other hand, they also turned out

to be uncomfortable for the patients, as either skin-electrode

interfaces or flexible bandages could cause skin irritations after

long use (21). BCG is instead causing increasing research interest

mostly due to the advancement of vibration sensing technology,
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FIGURE 1

Comparison over time between BCG waveform, with ECG and PPG
signals.
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improved unobtrusiveness of the sensing devices, and increased

computational power, which provides clear advantages in terms

of ease of use, comfort level, and cost, thus allowing for wide

applications at homes or hospitals (18–22). The presence of

strong variation for what concerns the morphology of individual

heartbeats still turns out to be a key challenge for a correct

analysis of BCG. Causes are manifold and related to, for

example, the position and the posture of the subject in the bed

during sleep time. This makes it quite difficult to get to a

noiseless assessment of the beat-to-beat interval, or HR, over

time. In addition, BCG is a nonstationary signal. This means

that, although the HR evaluation from BCG in the frequency

domain does not rely on the presence of specific peaks or

templates within the waveform, in a fixed BCG signal window, a

prominent frequency component may result anyway, missing

most of the time (23, 24). To overcome such a shortcoming, a

number of related peak detection and/or heartbeat interval

estimation methods are proposed in the literature. In Suliman

et al. (22), a “multi-method” algorithm framework was described,

which was capable of comparing five different BCG peak

detection methods. Three of these were recreated from the

literature (16, 25, 26), whereas the remainder were adapted from

codes originally provided by Lydon et al. (27) and Sadek et al.

(28) to address differences in sensing methods and sampling

frequencies. A promising method named HTPV was described

by (29), which combines the Hilbert transform (HT) and a phase

vocoder (PV) for heart rate estimation from the frequency

domain, so as to avoid heartbeat detection. Issues emerged in

cases with motion artifacts caused by body movement. Instead,

following the original empirical mode decomposition approach

postulated for the first time by Huang et al. (30) to estimate the

instantaneous frequency in multi-component signals,

Linschmann et al. (31) proposed two methods based on selective

filtering and the Hilbert transform for obtaining the respiration

from BCG signals.

Similarly to BCG, photoplethysmography (PPG) provides

critical physiological information, including heart rate and blood

pressure, in a non-invasive, easy-to-obtain, and cost-effective

way, so as to be widely considered for deployment in home

settings (32). Various attempts have been made to use PPG in

combination either with BCG (33) or with ECG (34) by

calculating the pulse arrival time (PAT) value.

As shown in Figure 1, PAT is usually referred to as the total

time delay between the R-peak of an ECG and a given feature

point of a PPG. Since many scholars [see e.g. (35),] have

provided reliable methods to evaluate the time delay between

ECG’s R-peak and BCG’s J-peak as a measure to estimate systolic

blood pressure (SBP), the remaining ΔT between BCG waveform

and PPG signal can be accordingly identified as well.

Nonetheless, noise and motion artifacts can corrupt PPG signals,

thus making peak detection problematic. Bhowmik et al. (36)

provided an algorithm for removing the baseline drift in the

signal using wavelet filtering and trend removal for more reliable

peak detection. The method was validated by comparing PPG

peaks with RR series extracted from an ECG signal. In the work

of Ferreira et al. (37), a prototype was described that makes use
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of an optical flow sensor to measure the relative displacement

between a PPG sensor and the measurement site. The initiative

showed a clear correlation between the motion recorded by the

sensor and the artifacts contained in the PPG signal. The authors

performed a principal component analysis for denoising the

signal and a peak finding method to evaluate HR. More recently,

a novel hybrid method was developed by Ahmed et al. (38),

which leverages deep learning to denoise a PPG signal by

decomposing it via a fast wavelet transform, and then

reconstructing it by means of a custom feed-forward neural

network. The mean squared error was computed between the

obtained denoised sequence and the reference clean PPG signal

to assess the feasibility of the approach.
2.2. Telemedicine solutions/architectures

The eHealth monitoring systems scenario is receiving a great

deal of attention from healthcare operators, either academic or

professionals. This is mostly due to the exponential improvement

of the available digital technologies that, adding cutting-edge

functionalities, allow the development on a great scale of those

application models foreseen since the original definition of the

eHealth paradigm at the beginning of the 21st century (39, 40).

Almost any of the debated works deal with the use of

microcontrollers to gather data from the sensors. In these

solutions, microcontrollers are usually coupled with patients’

smartphones to act as gateways for the internet in order to send

data to central servers. A process like this also implies several

degrees of collaboration from the patient. For example, this is the

case for a system where (i) data gathered from a self-developed

sensor are sent to a Raspberry Pi as a data aggregator, and (ii)

patients’ smartphones are then used as a gateway to the
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internet (41). Other authors proposed a solution that, although

based on Android and IoT, allows real-time gathered data

transmission only through a patient’s smartphone (42).

Furthermore, Jenifer et al. (43) developed an IoT-based health

monitoring system that makes use of a patient’s smartphone

connected to the home Wi-Fi to send the collected data to the

cloud. Such systems often involve a pair of microcontrollers (one

dedicated to sensor communication with raw data collection, and

the other dedicated to the data aggregation and the subsequent

forwarding to a central server), which makes the whole solution

cumbersome and barely tolerated by the patients. In this regard,

Hamim et al. (44) presented an IoT-based monitoring system

solution that relies on two microcontrollers: an Arduino UNO

and a Raspberry Pi 3. The former is used for sensor

communication and the latter for network communication, while

the cloud server hosts patients’ data. The solution proposed

instead by Al-Sheikh and Ameen (45) featured a NodeMCU that

was used for communication with prototypal sensors for data

collection, and an Arduino was used for data aggregation and

data forwarding to a cloud service. An IoT–based healthcare

monitoring system that encompasses several microcontrollers was

deployed by Gupta et al. (46), where a NodeMCU was used for

serving UI and interacting with the patient, an ESP8266 was in

charge of interacting with the sensors, and an Arduino was used

for data aggregation and forwarding to the central server.

In addition, sensors embedded in the monitoring system

architecture are in many cases “homemade craft”, developed with

the use of the corresponding microcontroller module. This

approach makes the sensors’ readings mostly inaccurate due to the

nature of the sensor itself—more prototypal than properly

engineered and ready for the market. Such modules are intended

for being used while designing software architectures, so they need

to be replaced with proper monitoring devices that embed the

sensor corresponding to that module. In this way, they can be

used with real patients in testing sessions. In this sense, Swaroop

et al. (47) developed a monitoring system where the data

collection is delegated to Raspberry sensor module DS18B20.

Despite the good performances of the architecture as a whole, the

authors themselves stated that the accuracy is limited by the

sensor. A system based on the use of an ESP32 microcontroller

was instead proposed by Manoj et al. (48). The set of sensors

embedded was made by AD8232 and MAX30100 modules for

ESP32. Also, in this case, the prototypal nature of the architecture

somehow hindered the overall level of accuracy of the system.

The above-mentioned limitations may also reverberate on the

lack of tolerability from the patients during the testing session,

up to a complete uselessness for the proposed aim, as registered

by Dhruba et al. (49) who deployed a solution for monitoring

sleep apnea by embedding MAX30102 and AD8232 Arduino

modules. The system was able to successfully detect sleep apnea

in some cases, yet in most of the occurrences, patients reported

that the worn devices would come off and cause a general

uncomfortable feeling, therefore spoiling their ability to sleep. In

this regard, BCG signal processing draws major attention from

the scientific community for the continuous remote monitoring

of the status of patients in unique conditions (e.g., sleeping time)
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due to its non-contact feature. Home monitoring of a patient’s

condition took advantage thanks to the ease of use of both

modern BCG systems and related monitoring architectures, less

obtrusive than those embedding contact-based devices, such as

pulse oximeters, electrocardiographs, and smartwatches (8, 50).

The same effectiveness was also proved during the COVID-19

pandemic (51). Different categories of BCG instrumentation have

been used by the scientific community while trying to address in

particular the problem of continuous and unobtrusive cardiac

remote monitoring (52, 53). BCG signal also proved to be

comparable with both PPG (54, 55) and ECG (56, 57) signals to

have a ground truth value while checking HR estimation

performances. Therefore, rising interest and novel

instrumentation are bringing to the development of novel signal

processing techniques focused on both BCG signal modeling (58)

and features extraction—Deep Learning, see e.g. (59). Continued

innovation in both instrumentation and signal processing regards

are improving the usefulness of BCG as a clinical tool.
3. Materials

The RPMS proposed for the TM-related solution aims to

overcome the aforementioned set of problems, by relying on (i)

data collection devices, namely the sensors, already present on

the market, capable of assuring tolerability for what concerns

cumbersomeness, and (ii) Android-powered gateways that allow

not only an all-at-once communication with sensors and central

servers, but also an entirely unattended data collection process.
3.1. System components

The proposed system relies on three different components

(Figure 2):

• Sleep Belt (SB)

• Pulse Oximeter (PO)

• Gateway (GW)

The sleep belt used for the collection of the BCG signal in a

non-invasive way is the J1657 model, manufactured by J-Style

Joint Chinese Ltd. It is a low-cost non-wearable smart sleep

monitor already available on the market. It consists of a pressure

sensor band spanned along its entire length and is able to

transmit a raw pressure signal at a 50 Hz frequency. The device

is composed of a strap at the end of which a main body is

placed. The strap’s dimensions are 800 mm in length and 55 mm

in width. The SB is designed to operate while placed under bed

sheets, thus satisfying the non-contact constraint while not giving

any hassle to the monitored subject. The main body features a

350 mAh lithium battery and a Bluetooth 4.0 connectivity

module within the sizes of 70 mm in 70 mm. Making use of

high-sensitivity sensors, the device produces signals specifically

targeted at retrieving the subject’s heartbeat, respiration rate, and

movement. The device communicates with the gateway via

Bluetooth protocol thanks to an ad-hoc application installed on
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FIGURE 2

Measurement setup for the proposed architecture.
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the GW and developed thanks to the Software Developer Kit (SDK)

supplied by the belt manufacturer. The SB is placed horizontally

under the participant’s bedding at chest height and is connected

to power to avoid interruption of service. The sampling session

starts automatically as soon as the device reads a continuous

pressure, and thus data is broadcasted.

The pulse oximeter is used for collecting the PPG signal that

will act as the gold standard. The finger-worn BM3000B USB

Pulse Meter, by Shanghai Berry Electronic Technology Co., used

for the trial is a low-cost device already available on the market.

Its technical specifications declare ±2 bpm accuracy and 1 bpm

resolution. Sensor measurement wavelengths are nominally

660 nm for red LED and 940 nm for infrared LED, while the

maximum optical power is 4 mW. PO communicates with the

GW via serial protocol by means of the application installed on

the GW. This application was developed thanks to the SDK

supplied by the PO’s manufacturer. The device samples data at a

100 Hz frequency related to the oxygen saturation of the

hemoglobin present in the arterial blood and the heart rate. This

is possible thanks to the optical sensor that evaluates the

reflection index of the blood flow through vessels. PO is

connected to GW through a USB port that also provides power

to the sensor. As soon as PO is connected, the sampling session

starts and data flows through the serial channel.

The gateway is an Android Box featuring 4 GB RAM and 64

GB internal memory. It runs Android OS and is equipped with

both a network interface (wireless and wired) and a Bluetooth

interface. The GW hosts an ad hoc application developed in Java

for Android. This is able to communicate with sensors to send

commands for hardware control and receive data in real-time.

Data transmitted from the sensors are collected at regular

intervals and subsequently forwarded, via the Internet, to the

remote server (RS) to be processed and displayed. The GW is

connected to power and the wireless local area network (WLAN).

When the system boots and the Internet connection is available,
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the developed application starts acquiring synchronous data from

both the sensors embedded in the SB and the PO.
3.2. Architecture overview

The mentioned components interact within the architecture

designed for signal acquisition, as illustrated in Figure 3.

The samples gathered in real-time from the monitoring devices

(SB and PO) are divided into packets of equal size so that each data

packet contains the same amount of information. Data packets are

also equidistant from each other, thus generating time windows of

interest of equal size. The data contained in each packet is framed

in JSON files by the GW, before being transferred to the RS.

The GW, whose time is synchronized by network time protocol

(NTP), assigns the timestamp to the received data. The JSON

files are transferred to the RS at regular intervals (1 min for PO,

and 10 min for SB) after being marked with the time of transfer.
4. Methods

Figure 4 depicts the workflow describing the main phases the

field trial was organized into.
4.1. Phase 1—data sampling

The field trial was conducted in a non–medical context during

the period September/November 2022 in a cohort of 24 volunteers,

14 females and 10 males, differing in weight (72 ± 18 kg), age (46 ±

19 years), and height (175 ± 10 cm) and who were not patients of a

healthcare organization.

The main scope was to validate the correct functioning of the

proposed architecture for the continuous remote monitoring of
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FIGURE 3

Architecture components and their connections.
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the participants’ status during sleeping times. To this purpose, it

was necessary to assess the data collected from the architecture

— the BCG signal — and then elaborated via the approaches

outlined to get results as to the HR extracted for each subject, in

terms of robustness and consistency. Volunteers were asked to lie

down on a sleep belt, which had been placed on the mattress

and produced a BCG signal during nighttime, and to sleep for

one night with the belt placed under their bedding. They were

not asked to change their normal sleep habits. Each volunteer

also agreed to wear a finger pulse oximeter for the entire

duration of the sleep period, in order to provide a PPG signal as

the gold standard for the heartbeat.
4.2. Phase 2—sampling performance
assessment

To assess the performances of the communication between

sampling devices (Pulse Oximeter and Sleep Belt) and gateways

within the developed prototypal architecture, the packet loss —

i.e., the ratio of data packets correctly transferred from the

devices to the gateway — was evaluated (60–62).
4.3. Phase 3—BCG data elaboration

In the following sub-paragraphs, the approaches adopted for

BCG data elaboration are described in detail.

4.3.1. BCG signal pre-elaboration
BCG is generated from the body’s vibrations due to the heart

pumping blood to vessels. This means that the BCG signal can

be easily contaminated by other vibrations, such as respiration,

talking, and body movements. Other common sources of noise

are power line interference and muscle contraction. The effective

frequency of BCG lies in a low-frequency band.

During the sampling sessions, the entire length of the BCG

signal generated from the sleep belt was split in windows of 400

samples each (windowing), corresponding to 8-second length

intervals, which for a healthy subject in conditions of rest
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normally feature between 5 and 8 heartbeats (8, 63). References

to different durations for the fragment length of the BCG signal

can also be retrieved from the literature, e.g., 20-second segment

fragments in Huang et al. (64), 30-second records in Cathelain

et al. (65), 10 s in Vijayarangan et al. (66), and 1 s (91 samples at

100 Hz) in Hai et al. (67). In Malali et al. (68) 2.8-second

windows of the ECG signal, sampled at 250 Hz, were used for

segmentation. The choice is motivated by the specific technique,

the testbed settings, and the length of the full registrations. In

the present work, 8-second windows were set up to analyze the

obtained results in light of what was reported by Pröll et al. (18).

A pre-elaboration step was performed to shift from a raw

signal to a filtered one. It consists of the detection and deletion

of eventual outliers. A further operation is the modulation of

the saturation values of the belt’s pressure sensor, due to, for

example, episodes of sudden movements of the subject, to

generate a time series of plausible values. In this regard, the

deleted values are usually replaced with contiguous ones to keep

the overall trend of the series itself as seamless as possible.

Many approaches use coarse low-pass filters to pre-process the

original BCG signal. For example, high-pass filters (0.2–0.4 Hz)

are used to remove the baseline signal and in particular the

respiratory component (67). Low-pass filters —20 Hz (15, 16)

or 30 Hz (17) —are used to remove fluctuation signals. In our

case, pre-elaboration is a common step for two subsequent

core-elaboration approaches, one of which is deep learning-

based. Therefore, similarly to what was reported by Pröll et al.

(18), Hai et al. (67), and Huang et al. (64), the original

amplitude of the signal was reduced (normalization), by means

of a narrower second-order digital Butterworth passband filter

(2–10 Hz and 3 dB cutoff frequency) since no other filters were

applied before the CNN training phase. The range of values

chosen for signal filtering corresponds to the frequency interval

within which the dominant waves of the BCG signal are

comprised. This is also evident from the results of the FFT

applied to the signal (69, 70). A comparison between the raw

and the filtered BCG signals is shown in Figure 5.

The output of the initial signal processing step was then

analyzed by means of two approaches, one algorithmic and one

CNN-based.
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FIGURE 4

Methodology workflow.
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FIGURE 5

Raw vs. filtered BCG signals.
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4.3.2. BCG signal core elaboration via algorithmic
approach

The main reference from the literature was the segmentation

algorithm approach introduced by Pröll et al. (18) that combined

and extended aspects of several previous algorithms, assessing the

overall performance by using the detected J-peaks for heartbeat

estimation (71, 72). In the developed approach, several signal

processing steps were performed (see Figure 6). The first step

consisted of the enhancement of the ejection waves by

conducting a cubing (x3) operation on the original BCG signal

while keeping the signal sign intact. Following, the cubed BCG

signal was lowpass-filtered, so as to be used to estimate the

coarse position of the IJK complexes. Starting from this and

considering the typical shape of the systolic complex, it was

possible to determine the exact locations of the I, J, and K

deflections, in order to get to the first list of local maxima (73).

It can be supposed in fact that an IJK complex is composed of

three consecutive local maxima (triplet), corresponding to a

valley-peak-valley sequence in the processed signal. For each

triplet, a weighted sum of the deflection amplitudes was

calculated at the corresponding positions in the coarse signal.

The weights were set as follows: WI =WK =−1 and WJ = 1 for

valleys and peaks, respectively. The triplet with the highest

weighted sum was then chosen as the provisional location for I,

J, and K. The so-called “false peaks” were then removed,

meaning values too close to each other to feature as useful points

for determining any IJK complex. To do this, a window was set

whose length is equal to the heartbeat interval — usually 1 s,
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during which 4–5 peaks occur — and the local maximum was

detected as the final location of the J-peak. The result was the

vector (y_pred_alg) comprising the indices of the positions of the

J-peaks calculated, that is, the heartbeats.

In the following post-elaboration step, the vector of predicted

HR values (HR_pred_alg) was eventually calculated from the

mean distance between J-peaks in the 8-second windows

obtained from the BCG signal of the sample sessions.

4.3.3. BCG signal core elaboration via the deep
learning approach

In this case, starting from the analysis of the models of neural

networks developed by Pröll et al. (19), an 11-layer convolutional

neural network was figured out, which uses strided convolutions

instead of pooling layers and does not feature any fully

connected (dense) layers in the final stage (74). The CNN was

optimized via the Adam optimizer (75) using default parameters,

with Keras as a kernel regularizer. As reported in Figure 7, every

convolutional layer of the network, except the final one, was

followed by a batch normalization (BN) and a leaky rectified

linear unit (ReLU) layer.

On the one hand, BN was deployed as a sole measure to

provide some form of regularization, and to improve training

behavior (76, 77). On the other hand, leaky ReLUs can

reportedly improve performance, although only to a small extent

(78). The final layer used a single filter of kernel size 1 to obtain

a single value from the previous feature channels. Target HRs

were normalized to mean = 0 and variance = 1, based on heart
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FIGURE 6

Main phases of the algorithmic approach.
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rates in the training set. The loss function chosen was the mean

squared error between normalized HR and network output. In a

series of 11 convolutional layers, the input patches of size 400

(8 s at 50 Hz sampling rate) were reduced to a single output value.

The deep learning model was implemented by means of an

HPC server equipped with an NVIDIA GPU for the data center

and AI with 48 GB of VRAM, and allocated at the IBB-CNR

research facility. The full architecture of the network, reported in

Figure 7, featured 18.8 k parameters. The a means that the

number of filters can be increased by a constant factor for all

layers. Given the high number of parameters, it was chosen to

keep the factor a = 1, in order to prevent an enlargement of the

original model of the network from affecting the computational

load requested. The training population consisted of 16

volunteers (67% of the total participants involved) who were

randomly selected prior to any network optimization. The BCG

signal of the training population, split into 8-second windows,

was normalized and used as inputs for the network. The CNN

was trained for 30 epochs, as the training error converged after

around 15 epochs. No pre-processing or data augmentation were

used for training. No early stopping was implemented and the

final model state was used for evaluating performance, as

illustrated in Figure 8.
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The red line traced in the figure shows the improvement of the

architecture parameters from the first to the last epoch: a halving is

evident for either MAE/MAPE, and the loss function. The

performance was additionally supported by leave-one-out cross-

validation on the training set. The ratio of testing data was 33%

of the original data set (equal to 8 participants, randomly

selected prior to any network optimization). Since no real

hyperparameter tuning was employed, there was no need for an

additional subdivision to obtain a validation set.

The output of the network was the vector (y_pred_cnn)

comprising the indices of the positions of the real J-peaks over

time, that is, the heartbeats. A further post-elaboration step allowed

the calculation of the vector of predicted HR values

(HR_pred_cnn), calculated from the mean distance between J-peaks

in the 8-second input windows, as seen in the algorithmic approach.
4.4. Phase 4—PPG data elaboration

To assess the performances of the two approaches, the PPG

signal collected from the finger pulse oximeter was used as the

gold standard, since the device produces a clean signal whose

pattern can be compared with the BCG filtered one. As shown in
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FIGURE 7

Architecture of the 11-layers CNN developed for the BCG signal elaboration.
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Figure 9, it was necessary to perform a resampling on the PPG

signal (pre-elaboration step), as the working frequency of the

pulse oximeter (100 Hz) is different from that of the sleep belt

(50 Hz). The number of samples considered per time unit was

therefore decreased through linear interpolation operations.

Following this, the PPG signal was also split into 8-second length

intervals (windowing).

In the core-elaboration step, the locations of the peaks

generated from the heartbeat were searched within the

aforementioned 8-second length intervals using the method of

local maxima and minima (79). The output was the y_true

vector that features the heartbeat locations over time. The true

heart rate (HR_true) vector from the PPG signal was eventually
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determined in the post-elaboration step, by means of the

following equation:

HR ¼ 60 � Fs

Ns

where Fs means the sampling frequency, and Ns means the index

point corresponding to the peak location (80).
4.5. Phase 5—performance evaluation

The performance checking was evaluated in terms of patient-

wise MAE (mean absolute error) and MAPE (mean absolute
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FIGURE 8

CNN training over epochs.

FIGURE 9

PPG signal before and after resampling.
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TABLE 1 Patient-wise MAE comparing Pröll’s and the authors’ approaches
(in bpm).

Source Model Avg. Std. Params.
Pröll et al., (18) Algorithm 4.24 2.21 —

Authors Algorithm 5.46 3.31 —

Pröll et al., (19) Modified CNN-GRU × 0.5 2.32 1.14 8.3k

Authors CNN 3.54 2.11 18.8k

Tramontano et al. 10.3389/fdgth.2023.1222898
percentage error) between the HR_pred vectors from the BCG

signal-related approaches, and the HR_true vector from the gold

standard (PPG signal), since these metrics provide valuable

insights as to inter-patient differences in waveforms and signal

quality (see the following equations):

MAE ¼ 1
m

Xm

t¼1

jet j

MAPE ¼ 1
m

Xm

t¼1

jet j
yt

et ¼ HR predt �HR truet

yt ¼ HR truet

where m is the number of intervals considered.
5. Results

It emerged from the trial stage that the average length of signal

collected during the sleep time was 7 h and 12 min, with a standard

deviation of 30 min. Such signal length was not always entirely

analyzable due to the signal saturation introduced by the nature

of the sensor itself (81). It was noticed that saturation occurred

when the subjects tossed or moved during sleep. Such events

affected 15% to 20% of the signal length on average, so no less

than 80% of the signal was available for elaboration. In addition,

in the tested architecture, a 10% average packet loss ratio was

found. This means that not all the data packets collected by the

sleep belts were intercepted by the gateway. In order to find out

the origin of the issue, first, an analysis of the transmitted data

packets was performed by means of a dedicated computer

sniffing packets leaving the belt. The resulting packet loss ratio,

related to the comparison between packets sniffed and belt

sampling rate, was 0.5%. An ad-hoc application was then

installed on the same device that would act as a gateway in the

architecture, to receive belt data packets. In this case, the result

was a 14% packet loss ratio at 100 Hz and 8% at 50 Hz. This is

probably because the GW is periodically unable to consume the

Bluetooth data queue.

Further, very different elaboration times were observed

between the two proposed approaches for the BCG signal core

elaboration. In particular, the process execution time of the

algorithmic approach —which is by nature purely sequential —

exceeded 5 h per patient per night (315 min ca.), with a resulting

ratio between elaboration time and signal length of about 70%.

Elaboration time stayed high although several precautions were

followed during algorithm implementation, such as break

conditions, variables releasing, and memory cleaning. The

deployment of a CNN-based approach allowed for the

elaboration time to dramatically decrease. After the proper

network training, in fact, it resulted in about 35 min per patient

per night during the testing phase, with a resulting ratio between

elaboration time and signal length of about 0.7%.
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Table 1 lists the patient-wise average and standard deviation of

MAE, comparing the two approaches performed by Pröll et al. (18)

and Pröll et al. (19), with what has been described in the present

article for a TM-related environment.

Pröll’s approaches delivered an average MAE of 4.24 and 2.32,

respectively. Both these values outperform those resulting from the

field trials conducted by the authors (5.46 and 3.54) by 29% and

52% ca., respectively. For the standard deviation, the data

collected and elaborated by the authors via the algorithmic

approach delivered a value that exceeds that achieved by the

corresponding model of Pröll et al. by about 50%. A more

significant percentage difference (85% ca.) occurred between the

two CNN-based approaches. Further insights come from the

evaluation of MAPE, which was 9.1% (std = 0.77) and 6.3%

(std = 0.48) for the algorithmic model and the neural network,

respectively.

A comparison was also conducted with high-complexity

reviewed methods for processing PPG signals extracted from

wearable sensors to estimate HR values (82, 83). For instance, a

general framework, termed TROIKA, was proposed by Zhang

et al. (84). Experimental results on datasets recorded from 12

participants using smartwatches showed that the MAE of heart

rate estimation was 2.34 bpm. Starting from the TROIKA dataset,

Biswas et al. (85) deployed a four-layer deep neural network on

22 PPG records collected during various physical activities,

achieving an MAE of 1.47 bpm. Also noteworthy is the

experimentation carried out by Arunkumar and Bhaskar (86)

who developed a de-noising algorithm for reducing the impact of

motion artifacts during HR estimation using a phase vocoder.

The test on 22 datasets resulted in an MAE of 1.86 bpm.
6. Discussion

The major challenges regarding the analysis of BCG signals are

the inevitable capture of other forces produced by the human body

and the measures being highly dependent on the setup and

placement of the sensors, not to mention body movements.

Moreover, such issues are amplified when it comes to a non-

controlled environment. In this regard, the main reason behind

the gap between the results, as shown in Table 1, lies in the

original BCG signal, which in turn depends on the dynamics

concerning data collection. Due to the peculiar characteristics of

any TM-related environment and the low cost and low

invasiveness of the proposed architecture, the collected BCG

signal stands on a different order of magnitude from those

treated in Pröll et al. (18) and Pröll et al. (19). This causes the
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signal impurities and variations to be amplified as well, transferring

such uncertainty from signal sampling to the following elaboration

steps. Additionally, during the study, the signal was collected

continuously all night long. Subjects were not asked to change

their normal sleep habits and to set up a scenario as closely

related to reality as possible. Eventually, they were advised that in

the case of any inconvenience, the sampling session for that

night would be stopped.

The analysis of the achieved ratios between the BCG signal

length collected during the trial, and the two signal elaboration

times, made it clear that the algorithmic approach is not

preferable in TM-related environments, as the amount of signal

data to be elaborated demands high machine-time involved in

data processing and, accordingly, an elevated computational

cost. This is a strong limitation because the huge amount of

data coming from remote information, signals, and image

transmission that telemedicine architectures deal with is fairly

comparable to many other big data-related scenarios (87). In

addition, the algorithmic approach was outperformed by CNN

during core elaboration in terms of both time and cost. In this

regard, for the CNN design, we used the Modified CNN-GRU ×

0.5 as the reference model among those developed by Pröll et al.

(19), as it was the best result in terms of MAE avg vs.

parameters. Our network featured more convolutional layers

with smaller kernels to achieve better accuracy at a similar

network size. No recurrent layers were introduced as it was

critical for us to pursue an optimal balance between the number

of filters per layer (which improves the estimation accuracy) and

the number of resulting parameters (which would cause a

computational load that was too high). This is because, in a

TM-related environment, a lightweight architecture is always a

condition of utmost importance to fulfill, in order to keep

competitive performances even with huge amounts of data to

handle. Such an aspect is related to an elevated (i) number of

participants to monitor; (ii) monitoring timespan, and (iii) time

length of the data collected. In other words, any proper

telemedicine initiative is meant by nature to be both widespread

and continuous over time (many hours per day, for many days).

For the data packet loss ratio, this could be probably be

enhanced by working on the data receiving buffer, either on the

application side or on the Bluetooth system’s library side so as

to optimize the GW software. Modifying buffer size and access

could likely lead to better packet loss values, yet it was decided

not to move in this direction to evaluate the real gain. The

reason for this choice was that the signal gathered was

considered good enough for fair signal processing. Further,

modifying the system’s libraries to allow the GW to consistently

reduce packet loss, as beneficial as it might be, would have been

too much of a time-consuming task. This is not to mention

that more powerful hardware, which on the one hand may

lead to better performance, on the other hand, would entail

higher costs.

This proves that the prototypal architecture proposed is capable

of addressing both the issues of low cost and low invasiveness. The

percentage of the available collected signal was revealed to be

sufficient to perform a robust data elaboration. This implies that
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the device chosen for data collection, although low-cost and

already on the market, is suitable for the intended purpose.

Many other scholars have proposed novel solutions for the

assessment of HR from the sampling of the BCG signal in TM-

related environments. For example, Dozee, introduced by Saran

et al. (88) is a contactless vital parameter monitoring system

designed to measure heart rate and respiratory rate continuously

and without contact in a hospital setting or at home. The

authors deployed a unique unsupervised clustering algorithm that

proved to effectively isolate cardiac contractions and respiratory

events from the unconstrained BCG signal. Aydemir et al. (89)

analyzed BCG signals collected in the home environment for

remote monitoring of heart failure (HF) via a set of sensing

approaches, comprising a modified weighing scale, a wearable

accelerometer, a wearable camera, and a toilet seat. A LOSO

(Leave One Subject Out) cross-validation was implemented to

predict the generalization performance of the classifier in all

experiments, in order to establish the feasibility of HF status

classification and, therefore, to investigate the prediction of future

decompensation risk. In this case, despite the capacity of the

system to integrate well with participants’ IADLs, the need for

active participation from the user to enable many of the

mentioned devices still makes the effectiveness of the approach

questionable. An inflatable air mattress, capable of supporting up

to 150 kg of weight, and integrated with an air pressure sensor as

the only device needed to collect the necessary information, was

instead the focus of the research conducted by Lin et al. (90).

The low-cost and non-invasive system uses ultrasonic signals to

detect the participant’s turning movements. Traditional linear

regression was used to model the relationship between the

ground-truth signal and the explanatory (independent) variables

of BCG heart rate, breathing rate, and sleeping position. Other

non-contact, sensor-related technologies for the extraction of the

heart rate from the BCG signal have only been tested so far in

controlled environments — usually hospitals — although the

final goal remains the achievement of effective household HRV

monitoring. It is worth mentioning the solution proposed by

Zhao et al. (91) who described a highly-sensitive fiber optic

sensor for accurate and steady BCG signal detection, for which a

deep learning-based method was proposed to improve the

accuracy of the beat-to-beat interval (BBI) extraction from HRV

analysis.

These studies show that this line of research features aspects

related to technological process innovation. Further developments

are therefore to be expected, either the creation/use of new

technologies or the improvement of quality and efficiency of

internal and external processes, to render services to users and

citizens (92–94). More specifically, pursuing innovation means,

in the present case, the joint evolution of organizational models,

healthcare purposes, and technological components. In this

regard, another critical perspective the authors accounted for

focuses on the effort to develop technologies capable of

guaranteeing an as comfortable as possible experience for the

subjects involved. Results achieved in the study align well with

the three aforementioned dimensions: (i) the deployment of non-

contact, non-intrusive solutions allowed for participant’s sleep
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habits overnight to remain unaltered (healthcare); (ii) the

effectiveness of the experimentation also relied on the ease of use

(plug and play) of the technological components (technology);

(iii) the implemented system proved to be capable of the

continuous remote monitoring of biomedical parameters, thus

preventing the participants needing to refer to hospital-based

environments (organizational model). An improvement was then

realized under a sort of “3Ps” vision: patient-wise, person-wise,

and subject (em)Power(ment)-wise, respectively (95).
7. Conclusions

In the present article, a low-cost solution for non-invasive

remote monitoring of a patient’s status during sleeping times was

described. An analysis of the BCG signal for HR detection was

performed. An RPMS was developed, which allowed us to

address critical issues related to (i) the use of unattended and

unobtrusive devices for data gathering, (ii) the possibility to

spread the solution to a wide cohort of participants, and (iii) the

integration with participants’ IADLs. In order to verify the

reliability and applicability of the proposed system, the data

collected were analyzed by means of two approaches —one

algorithmic and one CNN-based — chosen after a thorough

analysis of the literature. The quality of the results achieved,

expressed in terms of MAE (3.54 bpm for CNN-based approach),

was lower than those obtained in well-controlled environments

[2.32 bpm, see (19)] and when relying on signals of different

nature, such as PPG [1.47 bpm, see (85)]. Despite this, the

architecture performance and the data elaboration approaches

still show satisfying results. This, on the one hand, substantiates

the reliability and applicability of the system, and, on the other

hand, suggests room for improvement in both the methodologies

of BCG signal processing and data analysis (96).

Steps forward are planned to further improve the solution. As

the robustness of the architecture was certified, updates are

currently being tested to implement more refined models where,

for example, the data, once collected from the device, are soon

transferred to the central server for real-time elaboration (97).

The possibility of handling a greater computational load will

likely allow research to explore new solutions in terms of (i) data

analysis, and (ii) the design of more powerful models of neural

networks featuring both convolutional and recurrent layers (98).

This will make it possible to fulfill new targets, such as the
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evaluation of respiratory rate or pattern assessment from

participant’s movements overnight.
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