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University Hospital, Rigshospitalet, Denmark, 3Department of Orthopedics, Copenhagen University
Hospital, Hvidovre, Denmark, 4Institute of Clinical Medicine, University of Copenhagen, Copenhagen,
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Background: High-quality outcomes data is crucial for continued surgical
quality improvement. Outcomes are generally captured through structured
administrative data or through manual curation of unstructured electronic
health record (EHR) data. The aim of this study was to apply natural language
processing (NLP) to chart notes in the EHR to accurately capture
postoperative superficial surgical site infections (SSSIs).
Methods: Deep Learning (DL) NLP models were trained on data from 389,865
surgical cases across all 11 hospitals in the Capital Region of Denmark.
Surgical cases in the training dataset were performed between January 01st,
2017, and October 30th, 2021. We trained a forward reading and a backward
reading universal language model on unlabeled postoperative chart notes
recorded within 30 days of a surgical procedure. The two language models
were subsequently finetuned on labeled data for the classification of SSSIs.
Validation and testing were performed on surgical cases performed during the
month of November 2021. We propose two different use cases: a stand-alone
machine learning (SAM) pipeline and a human-in-the-loop (HITL) pipeline.
Performances of both pipelines were compared to administrative data and to
manual curation.
Results: The models were trained on 3,983,864 unlabeled chart notes and
finetuned on 1,231,656 labeled notes. Models had a test area under the
receiver operating characteristic curves (ROC AUC) of 0.989 on individual
chart notes and 0.980 on an aggregated case level. The SAM pipeline had a
sensitivity of 0.604, a specificity of 0.996, a positive predictive value (PPV) of
0.763, and a negative predictive value (NPV) of 0.991. Prior to human review,
the HITL pipeline had a sensitivity of 0.854, a specificity of 0.987, a PPV of
0.603, and a NPV of 0.997.
Conclusion: The performance of the SAM pipeline was superior to administrative
data, and significantly outperformed previously published results. The
performance of the HITL pipeline approached that of manual curation.
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Introduction

Correct, granular, and validated surgical outcomes data is a

critical resource for multiple stakeholders, including patients,

surgical units, hospitals, and reimbursement organizations. As

such, these data are being used to alter reimbursements, provide

critical transparency about performance and to reduce

postoperative morbidity and mortality through standard

operating procedure (SOP) optimization (1). Outcomes are

generally captured through structured administrative data such as

reoperation- and diagnostic codes. This structured data format

has several strengths including easy accessibility and inexpensive

capture (2). It is readily computable and can be used for

complication surveillance and for the development and validation

of predictive algorithms. However, a large part of surgical

outcomes data is only captured in unstructured free text format,

and administrative data often lack sensitivity, positive predictive

value, and temporal precision (3).

One way of addressing the shortcomings of administrative data

is through the manual curation of free text in patient charts. This

approach has been used with great success by clinical registries

such as the American College of Surgeons-National Surgical

Quality Improvement Program (ACS-NSQIP) (4). Although the

program has been shown to be cost-effective, manual curation

remains time-consuming, expensive, and prone to human error (5).

An alternative to the manual curation of free text is the use of

machine learning (ML) methods such as Natural Language

Processing (NLP). NLP is a subfield of artificial intelligence (AI),

where algorithms are trained to efficiently parse and analyze

human language (6), thus offering the potential for NLP

algorithms to automate chart reviews of surgical patients while

addressing many shortcomings of both administrative data and

manual curation.

The concept has previously been assessed across several

postoperative complication subtypes with varied approaches and

results. Most studies have deployed legacy approaches (7),

whereas novel ML methods such as deep learning (DL) have

only been deployed in a single study to date (8). DL models

employ multi-layered neural networks and generally continue to

improve with more training data, often outperforming classical

ML methods (6). This has been highlighted in a recent meta-

analysis of ML to capture surgical outcomes data, which stated:

“Implementing deep learning NLP technology in surgery may be

momentous in our ability to capitalize on free text analysis” (9).

The objective of the current study was to assess the value of DL

NLP approaches to capture surgical outcomes data from medical

free text and to compare the performance with current

registration practices. To limit the scope of this study and

provide proof of concept of the prospect of using DL NLP for

postoperative phenotype detection, we chose to focus on one

postoperative complication, namely superficial surgical site

infection (SSSI). This choice stems from a previous study where

surgical site infections were found to have the largest degree of

administrative undercoding (10) but have a recognized clinical

impact and importance. According to the Center for Disease
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Control (CDC) National Surveillance System, surgical site

infections (SSIs) are classified as either superficial incisional SSI,

deep incisional SSI and organ/space SSI. These occur near the

surgical site within 30 days following surgery. Incisional/

superficial SSI’s involve only the skin and subcutaneous tissue

(11). Of these surgical site infection subtypes, the superficial

incisional SSI appears to be the most challenging complication to

capture correctly by classical NLP approaches (12).

We hypothesized that DL models could detect superficial

surgical site infections (SSSIs) occurring within 30 days of a

primary surgical procedure with a fidelity comparable to manual

curation, and superior to both administrative data and previously

published non-DL methods.
Methods

Data source

The study was approved by the Danish Patients Safety Board

(Styrelsen for Patientssikkerhed, approval #31-1521-182) as well

as the Danish Capital Region Data Safety Board (Videncenter for

dataanmeldelser, approval #P-2020-180). In accordance with

Danish law, patient consent was not required as the study was

purely retrospective and without patient interaction.

This study was performed on data from a cohort of surgical

patients from the Capital Region of Denmark, from January 1st,

2017, to December 31st, 2021. The Capital Region hospitals

provide free of charge healthcare to approx. 1.8 million Danish

citizens across 11 somatic hospitals, including care for

postoperative complications. For this study, only patients with a

surgical procedure performed at one of these 11 public hospitals

during the study period were included. We included all surgeries

from each of the 11 major surgical specialties (orthopedic

surgery, general surgery, gynecology and obstetrics, urology,

cardiothoracic surgery, ophthalmic surgery, plastic surgery,

neurological surgery, otorhinolaryngology, oral and maxillofacial

surgery, and vascular surgery).
Administrative data

We used a combination of procedure codes identifying relevant

reoperations and ICD-10 codes to identify SSSIs. The Danish

coding system employs ICD-10 codes for diagnosis coding,

whereas surgical procedures are registered according to the

Nordic Medico-Statistical Committee (NOMESCO) Classification

of Surgical Procedures (NCSP). All codes are logged by the

treating physicians either during treatment or at the time of

discharge. We included codes logged up to 30 days after a

surgical procedure in any of the Capital Region hospitals, thus

enabling us to capture SSSIs identified at both the hospital

performing the initial procedure but also at other regional

hospitals in case the patient was discharged from the primary
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hospital and treated in another hospital for the SSSI within the 30-

day postoperative timeframe.

ICD-10 diagnoses codes were divided into high-confidence

SSSI codes that described a postoperative wound infection, and

low-confidence codes that described general skin infections in the

postoperative period.

High-confidence codes included “surgical wound abscess”

(DT814A), “postoperative wound infection” (DT814F),

and “postoperative superficial wound infection” (DT814G).

Low-confidence codes included “cutaneous abscess, furuncle,

and carbuncle” (L02), “cellulitis” (L03), “local infection of

the skin and subcutaneous tissue, unspecified” (L08.8), and

“local infection of the skin and subcutaneous tissue,

unspecified” (L08.9).
Manual curation

Surgical cases with either a reoperation for superficial infection

after surgery (NCSP code KXWB) or a high/low-confidence ICD-

10 code from the above-mentioned list within 30 days of a

surgical procedure were flagged for manual review. Only

reoperation codes and high-confidence ICD-10 codes were used

to compare performance with the NLP algorithms.

Postoperative chart notes were defined as medical free text

notes logged from the time of the surgical procedure to 30 days

after and included admission notes, operative notes, progress

notes, radiology reports, and discharge notes. The notes were

manually curated for the presence of an SSSI by a trained team

of medical reviewers.

For the test dataset, all cases were re-reviewed by an external

physician. The inter-rater reliability was assessed by the kappa

statistic. Test cases with inter-rater disagreement were reviewed

by a third-party general surgeon.
Rule-based labeling

For the training data only, chart notes logged within the first

two days of the postoperative procedure were logged as not

describing an SSSI, due to the very unlikely case of an SSSI

presenting in this early timeframe. This was defined as rule-

based labeling and was only done for the training data.
SSSI definition

We used the ACS NSQIP definition of SSSIs, which aligns with

the CDCs definitions as stated above. Specifically, the ACS NSQIP

defines SSSI’s as a postoperative infection involving the skin or

subcutaneous tissue of the incision occurring within 30 days after

a primary surgical procedure. Additionally, one of three criteria

should be met: purulent drainage, a positive culture from the

superficial incision, or the diagnosis of an SSSI by a physician.

For this study, a positive culture was registered if a physician

chart note detailing this was present.
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Training data

Figure 1 illustrates how the data was split between training,

validation, and testing. We chose a time-based data split to

simulate retrospective algorithm development with prospective

algorithm testing. To maximize the amount of utilized data, we

split the data on the 1st of November 2021. This allowed us to

validate and test the algorithms on every patient that underwent

surgery during an entire month (November 2021) at any of the

11 regional hospitals, with complete 30-day follow-up data on all

patients, reaching to the end of December 2021. To train the

NLP algorithms we used data recorded before the 1st of

November 2021. We manually curated the subset of cases that

had either a relevant reoperation code or ICD-10 code within 30

days of the surgical procedure (see definitions above).
Validation and test data

All included chart notes from patients undergoing surgery in

November 2021 (Figure 1), were manually curated for the

presence of an SSSI. For this dataset, we excluded all non-

primary procedures, defined as procedures performed within 30

days after an unrelated primary surgical procedure. As an

example, if a patient underwent a cholecystectomy and then a

hip replacement within a three-week timeframe, only the

cholecystectomy was assessed. For validation and testing, we

again chose a time-based split on the 20th of November 2021, so

that all cases performed during the first 20 days of the month

functioned as a validation dataset, and the last 10 days

functioned as a test dataset.
Data leakage

To limit the risk of data leakage from training to validation/test

data, we excluded all chart notes that were recorded after October

30th, 2021, from the training dataset. As an additional quality

control, we double-checked that no chart notes were present in

both the training- and the validation/test datasets.
Model architecture

We chose the Universal Language Model Fine-Tuning

(ULMFiT) DL approach as proposed by Howard et al (13). The

basic idea behind ULMFiT is to pretrain a universal language

model (LM) on unlabeled data, and then to fine-tune it on

labeled data for downstream tasks. The approach can be further

optimized by ensembling a forward and a backward model into

one final bidirectional classifier.

We pretrained the two language models on all postoperative

chart notes recorded before November 01st, 2021 (one forward

reading model and one backward reading model) (Figure 1). To

limit the risk of overfitting, we excluded all duplicated notes

defined as notes having identical text to another note. The data
frontiersin.org
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FIGURE 1

Overview of patient allocation. A total of 389,865 surgical cases were included in this study. To train the language models, we selected all notes
recorded before November 2021 (n= 4,521,611) from a total of 383,298 surgical cases. Duplicated notes were removed ((n= 95,096) for a final
dataset of 4,426,515 unique notes. Of these notes, 1,231,656 had a label, and 3,194,859 were unlabeled, however, labels were not used for the
language models. This dataset was randomly split into a training dataset (n= 3,983,864) and a validation dataset (n= 442,651). After successfully
pretraining both language models, we added a classifier to each and fine-tuned the classification models on the labeled notes from the dataset (n
= 1,231,656). Models were validated on the 4,487 cases operated between the 1st and the 20th of November 2021. This dataset consisted of a
total of 34,896 labeled notes. Finally, the classification models were tested on 2,080 cases operated between the 20th and the 30th of November
2021. This final dataset consisted of 17,244 labeled notes.

Bonde et al. 10.3389/fdgth.2023.1249835
were randomly split into an LM training (90%) and an LM

validation (10%) dataset. We trained a 3-layer AWD-LSTM

model (Average-Stochastic Gradient Descent Weight-Dropped

Long Short-Term Memory architecture) to predict the next word

in the medical texts (14). The model was trained for 10 epochs,

with a batch size of 128, mixed precision training, a learning rate

of 2e-4, and tuned dropout hyperparameters, as presented in the

original manuscript. Models were evaluated using the accuracy

and perplexity performance metrics.

After successfully pretraining both language models, we

added a classifier to each. Then the two models were fine-

tuned on the labeled training dataset. Each classification model

was trained with discriminative fine-tuning, slanted triangular

learning rates, and gradual unfreezing as previously described

(13). We trained both classification models for a total of 4

epochs. After each epoch, the model was validated on chart

notes from surgical cases performed during the first 20 days of

November 2021. Results from the validation data were used for

threshold selection.

We tested the final model performance on primary surgical

cases from the last 10 days of November 2021. This was done by

averaging the prediction of the forward and backward model for

each of the postoperative notes. If a case had at least one note,

with an average model prediction above the identified threshold

(see below), the case was categorized as having an SSSI.
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Threshold selection

As the classifiers output probabilities rather than classes, it is

important to select an appropriate threshold for mapping

probabilities to classes (i.e., mapping the probability given

by the model that an SSSI occurred based on the NLP

analyses to a binary yes/no classification of an SSSI). We

propose two use cases: a stand-alone ML pipeline and a

human-in-the-loop pipeline.

For stand-alone applications, we trained a stand-alone model

(SAM). Here, false positives are costly, as none of the cases are

reviewed by humans. For this use case, threshold selection can be

based on optimizing the F05 score. This score gives more weight

to the positive predictive value (PPV) than to sensitivity,

minimizing the number of false positives at the expense of more

false negatives (15).

For human-in-the-loop applications, we trained a human-in-

the-loop (HITL) model. For practical use in a real-world setting,

all positive cases would be manually double-checked by a

human. For this use case, threshold selection was based on

optimizing the F2 score. Unlike the F05 score, the F2 score gives

more weight to sensitivity than to the PPV (15).

We calculated the F05 and F2 scores for thresholds from 0 to 1

in increments of 0.01, enabling the identification of the optimal

threshold for each score.
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TABLE 1 Summary statistics from manual curation.

Training
data

Validation
data

Test
data

Case level
Number of surgical cases 383,298 4,487 2,080

Number of manually curated cases 5,274 4,487 2,080

–Positive on manual curation 3,032 (57.5%) 108 (2.4%) 48 (2.3%)

Reoperations 307 2 2

–Positive on manual curation 235 (76.5%) 2 (100.0%) 1 (50.0%)

High-confidence ICD codes 3,277 24 10

–Positive on manual curation 2,300 (70.2%) 19 (79.2%) 5 (50.0%)

Bonde et al. 10.3389/fdgth.2023.1249835
Performance

The model performance on individual notes was established

using the area under the curve (AUC). On a case level, the AUC

was established based on the highest individual note prediction

for each case. Additional accuracy parameters on a case level

included sensitivity, specificity, PPV, and negative predictive

value (NPV). Both administrative data (SSSI reoperation codes

and high-confidence ICD-10 codes) and NLP models were

compared to manual curation.
Low-confidence ICD codes 1,839 10 1

–Positive on manual curation 632 (34.4%) 5 (50.0%) 0 (0.0%)

Note level
Number of chart notes 1,231,656 34,896 17,244

Number of notes with rule-based
labels

1,148,288 0 0
Data presentation

Data are presented as medians [interquartile range] or

percentages where appropriate.
Number of manually curated chart
notes

83,368 34,896 17,244

–Positive on manual curation 7,825 (0.9%) 249 (0.7%) 136 (0.8%)
Implementation

Data were processed in a secure cloud environment on Windows

Azure. NLP algorithms were implemented using Python v.3.8.13,

Torch v.1.13.0, and Fastai v.2.7.10. We calculated the performance

metrics using the Scikit Learn python package v.1.1.3.
Results

The overall dataset consisted of 389,865 surgical cases (296,764

patients) and 4,573,751 chart notes, of which 135,508 notes were

manually curated. In the overall patient cohort, the median age

was 58 [36–72], the median operation time was 54 min [29–91]

and 54.4% of patients were female. The distribution of cases

across the surgical specialties and procedure subtypes is

presented in the online Supplementary Material (Table S1

and S2). An overview of patient allocation is presented in Figure 1.
Language models

To train the two language models, we selected all notes recorded

before November 2021 (n = 4,521,611) from a total of 383,298

surgical cases. We then removed duplicated chart notes (n =

95,096) for a final unlabeled dataset of 4,426,515 unique notes. The

median word count of the notes was 92 [40–198]. This dataset was

then split randomly into an LM training dataset (n = 3,983,864)

and an LM validation dataset (n = 442,651). (Figure 1).

The forward language model was able to predict the next word

in the postoperative notes of the LM validation dataset with an

accuracy of 59.7% and a perplexity of 7.62. The backward model

achieved an accuracy of 60.7% and a perplexity of 7.89.
Classification models

For the NLP classification of SSSIs, the training dataset

consisted of 383,298 primary surgical cases with 1,231,656
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labeled chart notes. Summary statistics from manual curation are

presented in Table 1.

A total of 5,274 cases met at least one of the three criteria for

manual review. Of these cases, 3,032 had an SSSI upon manual

review. For training, a total of 83,368 individual postoperative

notes were manually curated, of which 7,825 described an SSSI.

Model performance was validated on 4,487 surgical cases, of

which 108 (2.4%) had an SSSI upon manual review. This dataset

consisted of 34,896 notes, of which 249 (0.7%) described an SSSI.

The forward and backward classification models achieved a

combined validation AUC of 0.994. The threshold that optimized

the F05 score for the SAM model was 0.42, and for the F2 score

(HITL model), it was 0.18.

The test dataset consisted of 2,080 surgical cases, ofwhich 48 (2.3%)

had an SSSI. On this dataset, there was an inter-rater disagreement

between the trained team of medical reviewers and the medical

doctor on 27 cases (1.3%), resulting in a Cohen’s kappa coefficient of

0.73. These 27 cases were reviewed by a general surgeon,

who classified 11 as describing an SSSI. The final test dataset

consisted of 17,244 notes, of which 136 (0.8%) described an SSSI.

The combined test AUC was 0.989 on individual notes and

0.980 on a case level, compared to a test AUC of 0.551 for

administrative data (Figure 2). On subgroup analysis, AUC scores

across surgical specialties with more than one SSSI in the test set,

varied from 0.978 for plastic surgery and 1.000 for neurological

surgery (online Supplementary Material, Figure S1). Comparative

bar graphs of SSSI cases identified by manual curation,

administrative data, and the SAM model, for both the validations

and the test datasets, are presented in online Supplementary

Material, Figure S2. Performance metrics are graphically depicted

in Figure 3. When compared to manual curation, administrative

data had a sensitivity of 0.104, a specificity of 0.997, a PPV of

0.455 and a NPV of 0.979. When optimizing for the F05 score,

the SAM model had a sensitivity of 0.604, a specificity of 0.996, a

PPV of 0.763 an NPV of 0.991. When optimizing for the F2
frontiersin.org
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FIGURE 2

Receiver operating characteristics for administrative data and for
NLP algorithms. Both are compared to manual curation and
presented on a case level.

Bonde et al. 10.3389/fdgth.2023.1249835
score, the HITL model achieved a sensitivity of 0.854, a specificity of

0.987, a PPV of 0.603, and a NPV of 0.997. Confusion matrices are

presented in Figure 4.
Discussion

In this study, DL models were trained to detect SSSIs from

unstructured free medical text. We propose two practical use cases:

a stand-alone ML pipeline and a human-in-the-loop pipeline.
FIGURE 3

Performance metrics on the test data for administrative data, the stand-
compared to human curation. Presented as the sensitivity, specificity, positi
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For the stand-aloneML pipeline, a threshold of 0.42 optimized the

F05 score. This pipeline could address some of the shortcomings of

administrative data with an improved sensitivity (0.604 vs. 0.104),

PPV (0.763 vs. 0.455), and NPV (0.991 vs. 0.979), while retaining a

similar specificity (0.996 vs. 0.997). Another advantage of this

pipeline would be increased temporal precision, as the date of a

positive note could easily be extracted.

For the human-in-the-loop pipeline, a threshold of 0.18

optimized the F2 score. This pipeline could further improve

results, by having a human review of positive cases. By manually

curating 68 out of the 2,080 cases in the test set (3.3%), it could

theoretically achieve a specificity of 1, a sensitivity of 0.907, an

NPV of 0.997, and a PPV of 1. For additional improvements,

the threshold could be decreased further, but this would come at

the expense of an increased burden of manual curation. This

pipeline could address some of the shortcomings of traditional

manual curation, as it would be less time-consuming, cheaper,

less prone to human error, and potentially with a faster data

release. Ideally, these metrics should be assessed considering

reported SSSI rates in Denmark. SSSIs are, however, outside of

specific research projects solely tracked through administrative

codings which as seen in table 3 only retains a 10% sensitivity

for capturing SSSIs. As such, there is presently no credible

national overview of SSSI rates.

Many studies have investigated the performance of NLP

algorithms for detecting surgical site infections, however, to our

knowledge, only two studies have reported performance metrics

for superficial surgical site infections, specifically (1, 12).

In the first study, Bucher et al. developed a rule-based NLP

system to detect SSIs (12). Their training data included 97 SSSI
alone model (SAM), and the human-in-the-loop (HITL) models, when
ve predictive value, and negative predictive value.
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FIGURE 4

Confusion matrices for administrative data (A, reoperations and high-confidence ICD-10 codes), for the stand-alone model (B, SAM, optimized for the
F05 score), and for the human-in-the-loop (C, HITL, optimized for the F2 score). The actual label is based on the manual curation of patient charts.

Bonde et al. 10.3389/fdgth.2023.1249835
cases, and they got an internal validation AUC of 0.887. For

comparison, our algorithms achieved an AUC of 0.980.

In the second study, Skube et al. used a combination of

structured and unstructured data, with a keyword-based NLP

approach (1). Their training data included 174 SSSI cases, and

they chose a threshold of 0.06. They reported a specificity of

0.879 and a sensitivity of 0.822. However, they did not report the

AUC, PPV, or NPV for this model. On imbalanced data, such

low thresholds (0.06) tend to increase the sensitivity and the

specificity, while decreasing the PPV substantially. For

comparative purposes, we saw a sensitivity of 0.958 and a

specificity of 0.969 with a similar threshold of 0.06, but the PPV

decreased to 0.422.

In summary, DL models from this study appear to outperform

previously published non-DL results for the automatic detection of

SSSIs. One possible reason for the superior performance of the

presented algorithms is the amount of available training data. We

trained models on 3,032 SSSI cases, compared to 97 and 174

cases from the two previously mentioned studies.

Another possible explanation could be the use of DL. To

test this hypothesis, we used Microsoft Azures Machine

Learning Studios AutoML function to train and validate

different non-DL algorithms. We trained a total of 33 models

on the same training- and validation datasets as previously

described. The best performing non-DL algorithm was based

on term frequency-inverse document frequency (TF-IDF),

followed by a maximum absolute scaling and finally a

gradient boosting classifier. This model was slightly inferior

to the ULMFiT approach, with a test AUC of 0.981 (vs. 0.989

for ULMFiT) on individual notes and 0.963 (vs. 0.980 for

ULMFiT) on a case level. However, the true potential of DL

may be more pronounced in scenarios involving even larger

datasets. It is conceivable that as the size and complexity of

the dataset increase, the advantages of DL models, especially

in terms of their ability to capture nuanced patterns and

relationships in data, become more evident. This hypothesis

warrants further investigation and could form the basis for

future studies.
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One advantage of our approach was the flagging of training

cases for manual curation. The presented results were achieved

by manually curating under 2% (83,368) of the available

4,426,515 postoperative notes in the training dataset.

Another advantage was the use of individual notes instead of

aggregated notes. This resulted in a higher burden of manual

review for training, but increased the positive training

documents from 3,032 aggregated documents (one for each

SSSI case) to 7,852 positive individual notes. This approach

also allowed us to include many auto-labeled negative notes in

the training dataset, increasing the number of negative notes

from 75,543 to 1,223,831. It also provided insights into the

classification of each note, allowing for a rapid review of

positive cases/notes, and potentially also insights into the

phrases that drive predictions.
Limitations

One limitation of this study is the challenge of establishing a

ground truth. In some cases, ICD-10 codes could represent the

ground truth, and qualify as one of the SSSI criteria (Diagnosis

of SSSI by a physician), even though the postoperative notes did

not describe an SSSI. However, during manual curation, we saw

multiple examples of positive ICD-10 codes, where the

postoperative notes explicitly stated, that the patient did not have

an SSSI. For this reason, we chose to use manual curation as the

ground truth, instead of a combination of manual curation and

positive codes.

In Denmark, most postoperative complications are treated in

hospitals, and we, therefore, expect to have relevant clinical

follow-up data on most patients. However, mild SSSIs could

potentially be treated by a general practitioner, and these cases

would not appear in the hospital EHR. This further underlines

the important point of clinical relevance. While SSSI’s are

clinically important, the severity may vary widely between cases

with some cases requiring hospital admission and others handled

in the outpatient setting. Future studies could thus ideally focus
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on using DL NLP approaches to assess the severity and not just the

presence of SSSI’s.

Finally, it should be noted that variations in SSSI rates between

the training, validation and test sets could be present. This would,

however, only effect the amount of SSSI cases available for model

training, as the final performance is assessed only on the test set.
Conclusion

In this study, DL models were pretrained on 4,426,515

unlabeled postoperative notes and fine-tuned to detect SSSIs on

1,231,656 labeled notes. Overall, the models appeared to

outperform previously published results. As a stand-alone ML

pipeline, models outperformed administrative data, while

theoretically retaining key advantages such as easy accessibility,

inexpensive capture, and improved temporal precision. Deployed

as a human-in-the-loop pipeline, performance metrics approach

that of manual curation while being cheaper, less time-

consuming, and with a potential for rapid data release.
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