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This paper compares three finite element-based methods used in a physics-based
non-rigid registration approach and reports on the progress made over the last 15
years. Large brain shifts caused by brain tumor removal affect registration accuracy
by creating point and element outliers. A combination of approximation- and
geometry-based point and element outlier rejection improves the rigid
registration error by 2.5 mm and meets the real-time constraints (4 min). In
addition, the paper raises several questions and presents two open problems for
the robust estimation and improvement of registration error in the presence of
outliers due to sparse, noisy, and incomplete data. It concludes with preliminary
results on leveraging Quantum Computing, a promising new technology for
computationally intensive problems like Feature Detection and Block Matching
in addition to finite element solver; all three account for 75% of computing time
in deformable registration.
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1. Introduction

Cancer continues to be a significant cause of death in the USA and worldwide. The

number of Americans with brain tumors is about one million, and about 100,000 will

receive a primary brain tumor diagnosis in 2023 (1). Neurosurgical resection is a standard

and effective treatment for brain tumor patients. Removing as much of the tumor as

possible is imperative to ensure the best results while preserving healthy brain structures.

This approach can extend the progression time while reducing symptoms and seizures.

One of the main challenges in neurosurgery is identifying critical areas of the brain

responsible for essential functions, such as the motor cortex. These areas are unique to each

patient and cannot be located with the naked eye. However, medical imaging has proven to

be an asset in overcoming this hurdle. Over the past two decades, advancements in image-

guided therapy (2) have allowed surgeons to utilize preoperative imaging (3) for

neuronavigation. With visualization (4) and quantitative analysis software systems (5),

surgeons can safely remove tumors, such as gliomas, from sensitive brain areas. These

advancements have significantly improved neurosurgery’s safety and success rates.

Before surgery, a combination of anatomical Magnetic Resonance Imaging (MRI) and

functional MRI (fMRI) can pinpoint crucial brain areas that affect functions such as
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vision, speech and language, or motor control. Moreover, Diffusion

Tensor Imaging (DTI) can map out white matter tracts that

connect to these essential regions and are located near or

through the tumor. These imaging techniques are essential in

ensuring the precision of the tumor removal procedure.

During surgery, the opening of the skull and dura causes

changes in pressure inside the Intra-Cranial Cavity. Because of

this and other factors, such as cerebrospinal fluid drainage and

gravity’s effect, the brain changes its shape, introducing

discrepancies in relation to the pre-operative configuration. The

adoption of intraoperative MRI (iMRI) has provided a means for

monitoring brain deformation (or brain shift) during surgery (6).

Figure 1 depicts the preoperative and interoperative MRI data

before and during brain tumor resection. The number of

hospitals offering iMRI has grown over the past decade from a

handful of research centers to hundreds of clinical sites

worldwide (7). Although acquiring fMRI and DTI during surgery

may not be feasible, the preoperative images can be aligned with

an iMRI through non-rigid registration. The registration results

could be applied to preoperative fMRI and DTI, offering more

accurate and updated guidance to the neurosurgeon (8).

Deformable transformation use on fMRI and DTI is beyond the

scope of this paper. This study evaluates deformable registration

accuracy between pre-op MRI and intra-op MRI.
2. Background

Image registration, in general, is concerned with the spatial

alignment of corresponding features in two or more images.

During image registration, a spatial transformation is applied to

one image (called floating) to be brought into alignment with the

fixed or target image, which is used as a reference position of the

object (patient’s brain). In the registration process, the floating

image corresponding to the pre-operative MRI is aligned with

the patient’s position using Rigid Registration (RR), a global

transformation. Then, physic-based non-rigid registration

(PBNRR) uses spatially varying (i.e., local) transformation to

account for brain shift, which drastically varies in different brain

locations (9). Image registration algorithms generally optimize
FIGURE 1

Discrepancies between preoperative and intraoperative MRI before and during
intraoperative MRI (right) are acquired after a substantial part of the tumor is
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specific similarity criteria between the fixed and floating image

under varying spatial transformation parameters. The

computational complexity of this optimization depends on the

number of parameters that describe the transformation.

Figure 2 depicts a flowchart with all steps and software

modules for pre- and intra-operative image processing for image-

guided neurosurgery at Brigham and Women’s Hospital (BWH)

in Boston, MA. The intra-operative images were 0.5 T iMRI (11)

and acquired during surgery at BWH, since then the facility is

upgraded and currently using more advanced intraoperative

devices (12). The patient-specific Finite Element (FE) model,

selection of registration points, and non-rigid registration took

place remotely at the Center for Real-Time Computing (CRTC)

in Virginia using a midsize High-Performance Computing (HPC)

cluster of workstations (10).

We first introduce Clatz et al.’s non-rigid registration technique

from 2005. Then, we delve into two enhancements that aim to

increase its precision when working with sizable brain tumors. The

focus is on the elimination of outliers of both points and elements.

Outliers emerge from tissue removal in the case of large brain

tumors, described in detail by Liu et al. (13) and Drakopoulos

et al. (14). We won’t delve into previous research by other groups,

in particular reviews or comparisons like Sotiras et al. (15), who

conducted a comprehensive survey and taxonomy of NRR

methods, and Frisken et al. (16), who presented a clinically

insightful review at the B-Splines and FE-based methods. Finally,

this comparison is meant to complement a companion review of

HPC software implementation-related aspects for the same

methods, and it will appear in Chrisochoides et al. (17).
3. Physics-based non-rigid registration

The specific NRR method was initially developed in INRIA,

France, by Clatz et al. (9) and is implemented as open-source

software by the CRTC group in Virginia, USA (18). It is

designed for registering high-resolution pre-operative data with

iMRI—the NRR process takes place in two phases: preoperative

and intra-operative. The intra-operative computation is initiated

when a scan shows the shift of the brain. The basic idea of the
neurosurgery: volume rendering and axial view. Preoperative MRI (left) and
removed.
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FIGURE 2

Flow diagram of the NRR process used in BWH during a clinical study, after decoupling the non-rigid registration software to manage fault-tolerance of
the distributed computation process (10).
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registration method is to estimate the sparse deformation field that

matches “similar” locations in the pre-operative and iMRI and then

use a biomechanical model for brain deformation to discard

unrealistic displacements so that it can derive a dense

deformation field that defines a transformation for each point in

the image space.

Sparse displacement vectors are obtained at the selected points

in the image, where the intensity variability in the surrounding

region exceeds a certain threshold. Such registration (or feature)

points can be identified before the time-critical part of the

computation in the floating (pre-operative) image. Once the

reference (intra-operative) scan is available, the deformation

vector is estimated at each of the selected points utilizing block

matching (9), where fixed-size rectangular regions (blocks)

centered at the registration points are identified in the floating

image. Given such a block, the method selects a search region

(window) in the reference (or fixed) image. At the registration

point, the vector of the sparse deformation field is defined by the

block’s displacement, which produces the most significant

similarity between the image intensities in the block and the

overlapping section of the window. The normalized cross-

correlation similarity metric is used.
Frontiers in Digital Health 03
It is worth noticing the high computational complexity of the

block-matching procedure. Considering the sizes of three-

dimensional block and window are defined in pixels as B = {Bx,

By, Bz} and W = {Wx, Wy, Wz}, then the bound on the number

of operations is O(BxByBz ×WxWyWz), for a single registration

point.

The registration is an energy minimization problem (9). One

seeks the balance between the external forces, proportional to the

sparse displacements, and the internal forces of the mesh

resisting deformation:

[K þ HTSH]U ¼ HTSD (1)

where K is the mesh stiffness matrix, H is the linear interpolation

matrix form the matches to the displacements at mesh vertices, S is

the block matching stiffness matrix (matches with higher

confidence are assigned higher weights), D is the vector for the

block displacements, and U is the unknown displacement vector

for mesh vertices. The stiffness matrix, K, is calculated based on

the assumed physical properties of the brain tissue elastic

modulus E and Poisson ratio ν. This formulation can tolerate
frontiersin.org
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some outliers but suffers from a systematic error concerning the

correctly estimated displacements. Alternately, one can use

approximation to compute the locations of vertices, which would

minimize the error concerning the block matches:

argmin
U

(HU � D)TS(HU � D) (2)

However, this formulation would also minimize displacement

error regarding outlier measurements, which one would like to

eliminate from the set of block displacements. A robust iterative

approach combines approximation and interpolation. Gradual

convergence to the interpolation solution is achieved using the

external force F added to the formulation (1) to slowly relax the

internal mesh stress:

[K þ HTSH]U ¼ HTSD þ F (3)

Rejection of the outlier matches is done iteratively, with a user-

defined total percentage of matches to be discarded, fR, and the

number of rejection iterations, nR, as follows:

1: INPUT: nR, fR

2: for i = 0 to nR do

3: Fi ⇐ KUi

4: Ui + 1 ⇐ [K + HT SH]−1[HT SD + Fi]

5: for all blocks k do

6: compute error function ξk
7: end for

8: reject fR/nR blocks with the highest error

9: re-compute S, H, D

10: end for

11: repeat

12: Fi ⇐ KUi

13: Ui+1 ⇐ [K + HT SH]−1[HT SD + Fi]

14: until convergence

The force, F, is computed at each iteration to balance the

internal force of the mesh, KUi. The error, ξk, measures the

difference between the block displacement approximated from

the current deformed mesh and the matching target for the kth

block. The user-defined percentage of the displacements with the

highest ξk values is rejected. This method converges to the

formulation in (2) and is simultaneously tolerant to most point

outliers due to faulty matching. However, large brain shifts due

to tumor resection with drastic changes in the geometry, the

fixed (iMRI) creates element outliers that need to be considered

and we address in Section 4.
4. Nested expectation maximization
method

This section summarizes an extension of the PBNRR by

identifying and removing additional type (element) outliers due

to tissue resection using the Nested Expectation and

Maximization method, referred to as NEMNRR (13). The
Frontiers in Digital Health 04
NEMNRR method formulates the registration as a three-variable

(point correspondence, deformation field, and resection region)

functional minimization problem, in which point correspondence

is represented by a fuzzy assign matrix; the deformation field is

represented by a piece-wise linear function regularized by the

strain energy as in PBNRR (9), but this time extends the model

from a single homogenous tissue to a heterogeneous multi-tissue

based biomechanical model. A Nested Expectation and

Maximization framework is developed to resolve these three

variables simultaneously (13).

The NEMNRR method extends the cost function used in Clatz

et al. (9) to:

J(U , C, MRem) ¼
X

ei[M n MRem

UTKeiUþ

l1
X

si[M n MRem

(HU � D(C))TW(HU � D(C))

þl2
X

ei[MRem

Vei

where the continuous domain Ω (brain image) is discretized as a

multi-tissue mesh M using the method presented in Liu et al.

(19, 20) on a multi-label image segmented from the pre-operative

MRI. MRem is the removed mesh approximating the resection

region V0. Kei is the element stiffness matrix of element ei. Each

element is associated with a tissue label, which determines the

elastic parameters to build the element stiffness matrix. The first

term of Equation (4) approximates the strain energy as in Clatz

et al. (9), and the third term approximates the volume of the

resection region, in which Vei is the volume of element ei. In the

second term, the entries of the vector D are defined as

di(cij) ¼ si �
X

tj[VR

cijtj, 8si [ MnMRem:

Considering the registration problem in the Expectation and

Maximization (EM) context (21), cost function (4), from the

probability (Bayesian) point of view, defines the likelihood

function, in which the unknown (model parameter) is the

displacement vector U, and the missing data are the

correspondence C and the resection region MRem. Assuming

MRem is known, the more accurate the estimate of C, the more

accurate the estimate of U, and vice versa. EM algorithm is very

efficient for this kind of circular dependence problem, so one

employs EM to solve U and C under a specified MRem. To

resolve MRem, one can treat U and C as an approximately known

pair U, C. MRem is approximated by a collection of tetrahedra

located in a region of the model, which corresponds to the

resection region in the intraoperative MRI. MRem is initialized to

; and updated at each iteration of the outer EM. The outer EM

stops if all the tetrahedra contained in the resection region are

collected, as shown in Figure 3.

The resection region is difficult to identify in the intra-

operative MRI, so a simple threshold segmentation method is

used. We cannot determine if a tetrahedron is an outlier based
frontiersin.org
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FIGURE 3

Nested expectation and maximization framework. This figure adopted
from Liu et al. (13), Figure 3.
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solely on its position. It might be in the background image (BGI)

instead of the resection region. To ensure the element outlier

rejection algorithm is robust, we use the fact that the resection

region is made up of tetrahedra that not only fall in the BGI of

intra-operative MRI but also connect and form a maximal

connected submesh. The outliers are collected iteratively, with

additional outliers added into MRem if they fall in the BGI and

connect with the maximal simply connected submesh identified

in the previous iteration. We demonstrate the NEMNRR strategy

in Figure 4, with the inner EM iterating horizontally and the

outer EM iterating vertically.

NEMNRR addressed a fundamental challenge in PBNRR: “pre-

operative landmarks near the tumor fail to correspond to iMRI

landmarks”. The crux of the idea is to use the NEM method to
FIGURE 4

Illustration of nested expectation and maximization strategy. Row: inner EM, C
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resolve the deformation field with missing correspondence,

specifically in the resection region. This has many implications;

one is to compute the registration error more accurately than

Hausdorff Distance (HD) when correspondence is unknown. Like

the PBNRR, the NEMNRR uses the strain energy of the

biomechanical model to regularize the solution. Figure 5 shows

the results of point outlier rejection produced by NEMNRR;

compared to the edges before outlier rejection, most point

outliers are removed from pre-MRI and iMRI after outlier

rejection.
5. Comparison of outlier rejection
schemes

In Sections 5.1, 5.2, we compare two approximation-based

outlier rejection methods. Then, in Section 5.3, we compare

them with a geometry-based method using 9 cases from earlier

studies.
5.1. PBNRR rejection scheme vs. rigid
registration

First, we compare the PBNRR outlier rejection scheme against

state-of-the-art Rigid Registration and B-Splines interpolation

schemes with no rejection of outliers. We use five cases from

NCIGT (22); they were first presented by Archip et al. (8) with
olumn: outer EM. This figure adopted from Liu et al. (13), Figure 4.
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FIGURE 5

Point outlier rejection. Two left-most pre-op and iMRI depict (in blue) all edges detected before rejecting outliers, while the right-most figures depict the
remaining edge points after outlier rejection.

TABLE 1 Patient information from Liu et al. (23).

Case # Gender Tumor location Histopathology
1 F R occipital Anaplastic oligodendroglioma WHO

III/IV

2 F L posterior temporal Glioblastoma WHO IV

3 N/A R frontal Oligodendroglioma WHO II/IV

4 N/A R occipital N/A

5 F R frontal Oligoastrocytoma WHO II/IV

Chrisochoides et al. 10.3389/fdgth.2023.1283726
additional analysis by Liu et al. (23). Table 1 lists the patient

information, including the gender, tumor location, and

histopathology. They are revisited for completeness and reviewed

regarding the impact of the outlier rejection scheme on

registration accuracy and execution time.

The PBNRR (9) and its implementation in Liu et al. (18, 23)

uses a homogeneous model, i.e., a single mesh in the FE model.

As reported in Table 2, the execution time is about a minute,

and with an average single heterogeneous HPC workstation (with

a moderate number of 20 cores and a single GPU, the

registration time can be reduced to less than a minute. See Liu

et al. (18) for a detailed analysis.

Table 2 indicates that out of about 73 K registration points,

the PBNRR rejects about 18 K as outliers. A detailed study of

30 cases by Drakopoulos et al. (24) indicates this leads to a

moderate (about 1.5 mm) improvement over the accuracy of the

rigid registration and not a clear advantage over the B-Splines

approximation scheme implemented in ITK and Slicer3D when

accuracy is measured in terms of HD. A recent evaluation (24)

from expert neurosurgeons (using specific brain landmarks)

indicates that the accuracy of the PBNRR rejection scheme

improves the max (and mean) average accuracy to 6.8 (and 3.4)

mm from to 8.9 (and 5.6) mm 8.3 (and 4.4) mm by Rigid

Registration1 and B-Splines2, respectively. Overall, the PBNRR3

outlier rejection scheme improves the registration accuracy

between 1 mm and 2 mm from two state-of-the-art rigid

registration schemes.

The end-to-end execution time for registering preoperative to

intraoperative images for all 30 cases. Rigid registration, B-Spline,

and PBNRR required, on average, 0.84, 8.98, and 0.83 min,

respectively (including I/O). The B-Spline method (with

comparable accuracy) is the most computationally intensive,

requiring more than 8 min in 17 out of 30 cases (24). A different

set of B-Spline parameters, such as a smaller sampling
1Rigid registration implemented in 3D Slicer v4.4.0.
2B-Spline non-rigid registration implemented in 3D Slicer.
3PBNRR implemented in ITKv4.7.0.

Frontiers in Digital Health 06
percentage, a smaller number of histogram bins, or a coarser grid

(than the 15 × 15 × 15 grid used in this study), could improve B-

Spline performance at the cost of accuracy.
5.2. NEMNRR vs. PBNRR rejection scheme

To compare the two outlier rejection schemes between the

NEMNRR and PBNRR, we use three cases from NCIGT (22)

and two additional cases from Huashan Hospital (HH) with very

large brain shifts. Table 3 lists (the first case from Table 1 and

the remaining four cases from an earlier study by Liu et al. (13)

the patient information such as gender, tumor location, and

histopathology. The thickness slice varies between 1 mm,

1.3 mm, and 2 mm for pre-op MRIs and 1 mm, 2 mm, and

2.5 mm for iMRI. The matrix varies even more, a detailed

description is presented in Drakopoulos et al. (24).

Given that NEMNRR is designed to improve registration

accuracy using a multi-tissue FEM model, we employ the same

multi-tissue mesh in both methods to measure the influence of

the outlier rejection scheme on the registration. We build a

simple two-tissue mesh (ventricle + the rest of the brain) to

minimize the influence of the discrepancy of the geometry and

topology between single mesh and multi-tissue mesh. In the

homogeneous model, we use Young’s modulus = 3,000 Pa,

Poisson’s ratio = 0.45 for all tetrahedra, and in the heterogeneous

model, we replace Young’s modulus with 10 Pa and Poisson’s

ratio with 0.1 for the ventricle (25).

We have seen that, on average, the PBNRR rejects about 18 K

outliers out of 73.5 K registration points (approximately 24%) and

takes about a minute to complete the registration for an FE-mesh

with about 40 K to 50 K elements. Table 4 indicates that for
frontiersin.org
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TABLE 2 The quantitative results for the 5 cases are obtained by running the PBNRR on a single homogenous mesh (using 8 threads).

Case HD before PBNRR
(mm)

HD after PBNRR
(mm)

HD
improvement

Number of registration
points

Num rejected
outliers

Running time
(sec)

1 25.980 20.099 0.226 69,244 17,310 57.64

2 9.110 4.690 0.485 76,821 19,200 65.88

3 9.433 5.385 0.429 68,745 17,180 54.26

4 9.695 7.000 0.278 84,445 21,110 67.94

5 6.708 4.123 0.385 68,225 17,050 54.92

Avr. 12.18 8.25 0.36 73,496 18,370 60.12

The parameters for all cases are Block radius: [1,1,1], Window radius: [5,5,5], Selection fraction: 0.05, Rejection fraction: 0.25, Num of outlier rejection steps: 10, Num of

approximation steps: 10. This table adopted form Insight Journal version of Liu et al. (23).

Bold fonts underline the importance of those points, i.e., removed outliers.

TABLE 3 Patient information of five cases for the comparison of PBNRR
vs. NEMNRR.

Case Gender Tumor location Histopathology
1 (5, T1, PR) F R frontal Oligoastrocytoma WHO II/IV

2 (9, L, N/A) F L Parietal Glioblastoma multiforme
(WHO IV)

3 (10, L, BS) M L frontal Glioblastoma multiforme
(WHO IV)

4 (11, L, PR) M R temporal Metastases

5 (12, L, TR) F L posterior temporal Oligodendroglioma WHO II

The case number used in Table 1 (above) and in Liu et al. (13) is in parathesis and

denoted by T1 and L, respectively.
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similar cases (see Table 3), the NEMNRR removes 48 K outliers

out of 170 K registration points (approximately (28%) at quite a

high cost; NEMNRR takes about six times longer to complete the

registration.

However, NEMNRR increases the accuracy by 9.92 mm on

average at the registration points (i.e., the evaluation is

performed on Canny edge points) and 2.40 mm when the

evaluation is performed on the tumor or resection margin,

depending on the case of brain shift or resection. All

measurements are based on HD. In 2014, Liu et al. thoroughly

compared PBNRR and NEMNRR.

To evaluate the accuracy, we rejected outlier registration points

in pre-MRI and iMRI and calculated the HD before registration.

Also, we rejected outlier registration points in iMRI and warped
TABLE 4 Selective parameters for NEMNRR and PBNRR related to outlier rej

Case Multi-tissue mesh Num. of registration points i
op MRI

Num. of
nodes

Num. of
elements

1 48,789 9,322 176,265 (44,703)

2 56,430 10,712 152,798 (50,460)

3 58,558 11,090 247,832 (54,604)

4 80,764 14,893 133,182 (38,350)

5 32,804 6,511 140,598 (53,190)

Avr. 55,469 10,505 170,135 (48,261)

The numbers listed in the column of “Canny” are the edges detected by the Canny edg

for both NEMNRR and PBNRR is in seconds. The bottom row depicts the average of

Bold fonts underline the importance of those points and removed outliers.
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pre-MRI to calculate the HD after registration. The tumor

boundaries in pre-MRI and iMRI are delineated to calculate the

HD for brain shift cases. In each resection case, we choose the

pre-MRI slice, in which the tumor is completely intra-operatively

resected, so the margin corresponding to the resection margin of

iMRI can be identified using the tumor boundary. The resection

margin is delineated in iMRI, and directed HD is used for

evaluation.

Using HD, the data in Table 5 suggest that NEMNRR and

PBNRR do not perform well in the first case, a Partial

Resection (PR). In the second case and around the tumor, it

appears to be an improvement to about 1 mm. The remaining

cases appear to have improved substantially. However, the

evaluation results on edges and resection margins must be

more consistent within the 1 mm tolerance. This is an area that

needs to be studied further. Table 5 indicates that the

NEMNRR multi-tissue (Single) reduces the error of Rigid

Registration at the registration points from 14.10 mm to 2.5

(2.9) mm, but the evaluation on the resection margin shows

the error is reduced only from 12.08 mm to 5.3 (5.6) mm. The

reason for this is most likely that the detected edges, although

well-aligned, are too far away from the tumor and the resection

region and, thus, ineffective in driving the model to estimate

the deformation around the resection margin. A larger number

of cases (25) were analyzed and compared with both NEMNRR

and PBNRR (13), indicating that the mean plus/minus standard

deviation for HD between the pre-MRI and iMRI for RR,
ection and execution time.

n the pre- Num. of registration points in
the iMRI

NEMNRR PB
NRR

Time Time

168,447 (55,225) 289.8 N/A

166,150 (51,723) 678.16 97.6

86,720 (41,554) 846.63 101.4

147,576 (38,799) 543.42 101.3

113,383 (50,359) 548.31 71.2

136,455 (47,535) 581.3 92.9

e detector before (and in parathesis after) outlier rejection with NEMNRR. The time

all 5 cases.
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TABLE 5 Quantitative evaluation and comparison for 5 cases.

Case Rigid NEMNRR (Single) NEMNRR (Multi) PBNRR (Multi)

Canny Tumor Canny Tumor Canny Tumor Canny Tumor
1 13.30 13.01 1.88 11.09 1.85 11.0 N/A 12.0

2 14.28 12.12 3.81 4.32 2.96 4.15 5.98 5.83

3 13.64 10.82 3.96 4.71 3.66 4.63 15.26 16.61

4 13.60 10.77 2.19 5.07 2.14 4.71 17.95 10.08

5 15.26 17.32 2.95 3.0 2.18 2.24 13.40 11.97

Aver. 14.01 12.08 2.9 5.6 2.5 5.3 13.1 11.2

“Single” and “Multi”-denote the single-tissue homogenous and multi-tissue heterogenous model. “Canny” denotes the evaluation performed at the registration points

identified by the Canny edge detector, and “Tumor” denotes the evaluation performed on the Tumor or resection margin, depending on whether the case is brain

shift or resection.

TABLE 6 Profile of the ANRR modules based on total (end-to-end)
execution time (in seconds) and relative percentage (%) for each module
and adapted from Table 4 (14).
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PBNRR, and NEMNRR is 17.48+/−0.2, 12.7+/−5.4, and 9.8

+/−4.7, respectively.
Module name Time % of total time
Parallel feature selection 4.38 7.93

Parallel mesh generation 2.58 4.67

Parallel JCG 3.51 6.36

Parallel image def. field update 2.32 4.20

Warped pre-op seg. correction 1.11 2.01

Image def. field correction 2.62 4.74

Parallel FEM solver 33.39 60.58

Parallel block matching 3.77 6.83

Parallel image warping 1.50 2.71

Total 55.18 100
5.3. Comparison with a geometric scheme

In Drakopoulos et al. (14, 24), we used geometric means to

remove outliers and attempt to improve the registration error

for large tumor resections while staying within the time

constraints imposed for clinical use (i.e., completion time 3–

4 min). The Adaptive Non-Rigid Registration (ANRR) method

gradually adjusts the mesh for the FEM model to an

incrementally warped segmented iMRI as opposed to NEMNRR

that iteratively rejects feature and element outliers derived from

a single (original) segmented iMRI. The idea of the geometric

approach is to remove slivers and potentially negative volume

elements resulting from large deformation fields (sometimes

larger than the size of the elements) computed by block

matching. This is achieved through an incremental

approximation to reach the end goal. The ANRR method

improves the accuracy of the model by improving the accuracy

of the basic numerical calculations involved at the cost of

increasing (potentially) the overhead for the mesh generation

step and substantially increasing the computational cost of the

linear solver several times. However, even with a single HPC

node (DELL workstation with 12 Intel Xeon X5690@3.47 GHz

CPU cores and 96 GB of RAM), the ANRR execution time on

average is less than two minutes (26), which is within the time

constraints of the procedure in the operating room.

Table 6 indicates that a large fraction (about 60%) of time is

spent in the parallel FEM Solver module, which includes

assembling the system matrices and rejecting the feature (or

point) outliers. The differences between the NEMNRR and

ANRR are: (1) using different mesh generation methods and (2)

treatment of element outlier rejection. In the case of ANRR, we

used a Delaunay-based method presented by Foteinos et al. (27),

while in NEMNRR, we used the BCC-based method presented

by Liu et al. (20). As indicated in the evaluation of both meshing

methods in Foteinos and Liu et al. (19, 28), the Delaunay-based

method is 15 times faster than the BCC-based method (evaluated

on the same set of cases and forced to achieve the same fidelity).

However, the BCC-based method is about twice as effective
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(evaluated in terms of the convergence rate in the FEM-solver)

than the Delaunay-based method.

The geometry-based treatment of element outliers

(implemented with Parallel Feature Selection, Image Deformation

Filed Update and Correction, and Warped pre-op Segmentation

Correction presented in Drakopoulos et al. (14) along the real-

time I2M conversion technologies like the Delaunay-based

method presented in Foteinos et al. (27) to a degree addressed

the computational slow-down of NEMNRR (about six times

slower compared to PBNRR). It is worth noticing that the role of

real-time I2M conversion is not because one needs large FE-

meshes for this application, but the requirement is high fidelity

and good quality meshes to be generated quickly.

Table 7 compares the PBNRR, NEMNRR, and ANRR (with the

parameters for all three methods described in Table 9, Appendix I)

with two publicly available registration methods: RR and B-Spline

(with the parameters for both methods described in Table 10,

Appendix I). This time, the comparison is based on two groups of

(independent) experts from Europe [AHEPA Hospital in Greece

and the results appeared in Drakopoulos et al. (24)] and Asia

[Huashan Hospital in China and the results appeared in Liu et al.

(13)]. This Table presents each case’s minimum, maximum, and

mean errors. The assessment confirms that a combination of the

Clatz et al. point outlier rejection scheme with the removal of

element outliers by alternating PBNRR approximation with

remeshing can improve the accuracy of the registration: from an

average max (mean) error of 8.4 (4.3) mm achieved by PBNRR to

6.5 (3.2) mm for ANRR as opposed to 7.7 (3.6) mm for NEMNRR.
frontiersin.org
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TABLE 7 Quantitative registration results used six anatomical landmarks
for 30 (24) and 25 (13) cases.

Method Average min
error
(mm)

Average max
error
(mm)

Average mean
error
(mm)

RR 3.19 8.90 5.60

BSPLINE 2.15 8.29 4.40

PBNRR 1.66 8.45 4.36

NEMNRR 1.36 7.79 3.69

ANRR 1.03 6.59 3.22

The average minimum, maximum, and mean errors are computed over thirty for

ANRR, NEMNRR, rigid registration (RR), and PBNRR, depicting the average errors

of PBNRR, respectively.

TABLE 8 Hausdorff distance (HD) and error using landmarks by experts
reported in mm.

HD Min
error

Max
error

Mean
error

#
tets

#
vertices

Case A
Baseline 2.24 1.07 5.90 3.51 13,210 3,264

Isotropic 1.95 1.22 7.53 3.71 19,893 4,177

Anisotropic (a = 1.0) 2.22 0.55 7.85 3.99 22,383 4.520

Anisotropic (a = 1.2) 2.00 1.01 7.10 3.70 17.593 3.629

Anisotropic (a = 1.5) 2.64 0.93 6.15 3.25 13,291 2,838

Case B
Baseline 4.06 2.06 5.37 3.65 11,040 2,833

Isotropic 3.42 2.29 5.76 3.92 19,946 4,008

Anisotropic (a = 1.0) 3.71 2.12 5.50 3.96 22,342 4,460

Anisotropic (a = 1.2) 4.05 2.06 5.05 3.61 18,077 3.766

Anisotropic (a = 1.5) 4.05 1.92 5.17 3.65 13,812 2,983

Where baseline uses the default I2M within ANRR, isotropic uses the

equidistribution method (29), and anisotropic uses different values for the alpha

weight (in parenthesis).
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To summarize, it is important to note that neither the HD

metric nor expert evaluation can be reliably reproduced due to a

lack of robustness, and the possibility of human error in expert

evaluation. Therefore, combining the two approaches (as we have

observed that human error can be caught and corrected using

HD results) is the safest way forward until the research

community develops more robust and automatic metrics to

measure registration accuracy.
6. Open problems

6.1. Problem I: non-rigid registration error
estimation

The evaluation methodology of the analysis we presented in

this paper used two methods: (1) expert evaluation (see

Table 7), but prone to human errors, and (2) automatic

method (30) relying on HD to evaluate the registration

accuracy because it is fast and does not require manual

intervention (see Tables 2, 5). The automatic method relies

on Canny edge detection (31) to compute two-point sets. The

first point set is computed from the preoperative volume and
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then transformed (using the deformation field computed by

each registration method) from the preoperative to the

intraoperative space. The second point set is computed from

the intraoperative volume. An HD metric (32) was employed

to calculate the degree of displacement between the two-point

sets. This approach helps compare the impact of the different

approximation schemes. However, it gives an upper bound on

the error and does not consider the correspondence between

the two-point sets. We hope that the NEMNRR method, the

way it is formulated, can provide (in the future) a way to

compute the correspondence between those two sets of points,

making HD error much more reliable.
6.2. Problem II: registration point
distribution into FE-Mesh elements

One of the requirements we have yet to make much progress

on is the suboptimal distribution of the effective registration

points, i.e., once perceived outliers are rejected. This problem

concerns mesh elements, and a very small number (same cases

zero) of points makes the numerical formulation more sensitive

to outliers and introduces additional displacement error due to

integral voxel displacements recovered by block matching. The

distribution of points also influences the condition of the [K +

HTSH] matrix.

Over the last 15 years, we developed three different Image-to-

Mesh (I2M) conversion methods for medical applications: (i)

Body-Centered Cubic (BCC) was proposed by Molino et al. (33)

and was implemented by Fedorov et al. (34) for a single-tissue

and it was initially used in PBNRR (8). Then, a multi-tissue

capability was used by Liu et al. (19, 20), and it was used in

NEMNRR (13) and mesh gradation (i.e., control mesh size to

reduce without compromising the fidelity of the mesh) by

Drakopoulos et al. (35); (ii) Delaunay-based (27), and it is used

in real-time ANRR with the results presented in Drakopoulos

et al. (14, 24) and in Table 7; (iii) Lattice Decimation methods

(36) because the relatively dense initial BCC mesh captures the

object surface without much compression, thus preserving the

good angles of the BCC triangulation. All three methods

developed and evaluated for this project need further

development regarding topologic accuracy in the presence of

multi-tissue models. For example, one important question is:

“How many materials can be accurately reconstructed around a

mesh vertex or an edge so that the multi-tissue mesh is a

topologically accurate representation of the input data?”

We have been working on yet another open question that

involves generating meshes while considering the registration

points recovered through the block-matching step. To our

knowledge, no existing method in the literature addressed this

question. Although we have made some progress, much work

still needs to be done in this area. In Fedorov et al. (37), we

attempted to improve the distribution of registration points over

the mesh, using custom sizing functions for two different mesh

generation methods (Delaunay refinement and Advancing Front).

The evaluation was based on synthetic deformation fields and
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FIGURE 6

Optimizing landmark distribution.
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showed that the limited success of registration point

equidistribution might reduce the registration error.

For completeness, a summary of the method employed in

Fedorov and Chrisochoides (29) is presented along with the

modifications that can turn it into an anisotropic metric-based

method. The (sub-)optimal distribution of the registration points

can be formulated as assigning approximately the same number

of registration points at each mesh vertex cell complex, where a

mesh vertex cell complex is defined as the set of all the elements

attached to a vertex. See, for example, Figure 6, left: the p1, p2,

and p3 vertex cells on the left have 3, 7, and 5 landmarks,

respectively. In Figure 6, right: by collapsing edge p2p1, one

attempts to equidistribute the landmarks. Both the vertex cells of

p1 and p2 now have seven landmarks.

The crux of the method is to set the local spacing at each vertex

equal to the distance to the k-th closest registration point.
FIGURE 7

Left: isotropic metric that sets the spacing equal to the distance of the fift
registration points for different values of the inflation constant. This Figure ad
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Assuming an ideal spacing, each vertex’s mesh vertex cell

complex will contain k registration points. An illustration for k =

5 is given in Figure 7 left. Notice that another way to interpret

the sizing constraint at each vertex is using a sphere centered at

each mesh vertex with a radius equal to the distance to the k-th

registration point.

This technique produces adaptive meshes but does not

efficiently capture the local distribution of landmarks. This is

because only the k-th point is used, and the relative positions of

the other k-1 landmarks are disregarded. To improve this, one can

substitute the spheres at each vertex with the smallest bounding

ellipsoid that encompasses the k closest registration points and is

centered at the vertex. Describing the local spacing as an ellipsoid

gives the ability to capture the local distribution of the landmarks

better due to the increased degrees of freedom of an ellipsoid

compared to a sphere (see, for example, Figure 7 right).
h closest registration point. Right: Anisotropic metric based on the five
apted from Drakopoulos et al. (24), Figure 5.
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FIGURE 8

Different approaches to constructing a metric utilizing the minimum
ellipsoid method.
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Creating the minimum volume ellipsoid that encloses a given

pointset is a problem well studied in the convex optimization

literature. The constructed ellipsoid has a natural mapping to a

3 × 3 positive definite matrix that can be used as a metric that

guides the anisotropic mesh adaptation procedure. An additional

flexibility to the mesh adaptation procedure can be introduced by

an “inflation” (constant a), which is introduced and is common

for all the points; it allows the enlargement of all ellipsoids by a

constant factor. The goal of this parameter is to allow the mesh

generation procedure to perform operations that may not

conform to the strict size but improve the overall result. See

Figure 7, right.

To incorporate the above approach to ANRR, the mesh

generated by the Parallel Optimistic Delaunay Mesh (27) at each

iteration, along with the landmarks identified by the Block-

Matching step, are used to build a metric field. The metric field

is constructed by iterating in parallel the mesh vertices and

evaluating the k-closest registration points using a k-nn search

from the VTK library (38). The minimum volume bounding

ellipsoid is constructed using the Khachiyan algorithm. Directly

using the landmarks (Figure 8B) will not yield an ellipse

centered at a mesh point. Including the mesh point into the

input of the minimum ellipsoid algorithm does not fix the issue

(see Figure 8C). Instead, one can generate reflections of the
FIGURE 9

Registration points (left), isotropic mesh (center) and adaptive anisotropic sub
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k-closest landmarks by the mesh point and include them in the

input of the minimum ellipsoid algorithm. Due to symmetry, the

mesh point will always be in the center of the constructed

ellipsoid. Finally, the mesh is adapted using MMG3D (39) using

the metric field derived from the constructed ellipsoids. Figure 9

depicts the difference between isotropic and anisotropic sup-

optimal mesh for a single case. Notice that the number of

elements generated constrains the anisotropy; it must be

approximately equal to the number of elements in the

isotropic mesh.

Table 8 presents data from two cases: (A: case 9 from

Drakopoulos et al. (24), provided by HSH (male, with glioma at

Left Frontal location of the brain, where Partial Resection is

performed, with preop-MRI and iMRI image sizes and spacing:

448 × 512 × 176 and 0.488 × 0.488 × 1.00, respectively) and (B: case

18 from Drakopoulos et al. (24), provided by HSH (female, with

glioma at Left Frontal location of the brain, where Total Resection

is performed, with preop-MRI and iMRI image sizes and spacing:

448 × 512 × 176 and 0.488 × 0.488 × 1.00, respectively).

From Drakopoulos et al. (24) and for case A, the HD error for

Rigid Registration (RR) and PBNRR (without optimal distribution

of registration points) is 10.59 mm and 10.76 mm, respectively. For

case B, the HD error for RR and PBNRR (without optimal

distribution of registration points) is 25.72 mm and 23.90 mm,

respectively. In both cases, the sub-optimal distribution within

the ANRR method reduced the error to about five to six times

compared to RR and PBNRR. While the error using specific

landmarks improved (see Table 7; see max and mean error

columns), the expert evaluation indicates that more work is

needed. So, this problem remains open and it needs to be

considered in the context of point and element outlier rejection

schemes presented in this paper.
7. Future work

While attempting to solve the combinatorial problems listed

in Section 6 with classical computing, we plan to evaluate the use

of Quantum Computing as well. Edge (or Feature) Detection

kernel is the simplest to implement on Quantum Processing
-optimal mesh (right).
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FIGURE 11

Buffer pixels of mirrored value are applied to the boundary of the overall
image (0’s for the corners, as they won’t be used). Further
decomposition is possible by adding neighboring pixels to be used as
a buffer due to QHED error. The red cells are ultimately disposed of
in the final output.
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Unites (QPUs) and along with the Block Matching (together

require about 15% of total execution time) is our next goal.

The FEM-solver which accounts for 60% of the total time

could utilize (in the future) a well-known quantum algorithm

for linear systems of equations (41). In the preliminary results.

The Quantum Hadamard Edge Detection (QHED) is a

quantum image processing algorithm that shows great promise,

as demonstrated by Yao et al. (40). However, the circuit depth of

the image encoding section of the algorithm becomes exponential

with respect to the number of qubits required for encoding,

which is a major drawback. In the future, with advancements in

quantum sensing, it may be possible to eliminate this step

altogether. For now, Noisy Intermediate-Scale Quantum (NISQ)-

era one can manage exponential memory requirements, for large

medical images (such as pre-op and intraoperative brain images)

by using an image decomposition and processing in parallel the

individual sub-images to address current qubit4 fidelity (or

decoherence) issues.

The image decomposition scheme proposed by Yao et al. (40)

can cause false edges that appear across the output image. In

addition, the use of decrement permutation in the original QHED

proposal, shown in Figure 10, requires a very large number of

multi-controlled NOT (MCX) gates, which results in an

polynomial (42) number of controlled not (CX) gates for the

mapping of the QHED circuit onto the quantum computer

hardware. In short, both the image encoding, and the edge

detection parts of the algorithm produce exponential circuit depth,

which compounds a massive loss in fidelity.

To ensure correct boundary detection, we use classical space-

filling curves commonly used in parallel numeric computations

(43) to correct the artificial edges during the pre-and post-

processing of input vectors. Figure 11 depicts our approach.

We use a linear number of ancillary qubits to reduce the number

of CX gates. We also address fidelity concerns with optimization

techniques from Ferris et al. (44) to minimize hardware noise in

both the amplitude encoding and QHED circuits.
FIGURE 10

The QHED circuit proposed in Yao et al. (40) with an ancillary qubit. The
D2
n+ 1 gate is a type of amplitude permutation that acts as a decrement

operation on the input state vector.

4Qubit, like the bit in classical computers, is the unit of storing and

processing information in quantum computing.
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Optimizing the topology and software of quantum circuits can

improve results on physical hardware. A simulated noisy backend

from IBM (45) is utilized to evaluate the results of the proposed

QHED optimizations (see Figure 12). Based on our analysis of

Figure 13, even with the optimizations we made to the original

circuit, we still need a polynomial amount of CX operations with

respect to an increasing number n of data encoding qubits. This

results in a rapid loss of fidelity for any n > 5 number of data

encoding qubits.

In summary, we have improved the Quantum Edge Detection

method (40) to generate comprehensible results on NISQ-era

hardware for our use case. We introduced new: (1) pre-and post-

processing classical steps by introducing space-filling curves and

buffer pixels to eliminate image artifacts and (2) decrement

permutation circuit, optimizations for realistic images on today’s

QPUs, and additional optimization techniques to improve circuit

fidelity and reduce the depth and the number of two-qubit operations.
FIGURE 12

The circuit proposed in Yao et al. (40) for decrementing using n+ 1
qubits require a descending series of MCX gates (top). An alternate
decrement circuit (bottom) utilizes only CX and Toffoli gates,
transpiling into a linear number of total CX gates.
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FIGURE 13

Analysis of the QHED algorithm using IBM’s backend for both the proposed (red and blue) and Yao et al. (40) circuits (black and gray lines). Each of the two
circuits is analyzed with and without full optimizations.
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8. Conclusion

We compared three outlier rejection schemes for deformable

registration of brain images. The PBNRR scheme, developed by

Clatz et al., reduces the mean average error of state-of-the-art RR

from 5.6 mm to 4.3 mm. This scheme rejects, on average, 24% of

registration points as potential outliers and takes about a minute

to complete for the cases we analyzed. The NEMNRR scheme,

developed by Liu et al., extends the PBNRR method by

considering both point and element outliers and improves the

error by an additional 0.6 mm (to 3.7 mm). This scheme

removes 28% of registration points as potential outliers and takes

six times longer to complete the registration for the same cases.

The ANRR scheme developed by Drakopoulos et al. relies on

geometric means and the PBNRR method. This combination

improves the RR error by an additional 1.1 mm (i.e., from

5.6 mm to 3.2 mm). We selected nine cases from two

retrospective studies over the last decade, using evaluations

completed by two independent groups of experts, one using 25

cases (13) and the other using 5 additional (30 total) cases (24).

The HD error analysis suggests that the outlier rejection

schemes improve the average RR error (near the tumor resected

area) from 12 mm: (i) to 8 mm for PBNRR, (ii) to 5 mm for

NEMNRR, and (iii) 3.6 mm, for ANRR5. Based on an evaluation

using the average max error metric from two groups of

independent experts, it was found that the registration accuracy

at specific landmarks improved from 8.9 mm with RR to 6.8 mm

with PBNRR, 7.7 mm with NEMNRR, and 6.5 mm with ANRR.

It is important to note that the accuracy of MRI data is
5Analysis from five additional cases indicates a further improvement from an

average 19 mm HD error to 3.6 mm (22).
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dependent on both the resolution of the images and the specific

acquisition protocol utilized (22). Varying voxel resolutions can

lead to varying accuracy.

Combining outlier rejection schemes significantly improves

registration accuracy using the HD metric. A byproduct of this

work and specifically the even sub-optimal solution of Problems

I and II, along with earlier work on the robust HD metrics (37)

has the potential to enable reliable and automatic measurement

of registration accuracy, which is vital for the development of

iterative outlier rejection schemes. Finally, emerging technologies

like Deep Learning, Cloud, and Quantum computing could be

used to determine patient-specific parameters and better

distribute and on-the-fly compute new registration points to help

reduce element outliers. Preliminary results appeared (24) and

Section 6 are promising. However, for this work to have a

clinical impact, more work is required to improve the accuracy of

cases with deep brain tumors and further validate the current

state of the software.
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Appendix I
TABLE 9 A few important parameters are used for PBNRR, NEMNRR, and
ANRR.

Parameter Value Description
Initialization
transform

Rigid Rigid transformation to initialize the
non-rigid registration

Connectivity pattern “face” Pattern for the selection of blocks

Fs 5% % selected blocks from total number of
blocks

Bs,x � Bs,y � Bs,z 3 × 3 × 3 Block size (in voxels)

Ws,x �Ws,y �Ws,z 7 × 7 × 3 (BS) Block matching window size (in voxels)

9 × 9 × 3 (PR)

13 × 13 × 3
(TR, STR)

δ 5 Mesh size (PBNRR, ANRR)

Eb 2.1 KPA Young’s modulus for brain parenchyma

Et 21 KPA Young’s modulus for tumor

vb 0.45 Poisson ratio for brain tumor and
parenchyma

Et 0.1 Poisson ratio for ventricle (NEMNRR)

Fr 25% % of rejected outlier blocks

Nrej 10 Number of outlier rejection steps

Niter, max 10 Max number of adaptive iterations
(ANRR)

TABLE 10 Parameters used in this study for rigid registration (RR) and B-
spline non-rigid registration methods implemented in 3D slicer.

Interpolation mode Linear Linear

Sampling percentage 5% 5% Percentage of image voxels
sampled for MMI

Histogram bins 100 100 Number of histogram levels

Optimizer type VR3DT LBFGSB –

Max number of
iterations

1,500 1,500 Maximum number of iterations
for optimizer

Grid size – 15 × 15 ×
15

Number of subdivisions of the B-
Spline grid

Min step length 10−3 10−3 Min threshold step for optimizer

Projected gradient
tolerance

– 10−5 Used by LBFGSB

MMI, mattes mutual information; VR3DT, versor rigid 3D transform; LBFGSB,

limited memory broyden fletcher goldfarb shannon minimization with simple

bounds.
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