
TYPE Methods
PUBLISHED 20 December 2023| DOI 10.3389/fdgth.2023.1324453
EDITED BY

Tjalf Ziemssen,

University Hospital Carl Gustav Carus,

Germany

REVIEWED BY

Sheng-Chieh Lu,

University of Texas MD Anderson Cancer

Center, United States

Beenish Chaudhry,

University of Louisiana at Lafayette,

United States

*CORRESPONDENCE

Nora Grieb

nora.grieb@medizin.uni-leipzig.de

RECEIVED 19 October 2023

ACCEPTED 05 December 2023

PUBLISHED 20 December 2023

CITATION

Grieb N, Schmierer L, Kim HU, Strobel S,

Schulz C, Meschke T, Kubasch AS, Brioli A,

Platzbecker U, Neumuth T, Merz M and

Oeser A (2023) A digital twin model for

evidence-based clinical decision support in

multiple myeloma treatment.

Front. Digit. Health 5:1324453.

doi: 10.3389/fdgth.2023.1324453

COPYRIGHT

© 2023 Grieb, Schmierer, Kim, Strobel, Schulz,
Meschke, Kubasch, Brioli, Platzbecker,
Neumuth, Merz and Oeser. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Digital Health
A digital twin model for evidence-
based clinical decision support in
multiple myeloma treatment
Nora Grieb1*, Lukas Schmierer1, Hyeon Ung Kim1, Sarah Strobel1,
Christian Schulz1, Tim Meschke1, Anne Sophie Kubasch2,
Annamaria Brioli3, Uwe Platzbecker2, Thomas Neumuth1,
Maximilian Merz2 and Alexander Oeser1

1Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany,
2Department of Hematology, Hemostaseology, Cellular Therapy and Infectiology, University Hospital of
Leipzig, Leipzig, Germany, 3Clinic of Internal Medicine C, Hematology and Oncology, Stem Cell
Transplantation and Palliative Care, Greifswald University Medicine, Greifswald, Germany
The treatment landscape for multiple myeloma (MM) has experienced substantial
progress over the last decade. Despite the efficacy of new substances, patient
responses tend to still be highly unpredictable. With increasing cognitive burden
that is introduced through a complex and evolving treatment landscape, data-
driven assistance tools are becoming more and more popular. Model-based
approaches, such as digital twins (DT), enable simulation of probable responses to
a set of input parameters based on retrospective observations. In the context of
treatment decision-support, those mechanisms serve the goal to predict
therapeutic outcomes to distinguish a favorable option from a potential failure. In
the present work, we propose a similarity-based multiple myeloma digital twin
(MMDT) that emphasizes explainability and interpretability in treatment outcome
evaluation. We’ve conducted a requirement specification process using scientific
literature from the medical and methodological domains to derive an
architectural blueprint for the design and implementation of the MMDT. In a
subsequent stage, we’ve implemented a four-layer concept where for each layer,
we describe the utilized implementation procedure and interfaces to the
surrounding DT environment. We further specify our solutions regarding the
adoption of multi-line treatment strategies, the integration of external evidence
and knowledge, as well as mechanisms to enable transparency in the data
processing logic. Furthermore, we define an initial evaluation scenario in the
context of patient characterization and treatment outcome simulation as an
exemplary use case for our MMDT. Our derived MMDT instance is defined by 475
unique entities connected through 438 edges to form a MM knowledge graph.
Using the MMRF CoMMpass real-world evidence database and a sample MM
case, we processed a complete outcome assessment. The output shows a valid
selection of potential treatment strategies for the integrated medical case and
highlights the potential of the MMDT to be used for such applications. DT models
face significant challenges in development, including availability of clinical data to
algorithmically derive clinical decision support, as well as trustworthiness of the
evaluated treatment options. We propose a collaborative approach that mitigates
the regulatory and ethical concerns that are broadly discussed when automated
decision-making tools are to be included into clinical routine.
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Introduction

Personalized treatment approaches in
multiple myeloma: the role of digital twin
(DT) models

The treatment landscape for multiple myeloma (MM) has

experienced substantial progress over the last decade. The

development of multiple novel agents with different mechanism

of actions, targeting both the myeloma cell and its

microenvironment has significantly improved patients’ survival.

Due to the availability of multiple drugs and drug combinations,

therapy can be decided in an individualized approach, based on

disease and patient’s characteristics.

Complexity of the disease
The choice of treatment can vary significantly based on several

factors, including whether the patient has recently been diagnosed,

is a candidate for a stem-cell transplant, is dealing with relapsed/

refractory multiple myeloma (RRMM), is considered to be at

high risk due to the nature of his or her disease or has

significant comorbidities. Each of these scenarios may require a

different approach to treatment decision-making (1). Due to the

fact that MM is still an uncurable disease, many patients receive

five or more therapy lines in the course of their treatment

journey (2). Taken together, various patient scenarios and the

need for multiple lines of therapy make treatment decision in

MM a multifaceted and challenging task.

Characterization depth
A good understanding of underlying disease mechanisms

is crucial to the development of digital twins (DT).

Furthermore, DT models heavily rely on substantial amounts

of high-quality data. MM affects approximately 588,000

people worldwide each year, and accounts for 1% of all

cancers and about 10% of all hematologic malignancies,

making it the second most frequent hematological cancer (3,

4). Given its significance within these statistics, MM

warrants comprehensive characterization and understanding,

as well as extensive collections of patient data, medical

records, molecular, and imaging data.

Treatment landscape
The treatment landscape of MM has evolved significantly over

the last decades. Choosing the right medications for patients and

determining the optimal timing and sequencing of these drugs is

a complex task. It involves deciding which drugs to use, when to

use them, and whether they should be administered in a specific

order or combined together (1). Established and novel regimens

are multifaceted and include alkylators, steroids, proteasome

inhibitors (PIs), immunomodulatory drugs (IMiDs), histone

deacetylase inhibitors (HDACi), monoclonal antibodies (mAbs),

antibody-drug conjugates (ADCs), bispecific T-cell engagers

(BiTEs), chimeric antigen-T-cell therapy (CAR-T), peptide-drug

conjugates, selective inhibitors of nuclear export (SINEs) and
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small-molecule targeted therapy (5, 6). These agents are either

used as single therapies or can be combined to doublet, triplet or

quadruplet regimens and can be used as induction before

autologous stem cell transplantation (ASCT), as continuous

treatment or at the time of relapse (5). The diverse range of MM

treatments presents a multitude of clinical scenarios that cannot

be adequately addressed by a single standardized approach (7)

and reflect the requirement for tailored approaches to meet the

specific needs of individual patients.
Applications and challenges of DTs in
precision medicine

DTs are applied for different purposes in the field of healthcare,

from the strategic organization of hospitals and processes to

creating digital twins of patients to personalize medical care (8).

In the following, we focus on patient-based applications, due to

the fact that requirements and challenges for each high-level use-

case vary significantly. In the overarching context of precision

medicine, the goal of DT models is to enhance medical

diagnostics, prognostics, treatment, and ultimately contribute to

the overall improvement of a patient’s well-being (9). Across

different fields, a variety of models in every degree of maturity

have been proposed. The field DTs have been studied broadest is

cardiovascular disease, targeting issues from endovascular repair,

hypertension and heart failure to electrophysiology. The models

include data from EHRs, clinical and demographic data in

general, imaging data, as well as electrocardiographic and

tomographic databases. With methods from numerical analysis to

deep neural networks and readiness levels from computational

models and proof-of-concepts to semi-active DTs, the field is

rapidly emerging (10). In the field of cancer, Filippo et al. have

proposed a framework that integrates single-cell RNAseq data to

set up digital metabolic twins (11). Additionally, roadmaps to

DT development have been proposed by Angulo et al., who

described a collaborative artificial intelligence (AI) and expert-

based approach to personalized medicine in the field of lung

cancer and Meraghani et al. proposed an DT approach for breast

cancer detection using temperature data collected from portable

devices (12, 13). Focusing on real-time applications, Zhang et al.

developed a DT that serves as a monitoring system of elderly fall

based on a vision sensor and a deep learning algorithm to model

data on posture and behavior (14). Further DT models have been

developed in the fields of multiple sclerosis (MS), Alzheimer’s

disease, nutrition, diabetes and orthopedics (15–22).

Since 2010, the development and publication of DTs in

healthcare has risen exponentially. Nevertheless, the realization

of clinical translation is still in its infancy, limiting the

achievements of DTs in practice to date (23). Technical

challenges in the development of DTs include the lack of

individualized assessment and accuracy of validations, the

scarcity of high-quality data, as well as the heterogeneity of data

from multiple sources. In addition, ethical considerations include

concerns of bias in AI models, as well as data privacy and safety

regulations (23, 24).
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Methodological and technological
prerequisites

Lakoff et al. argue that the term “experience” isn’t synonymous

with memory but instead the characterization of immediate,

repetitive sensorimotor interactions with the surroundings,

embodying a continual action (25). This repetition sustainably

impacts the shape of functional neuron groups in the brain,

leading to formation of patterns. In the context of clinical

decision-making, this aligns with the procedure of recalling

previous situations (derived from that pattern) that appear

similar or familiar for the task at hand. However, the depth of

such patterns is tied to an individual and thus, limited in its

scale and granularity. Furthermore, while this behavior is

considerably useful for common decision-making tasks, it

becomes largely useless for rare or unforeseeable complex

scenarios. One mechanism of overcoming uncertainty in such

uncommon scenarios is the referral to observations made and

reported by others, such as clinical trials or, more precisely,

clinical case reports. In this way, learnings previously derived by

others can be adapted to a present decision-making problem.

At scale, such aggregation and integration of observations enables

the formation of a knowledge graph that represents a certain state of

knowledge about a defined subject (26) using a mathematical graph

as the underlying structure. Based on this representation, various

functions can be subsequently implemented, such as the targeted

search for evidence (27) or the ability to draw conclusions through

the utilization of inference mechanisms (28). Especially recently, and

due to significant methodological and technological achievements,

such as in the field of machine learning (ML), new solutions and

applications are continuously being established, which transfer

valuable assistance into clinical routine (29, 30).

Referring to the first concept of the twin concept, introduced in

the NASA Apollo program, replicas of the actual spacecraft were

built to mirror its characteristics and functionalities and thus,

enable simulation, training and scenario planning, i.e., in case of

emergency (31). Following the definition proposed by Barricelli

et al., we define DT as a computer-based model that simulates,

emulates, mirrors and is therefore “twinning” the life of a

physical entity to continuously predict future statuses (32). To

specify further, Boulos et al. defined key concepts of human

digital twins and stated that different DT types can be defined in

the sense that DTs can be created for the whole body, a body

function, organ or for a specific disorder. DT instances are copies

of a DT belonging to the same individual for the use of in silico

testing. DT levels define the degree of abstraction the model

holds and a DT thread is the definition of the data pipeline over

time (9). We transferred those concepts to create a dynamic

model starting from time of diagnosis (thread) and based on

clinical routine data (level) to simulate treatment (instances) in

the field of MM (type). While in medicine, generating an exact

copy of a patient or a disease is impossible to achieve, DTs can

be based on specialized knowledge bases (or knowledge graphs)

which, depending on their inherent quality and validity, are able

to, i.e., simulate the behavior of cells and associated interactions
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to improve drug development (24). As such, the concept of a DT

is embedded in a data model alongside an associated environment

for interaction, distribution, and management.

The consideration of possible approaches to treating a patient is

essentially based on a cognitive simulation of an expected outcome

by the treating physician. In this process, considering the risk-

benefit ratio is crucial, as invasive therapies bring both short-

and long-term implications for the patients. Therefore, the

potential of a DT in this context lies in the parallel evaluation of

viable scenarios with respect to one or more outcome factors.

Related approaches, analogous to clinical trials, primarily

consider long-term endpoints such as overall survival (OS),

progression-free survival (PFS) (33) or targeted aspects like the

response of specific biomarkers (34). Stühler et al. developed a

solution for outcome simulation of multiple endpoints in

therapies against MS using Hierarchical Bayesian General Lineral

Models, emphasizing factors of therapeutic effiectiveness, e.g.,

number of relapses and disability porgression, but not the

associated invasiveness (35).

In this work, we describe a framework for multi-perspective

evaluation of therapy success using a DT. We therefore aim to

identify overarching concepts that help overcome the challenges

involved in DT development and on that basis propose a model

that levels with the digitization and automation readiness of

clinical routines. The goal is to make sure that each suitable

treatment for a patient is considered and the physician is

supported in the comparison of individualized implications for

each option. Our solution emphasizes the consideration of

multiple parallel endpoints related to therapy-based implications as

well as the adaptation of the underlying process to better suit

chronic diseases with multiple lines of therapies. We have

implemented our approach in the realm of MM patient

stratification and therapeutic outcome evaluation, since the disease

features a high degree of diagnostic granularity as well as a diverse

range of applicable treatment options. Although the proposed

solutions and findings refer exclusively to MM, they are intended

to be generalizable for other diseases and clinical use-cases.
Methods

In the first step, we performed a requirement analysis to define

the overarching concepts that should be implemented in the

MMDT. Therefore, we initiated a literature search, focused on the

assessment of the state of the art regarding DT concepts and

implementations. We further emphasized results targeting severe

or chronic pathological conditions. The resulting methodological

and architectural design was developed in alignment to our findings.
Methodological and architectural concepts

The underlying architecture of our MMDT consists of four

dedicated layers: (1) entity description, (2) entity network (3)

formal logic and (4) real-world evidence (see Figure 1).
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FIGURE 1

Schematic overview on the layer-based architecture of the MMDT involving dedicated entities for observed (i.e., hemoglobin) and calculated (i.e.,
anemia) parameters as well as the causal connections among them in a network-based structure. On the edges of the network, logical operators
are used to represent the formal rulesets between connected entities. The resulting evaluation (e.g., for an integrated clinical case) can then be
used for subsequent tasks or associated systems such as clinical decision-support systems.
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Within the entity description layer, we defined and formalized

clinical parameters (referred to as entities) associated with the

characterization of MM patients and the application as well as

evaluation of therapeutic regimens. Patient characterization

includes demographic data, medical history, clinical observations,

laboratory reports, medical imaging reports, genetic data, as well

as treatment history. We further specified each parameter with a

dedicated value set, using predefined classes or ranges associated

with corresponding units, i.e., for laboratory findings. Every

entity was then translated into a Health Level 7 (HL7) FHIR

resource, enabling sustainable interoperability and alignment with

leading medical coding systems (LOINC and SNOMED-CT) to

further ensure terminological consistency.

Additionally, a classification regarding the respective entity

type was made. Possible states included “observed” if the

associated value can be derived directly from a patient, treatment

or process, i.e., a person’s age or the name of a substance, or

“calculated” if it is the result of a processing step based on one

or multiple observations, i.e., the presence of hypercalcemia or

the class of the International Scoring System (ISS) (36).

The individual entities were then put into context using a

dedicated network layer. This entity network features the entity

descriptions as nodes, as well as their causal relationships based

on the evaluation of medical evidence, i.e., clinical practice

guidelines (CPG), peer-reviewed scientific publications, medical

textbooks. We implemented our entity network using the

resource description framework (RDF) with the Terse RDF

Triple Language (TURTLE) for rendering a graph-based layout

for subsequent expert-based validation.

Following network implementation, we selected all entities of

type “calculated” and implemented dedicated logic modules

(referred to as operators) which contain a rule-set to derive the

respective categorical (i.e., ISS) or numeric (i.e., Charlson-

Comorbidity-Index) output (36, 37). While those operators are
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technically independent functions, they are designed to form a

nested structure to align with the network environment

(see Figure 2). Thus, they are implemented in a recursive fashion

in which each operator is performing an input evaluation

procedure to make sure that all required values (either based on

observed data or the output of a previous operator) are available.

If not, the corresponding precursive operators are triggered to

provide the required results.

We first determined the overarching picture about what aspects

should be represented in the MMDT knowledge base, as shown in

the workflow diagram (Figure 3). In the case of a chronic disease

such as MM, an initial diagnosis of the disease is followed by

iterative cycles of treatment and disease staging to observe

therapeutic efficacy and the duration of positive treatment effects.

We therefore first examined clinical factors associated with the

evaluation of treatment success. Knowing that those outcome

factors are dependent on a variable treatment entity, we then

carefully examined the clinical practice guidelines (Onkopedia

and Onkowissen) to derive the influential factors directly

associated with the allocation of specific treatment strategies (i.e.,

patient condition) as well as the prerequisites of the MM

diagnosis and staging (i.e., CRAB and SLiM criteria). Since those

direct dependencies do not represent observable values but rather

multifactorial scoring systems, we have consulted the original

sources which defined and evaluated those entities in the first

place. Following this procedure, we iteratively checked the

dependencies of each entity in our network (i.e., the presence of

anemia as a condition of CRAB) until only observable values are

defined as the input of an operator. If this was the case, then no

further logic needed to be introduced as all influential factors

could be directly derived from clinical findings and reports.

While the deterministic nature of clinical scoring systems, i.e.,

performance, prognostic or evaluation scores, allowed for the use of

rulesets for calculation and thus, patient stratification, this
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FIGURE 2

The recursive structure of the operators enables them to await dependent inputs from the output of other operators. In the shown sample case, the
CRAB criteria, apart from the focal bone lesion observation, can only be assessed once the output of the anemia, renal insufficiency and
hypercalcemia operators becomes available. The operator thus triggers the calculation of those entities first before any internal processing is made.
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characteristic does not apply to the task of outcome simulation.

Therefore, baseline information about the documented clinical

outcomes of MM patients is required in order to build a

fundamental knowledge base about the quantitative expressions

between cause (patient characteristics) and effect (therapeutic

outcome). In the case of DT-based applications offering clinical

decision-support (CDS), the definition of characteristics for

treatment efficacy can be conceived as endpoints which need to

be closely aligned with the actual clinical process to ensure that

the corresponding measurements or observations are part of

routine diagnostics. Emphasizing the fact that the goal of MM

therapy cannot be defined by a single metric, multiple endpoints

in combination should cover the multi-perspective facets, e.g.,

reduction of disease burden as well as the risk for significant

adverse events. Thus, we selected a set of meaningful endpoints

to define what discriminates a good therapy option from a

suboptimal one. The following selected and defined endpoints

mirror a direct reaction to a specific line of treatment to assess

context-dependent treatment success.

Remission
The 2006 International Myeloma Working Group (IMWG)

criteria provide a standardized and internationally accepted way

of comparing clinical treatment response (38). The criteria are

commonly used in clinical trial design, to guide treatment

decision making, to monitor treatment progression and to

predict prognosis and are therefore utilized as an important

endpoint in the DT model. In treatment strategies that include
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ASCT, this endpoint is assessed after induction therapy as well as

after transplantation.

Time to next treatment
Time to next treatment (TTNT) is defined as the number of

days from the start of an initial treatment to the start of the

subsequent treatment. This provides an objective and quantifiable

measure that follows the rationale, that the extension of the

associated time period indicates that the treatment in question

has effectively controlled the disease and slowed its progression.

Many cancer treatments can be physically and emotionally

cumbersome for patients, so in addition to being a clinical

outcome measure, this endpoint acts as an additional proxy

indicator for a patient’s quality of life.

Adverse events
Considering the risk for significant adverse events, it is

particularly important to assess the benefit-risk-ratio before any

treatment application. The best responses in MM treatment are

achieved with rather invasive treatments which are not suitable

for frail patients. Consequently, a personalized evaluation of

harmful side effects is crucial to guarantee treatment safety.

Quality of life
Addressing one important aspect of VBHC, quality of life

measurements centering around a patient’s well-being and focusing

on individual perception of a disease’s implications gain in

significance. By incorporating the results of quality of life
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FIGURE 3

Workflow diagram mapping the process generating the MMDT knowledge base. Worksteps associated with manual evidence assessment are depicted
in red, while translational steps are shown in dark blue. Associated events (gray) at the beginning and end of the process are directly tied to the RWE
database (light blue).
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questionnaires, the patient’s perspective can be included in clinical

decision-making processes. Nowadays, those metrics are commonly

part of clinical trial protocols but usually not of routine disease

monitoring. In our MMDT, we incorporated the endpoint based on

two validated questionnaires filled out by the patient: the EORTC

QLQ-C30 and the EORTC QLQ MY20, that assess quality of life in

cancer patients in general and particularly in MM, respectively (39,

40). In the scope of our implementation, the endpoint is defined as a

comparison to patients in the same treatment stage based on

retrospective data.
Early mortality
In treatment strategies that include ASCT, early mortality,

defined as the death of a patient within 100 days after the

intervention, is a clear indicator for personalized risk assessment.

Thus, the respective endpoint contributes further to the benefit-

risk-ratio assessment associated with MM therapy decision-making.

Alongside the specification of patient and outcome

characteristics, attributes of the available treatment options

(drugs or interventions such as ASCT or cell therapy) need to be

considered as well. In utilizing the MMDT as an assistance tool

in therapeutic decision-making, the major aim is to link specific

treatments or the combination of multiple substances to the
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associated outcomes. To enable a consistent procedure of data

processing within the MMDT, we defined each therapeutic

option as a dedicated entity in the network and represented

deterministic aspects between patient and treatment

characteristics as operators. Thus, we were able to model

potential conflicts and integrate those into an instantiated output,

e.g., the exclusion of options from the list of therapeutic

regimens when the patient is known to be refractory against a

contained substance. Finally, we also included similar procedures

to include relevant process information, i.e., observations derived

from previous therapy lines. Thus, the MMDT is able to

conclude that a specific option is eligible for continued patient

application based on previously observed outcome criteria in

combination with their temporal assignment.
Implementation and initial evaluation
process

As an architectural concept, the MMDT can be adapted to any

kind of model, analysis, or clinical decision support system (CDSS),

since it inherits a formal description about knowledge associated

with MM and can be connected to a database with the associated
frontiersin.org
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TABLE 1 Definition of the similarity-defining features and application to the defined endpoints.

Endpoint specific twin cohort based on similarity measure

Patient
characteristics

Similarity
measure

Remission TTNT QOL AE EM

Age Fitness yes yes yes yes yes

ECOG

CCI

t(4;14) High-risk
cytogenetics

yes yes no no yes

t(14;16)

del(17p)

gain(1q21)

t(14;20)

Albumin ISS yes yes no no yes

Beta-2-Microglubuline
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RWE to allow for quantitative outcome assessments. In the work at

hand, we describe an approach for patient characterization and

therapy decision support as well as its practical implementation.

While the manifestation of the MMDT describes the entirety of

conditions, an instantiation can be defined as a snapshot of one

particular patient state in the context of a specific therapy line.

The goal is to compare therapy options from different

perspectives and assess their associated benefits and risks. To do

so, treatment response and disease course for a specific patient is

simulated through a twin cohort derived from an RWE database.

The hypothesis is that the considered patient is expected to have

a comparable reaction to proposed therapy regimens as the

identified retrospective cases that were considered to be similar.

The definition of similarity-defining features as well as the

corresponding thresholds that need to be respected are stored in

configuration profiles which allow for intuitive expert-based

validation. To account for incomplete data, we defined proxies for

certain entities. As an example, the Eastern Cooperative Oncology

Group (ECOG) performance status was used interchangeably with

the Karnofsky index to assess the functional status of patients.

More broadly, an overall fitness measure was introduced that, in

addition, also considers age and comorbidities, scored through the

Charlson-Comorbidity-Index (CCI).

To initially derive those constraints, we utilized CPGs and expert-

based evaluations. Our approach relies on the identification of

dedicated cohorts for each endpoint to account for known

differences in outcome assessment based on a specific characteristic.

For example, the similarity cohort for remission is based on

cytogenetic high-risk assessment, while the cohort definition for

quality of life assessment is not constrained on that characteristic. In

contrast, fitness affects both response rates and quality of life and is

therefore considered a defining factor in either one of the similarity

cohorts (see Table 1). In this manner, the augmented patient

profiles are matched with the RWE database according to the

similarity constraints defined in the configuration profiles. As a

result of the twin cohort identification for each endpoint, a set of

medical cases with the chosen therapeutic approach and

corresponding documented outcome is returned. Through an

analysis of the observed outcome states, a probability distribution

for each categorial endpoint is calculated and summarized to obtain

a quantitative outcome assessment over a range of possible
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treatment strategies. The TTNT measure is calculated as the mean

days in the respective similarity cohort. In addition, warnings and

conflicts are calculated based on matching the patient’s profile to

information on guideline- and expert-based recommendations,

known side effects and severe adverse events. For example, if a dose

reduction for patients with renal insufficiency is recommended and

a patient’s lab results report creatinine levels above the reference

range, a warning is inferred. Finally, we consolidate the CPG-based

assessment to label the presented options as either CPG-compliant

or off-label strategies.

To demonstrate the implementation regarding patient

stratification and therapeutic outcome simulation, we have

constructed a representative RWE database based on first line

treatments from the Multiple Myeloma Research Foundation

(MMRF) CoMMpass dataset. CoMMpass is a prospective,

longitudinal, observational study of newly diagnosed MM patients

(41). To align with the specifications of the MMDT, we first

identified and extracted all contained items associated with either

patient-, disease-, process- or outcome-related characteristics and

mapped them to the previously defined entity network.

Subsequently, we have monitored the documented treatment

landscape of the CoMMpass dataset and excluded cases that (1)

featured (potentially outdated) therapeutic strategies which are not

included in the current CPGs (42, 43) and (2) had incomplete

outcome parameters according to our endpoint specification. We

then generated a treatment evaluation scenario for an exemplary

MM patient (see Table 2) to obtain first insights about the

reasoning mechanics of the MMDT.
Results

Initial requirements regarding the MMDT

The need for modularity
Significant advances have been made in biology, prognosis and

therapy for MM patients in recent years. The growing number of

treatment options, for both newly diagnosed and relapsed/refractory

cases, has made the clinical landscape increasingly complex (7).

With various new therapeutic options being studied, the landscape

is expected to continuously evolve (6). Consequently, a MMDT
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TABLE 2 Exemplary MM patient characteristics with derived the similarity
measure as defined in Table 1.

Patient
characteristics

Exemplary MM
patient

characteristics

Similarity
measure

Examplary
MM patient
similarity
measure

Age 55 Fitness fit

ECOG 0

CCI 2

t(4;14) no High-risk
cytogenetics

no

t(14;16) no

del(17p) no

gain(1q21) no

t(14;20) no

Albumin 3.1 g/dl ISS 2

Beta-2-
Microglubuline

3.3 mg/L
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must be constructed in a modular way, so that it can be easily updated

andvalidated to stayup-to-date to the fast-changing clinical landscape.
Robust handling of data
Data gaps frequently pose a significant barrier when obtaining

the best insights from clinical data (44). In addition, while

randomized controlled trials (RCT) provide in-depth evidence for

specific interventions, integrating real-world evidence (RWE)

from a variety of sources is recognized as valuable for

comprehensive healthcare decision-making (45). As a result, it is

crucial for the MMDT to demonstrate robust capabilities in data

management and handling. This includes the proficiency of

handling incomplete data, incorporating RWE and RCTs, as well

as datasets including evidence collected in a different treatment era.
Consideration of the patient perspective
Due to the chronic course of the disease, it is crucial to study

how treatments affect MM patient’s lives beyond extending

survival times. Being exposed to different lines of therapy, patients

can face a high symptom burden, increased cumulative toxicities

and a poor health-related quality of life (46). Consequently, the

MMDT should encompass multiple endpoints, including a focus

on value-based healthcare (VBHC) by measuring outcomes from a

patient perspective.
Traceability of reasoning mechanisms to ensure
transparent results

To enhance trust in the system, it is recommended to minimize

“black box” elements in data-driven applications and to guarantee

that internal mechanisms of models are explained to users (47).

Moreover, studies have indicated that users tend to overly

depend on a system’s recommendation, even when those are

incorrect. It is suggested that providing explanations may help

mitigate unwarranted trust and reliance in the system (48). As a

result, we require the MMDT to prioritize transparency,

explainability and interpretability and offer corresponding visual

feedback to ensure optimal human result evaluation.
Frontiers in Digital Health 08
Development results

In the entity description layer, our MMDT instance consists of

475 unique entities, either referring to patient, disease, treatment or

process characteristics. The entity network features 438

connections among those entities to form the knowledge graph.

While those specifications relate to a formal description of the

MM context, only a subset is required for application in practical

tasks such as clinical decision support or patient characterization.

Referring to our initial evaluation scenario, targeting a treatment

outcome simulation for MM patient in a first-line therapy, 23

observations and 17 logical operators are required to infer the

respective medical scoring systems, while 10 factors and 3

operators are then applied to the subsequent patient stratification

(see Table 2).

Due to the internal connections, specified in the entity network

and technically implemented in the operator modules, each

instantiation of the MMDT automatically creates a procedural

pathway that enables traceability of the performed information

processing, i.e., output of operator A was inserted into the

calculation of operator B which then led to the derivation of

factor C as a preliminary or final result to the original request

(see Figure 4).

Instantiation with a RWE database needs to align with specific

requirements that are crucial to ensure valuable results. This

includes the consideration of only validated evidence as well as

the availability of obligatory values to perform the similarity

search. While missing or sparse data is a constant issue in the

medical domain, associated measures have been implemented in

the MMDT to mitigate the issue. Considering the selection of

similarity-defining metrics, fitness and high-risk cytogenetics

each depend on multiple factors. In the case of fitness, both

values, ECOG and CCI, are aimed to express the physiological

status of a patient to characterize his or her ability to tolerate

invasive treatment. In this scenario, the presence of one of those

factors would be sufficient to allow for inferring a valid output.

The same is true for high-risk cytogenetics where the detection

of one out of five chromosomal aberrations would be enough to

justify a high-risk label. However, in this particular scenario, the

MMDT would not conclude the absence of the high-risk state

based on incomplete data but only its presence.

Regarding the instantiation of the MMDT for treatment

outcome simulation with the connected CoMMpass RWE

database and the exemplary MM patient case, we were able to

process a complete outcome assessment based on the previously

introduced procedures. The output provides evidence on two

common MM treatment regimens: Bortezomib, Lenalidomide,

Dexamethasone (VRD) and Bortezomib, Cyclophosphamide,

Dexamethasone (VCD). Both were assessed in combination with

ASCT due to the unimpaired overall condition of the test patient

(see Table 2). Further, the MMDT found evidence about

subsequent maintenance therapies with either Bortezomib,

Lenalidomide or Ixazomib. Using the input provided, the

MMDT was able to correctly infer the patient characteristics

based on the integrated operator logic, leading to a valid
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FIGURE 4

Sankey plot of the instantiated MMDT for patient characterization. Observed entities (left) are integrated into the operators to perform calculations
based on their internal logic (middle), The pre-processed data is then utilized to perform therapeutic outcome simulation (right) using a similarity
cohort from the RWE database.
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selection of therapeutic options according to the corresponding

CPG. Further, a representative distribution of potential outcomes

has been derived (see Figure 5), showing improved results with

the VRD regimen, which also represents a more current

approach in first-line MM treatment. Emphasizing on

accountability, the described MMDT does not flag one therapy

option as ideal but leaves the final decision to the physician.

Thus, he or she can interpret the merit of each option by

individually assessing the influences each outcome assessment

might have on the final treatment decision.
Discussion

With the proposed MMDT model we presented an approach

closely aligned to the clinical practice, transitioning the concept

to a practical application. We recognize that further research and

work is needed to close the gap between the complexity of the

disease and the MMDT as described. As discussed subsequently,

several aspects can be additionally considered in future

implementations.

Due to our layer-based approach, we’ve achieved a high level of

modularization, further refined within the intra-layer architecture,

i.e., through the implementation of nested operators. This was

identified as a key characteristic in the DT development:
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modularity makes sure that changes in one module do not affect

other modules (32). In the ever-evolving clinical domain this

feature is especially important. In this way, we were also able to

ensure sustainable maintenance of the underlying knowledge

base, as new entities and their corresponding logic can be easily

integrated and connected with the existing network through the

mere specification of input and output dependencies. For

example, if new evidence on a treatment is introduced, it is

highly important that the DT features this update timely and low

in effort. Especially in treatment facilities that do not have the

capacities to always stay up-to-date with the latest research in a

rapidly evolving entity as MM, this directly improves patient

care. This approach further enabled effective validation, as both

automated testing procedures as well as expert-based evaluation

can be handled on a single-unit level. However, besides the

advantages targeting modularization and transparency, the

procedure also introduces significant overhead as a single change

to the overarching knowledge base triggers a modification of

several components within the architecture. In addition, a DT

system requires high levels of maintenance not required in a

highly specialized CDSS system (49). Thus, a higher potential for

errors is introduced. The need for synchronization between all

layers is especially relevant at the interface between the actual

MMDT instance and the RWE database. Since the entities need

to exactly align with the documented keys and defined values,
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FIGURE 5

Illustration of the outcome simulation assessment through the MMDT. After the similarity cohort has been identified in the RWE database, the
recorded endpoints are used to calculate the distribution of the observed outcome states. In the overview, the state with the highest percentage
is displayed. In the associated details, the full distribution is presented. Furthermore, labels are used to show the state of approval, i.e., based on a
CPG, or potential conflicts.
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each violation would exclude the whole RWE case from

consideration in the outcome simulation process.

Another obstacle lies in the consolidation of large high-quality

clinical datasets. Clinical data is often fragmented across

institutions and systems. Privacy regulations limit sharing of
Frontiers in Digital Health 10
patient data between healthcare providers further complicating

the consolidation of large datasets. Apart from regulatory

obstacles, healthcare providers follow different guidelines and

protocols in diagnostics and treatment. These variations occur on

an international level, but even on national, regional and
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institutional level. Depending on local clinical practice guidelines,

healthcare financing, regulatory bodies, institutional policies,

center size and resources as well as level of innovation, the local

standards for treating similar cases vary significantly. Moreover,

clinical data is often documented in an unstructured or semi-

structured manner that leads to the need for heuristic approaches

in the data harmonization process. In the DT model at hand,

interoperability standards were introduced to overcome

challenges in clinical data heterogeneity within and across

institutions. We were further able to enhance data

interoperability through the implementation of the HL7 FHIR

standard for entity specification, nevertheless notable limitations,

such as generalization have been reported (50). In the process of

mapping the MMDT entities into FHIR profiles, we found that

the pre-defined high-maturity resources suitable to address the

requirements of a highly specialized domain like MM have to be

complemented with numerous custom profiles to fully specify all

entities. The described approach overcomes several exclusion

reasons of certain types of data such as clinical trials or datasets

that feature outdated therapeutic strategies. Even though the

choice of treatment might not have been deliberate (e.g.,

randomized trials) or optimal, the signal about a therapy’s

efficacy for an individual is still valuable and interpretable. In

general, the more data can be included in the model, the higher

the number of patient characteristic permutations and

consequently, the higher the level of precision in the evaluation.

In the future, DT models will greatly benefit from the

introduction of electronic health records (EHR), enabling

improved data sharing and interoperability. The definition of a

DT can feature the requirement of data exchange in real time

between the physical entity (patient) and the virtual copy (51). A

possibility of real-time updating of a patient’s profile would

improve the accuracy of therapy decision support models.

Additionally, automatic data synchronization would provide

further incentive for health care providers to use a system that

does not require manual data entry.

An optimal DT model would include all variables that are

relevant to MM pathogenesis. Especially with the progress of

multi-omics techniques, this leads to models of immense

proportions and the corresponding computational challenges. To

date, there is a wide gap between this complexity of MM and

routine health care, making the integration and exploitation of

vast amounts of data an ongoing challenge (52). Nevertheless,

examining the gene expression patterns is widely regarded as a

highly reliable method for investigating various aspects of a cell,

including its identity, current condition, function and response

(53). Genomic analyses of tissue samples from myeloma patients

have shown that MM represents a spectrum of hematological

entities with extensive tumor heterogeneity. Multiple layers of

this complexity have already been studied in multi-omics

settings, including inter- and intra-patient diversity, disease state,

relapse status, treatment response and spatial heterogeneity in

bone disease (54–60). Results comprehensively highlight the need

for profiling clonal heterogeneity and molecular processes

associated with MM at each development stage (61). Creating a

holistic DT model for MM should therefore integrate multi-
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omics data in the future to address the disease’s intricate

inherent complexity. Another potential data source presents

digital phenotyping, which is defined as “moment-by-moment

quantification of the individual-level human phenotype in-situ

using data from smartphones and other personal digital devices”

(62). This automated and objective data collection about lifestyle,

physiological state and environment can then be combined and

support other data sources to reach the goal of personalized

medicine (62, 63).

Besides technical challenges, there are ethical aspects that need

to be considered. It is crucial to be aware of the possible

introduction of bias reflected in multiple aspects when designing

a DT model. First, bias can be introduced if the data used to

create the basis for the model is not a diverse representation of

patients in terms of age, gender, race, ethnicity, and other

demographic factors. Furthermore, potential bias can be added

when collecting clinical data from a limited number of medical

centers or within specific healthcare systems. In addition,

algorithms simply learn from persisting and uncorrected bias in

the healthcare system, reflecting human biases. For example, if an

algorithm suggests a group of patients are more likely to choose

aggressive care at the end of life, this might be based on

historical care patterns that might not apply to an individual

patient’s or family’s treatment preferences (64). In most models,

the fit of the majority population is more significant to the

overall error than the fit to the minority population (65). This

poses a challenge, even if the data underlying the model perfectly

fits the averaged metrics of the disease’s demographic. As an

example, MM is mainly characterized by advanced age and has a

higher prevalence in men than in women (42), resulting in a

very low representation of young females in a representative

dataset. This is true for a wide variety of demographic and

clinical factors and must be kept in mind when constructing a

twin model based on real-world data. A general approach to

address these issues is that enhancing transparency greatly

facilitates bias detection and improves comprehension of a

program’s erroneous decisions (66, 67).

In recent years, many tools that replicate medical specialists’

performance have been developed and can provide guidance in

all fields of clinical decision making. Nevertheless, stakeholders

have broadly stated that CDSS should not replace but merely

support doctors in decision making. Clinicians’ issues around

trust and trustworthiness were identified as control and liability.

It was emphasized that it is crucial that clinicians have the final

responsibility to make decisions regarding diagnosis and

treatment. Evidently, an automatization in the proposed setting

would not be feasible, consequently the proposed CDSS leaves

the physician 100% in control. In consequence, this design

choice is not optional in the sense that only a system trusted in

by physicians can make a positive impact on a patient’s

treatment in the first place. The second major issue refers to

medical errors and liability in a sense that if a doctor’s decision

diverged from the CDSS recommendation (68). Our model

addresses this strongly by not designating a single therapy as the

best choice but instead grants the physician the authority to

make a decision based on all information available. In summary,
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our collaborative approach mitigates the regulatory and ethical

concerns that are broadly discussed when automated decision-

making tools are to be included into clinical routine. To date, the

MMDT is implemented as an isolated service to be utilized on

request, but next development steps include the integration into

existing clinical infrastructures.

To pilot test the model, several key aspects need to be considered

to ensure its effectiveness, safety and reliability. In this sense, it is

important to highlight the different objectives of the MMDT

system and the associated RWE database. While the major goal of

the system is to perform valid and useful processing of the

incoming data, the inherent value of the database is based on its

ability to reflect an objective representation of the patient and

treatment landscape regarding MM. Only in this way, the selected

similarity cohorts can provide clear signaling towards therapeutic

outcome assessment. Thus, an evaluation procedure targeting the

value of the data-driven assumptions is only possible once the

utilized RWE is able to align with those requirements. However,

certain features of the MMDT can be tested independently of the

quality of the dataset, this includes user feedback on visualization

and presentation of results as well as interoperability with different

types of clinical information systems. All aspects of the CDSS, as

well as triggered conflicts and warnings need to be tested for

correctness. Future users should further evaluate the usefulness of

the system in terms of saving time in clinical routines and the

potential of improving treatment courses and patient care in general.
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