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Clinical text and documents contain very rich information and knowledge in
healthcare, and their processing using state-of-the-art language technology
becomes very important for building intelligent systems for supporting
healthcare and social good. This processing includes creating language
understanding models and translating resources into other natural languages
to share domain-specific cross-lingual knowledge. In this work, we conduct
investigations on clinical text machine translation by examining multilingual
neural network models using deep learning such as Transformer based
structures. Furthermore, to address the language resource imbalance issue, we
also carry out experiments using a transfer learning methodology based on
massive multilingual pre-trained language models (MMPLMs). The
experimental results on three sub-tasks including (1) clinical case (CC), (2)
clinical terminology (CT), and (3) ontological concept (OC) show that our
models achieved top-level performances in the ClinSpEn-2022 shared task on
English-Spanish clinical domain data. Furthermore, our expert-based human
evaluations demonstrate that the small-sized pre-trained language model
(PLM) outperformed the other two extra-large language models by a large
margin in the clinical domain fine-tuning, which finding was never reported in
the field. Finally, the transfer learning method works well in our experimental
setting using the WMT21fb model to accommodate a new language space
Spanish that was not seen at the pre-training stage within WMT21fb itself,
which deserves more exploitation for clinical knowledge transformation, e.g.
to investigate into more languages. These research findings can shed some
light on domain-specific machine translation development, especially in
clinical and healthcare fields. Further research projects can be carried out
based on our work to improve healthcare text analytics and knowledge
transformation. Our data is openly available for research purposes at:
https://github.com/HECTA-UoM/ClinicalNMT.

KEYWORDS

Neural machine translation, clinical text translation, multilingual pre-trained language

model, large language model, transfer learning, clinical knowledge transformation,

Spanish-English translation
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2024.1211564&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fdgth.2024.1211564
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1211564/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1211564/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1211564/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1211564/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1211564/full
https://github.com/HECTA-UoM/ClinicalNMT
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2024.1211564
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


1https://codalab.lisn.upsaclay.fr/competitions/6696
2This paper reports systematic investigation findings based upon the

preliminary work from (28–30)

Han et al. 10.3389/fdgth.2024.1211564
1 Introduction

Healthcare Text Analytics (HECTA) have gained more

attention nowadays from researchers across different disciplines,

due to their impact on clinical treatment, decision-making,

hospital operation, and their recently empowered capabilities.

These developments have much to do with the latest

development of powerful language models (LMs), advanced

machine-learning (ML) technologies, and increasingly available

digital healthcare data from social media (1–3), and discharged

outpatient letters from hospital settings (4–6).

Intelligent healthcare systems have been deployed in some

hospitals to support clinicians’ diagnoses and decision-making

regarding patients and problems (7, 8). Such usages include key

information extraction (IE) from electronic health records

(EHRs), normalisation to medical terminologies, knowledge

graph (KG) construction, and relation extraction (RE) between

symptoms (problems), diagnoses, treatments, and adverse drug

events (9, 10). Some of these digital healthcare systems can also

help patients self-diagnose in situations where no General

Practitioners (GPs) and professional doctors are available (11, 12).

However, due to the language barriers and inequality of digital

resources across languages, there is an urgent need for knowledge

transformation, such as from one human language to another

(13, 14). Thus, to help address digital health inequalities, machine

translation (MT) technologies can be of good use in this case.

MT is one of the earliest artificial intelligence (AI) branches

dating back to the 1950s, and it has gained a boom with other

natural language processing (NLP) tasks in recent years due to

the newly designed powerful learning model Transformers

(15–18). Several attention mechanisms designed in Transformer

deep neural models are proven to be capable of better learning

from a large amount of available digital data compared to

traditional statistical and neural network-based models (19–21).

In this work, we investigate the state-of-the-art Transformer

based Neural MT (NMT) models regarding clinical domain text

translation, to facilitate digital healthcare and knowledge

transformation with the workflow drawn in Figure 1. Being

aware of some current development in the competition of

language model sizes in NLP field, we set up the following base

models for comparison study: (1) a small-sized multilingual pre-

trained language model (s-MPLM) Marian, which was developed

by researchers at the Adam Mickiewicz University in Poznan and

at the NLP group in University of Edinburgh (22, 23); and (2) a

massive-sized multilingual pre-trained LM (MMPLM/xL-MPLM)

NLLB, developed by Meta-AI covering more than 200 languages

(13). In addition to this, we set up a third model to investigate

the possibility of transfer learning in the clinical domain MT: (3)

the WMT21fb model which is another MMPLM from Meta-AI

but with a limited amount of pre-trained language pairs

including from English to Czech, German, Hausa, Icelandic,

Japanese, Russian, and Chinese, and the opposite (24).

The testing language pairs of these translation models in our

work are English $ Spanish. There aren’t other language pairs

of openly available resources in the clinical domain MT as far as
Frontiers in Digital Health 02
we know. We use the international shared task challenge data

from ClinSpEn2022 “clinical domain Spanish-English MT 2022”

for this purpose.1 ClinSpEn2022 was a sub-task of the

BioMedical MT track at WMT2022 (25). There are three

translation tasks inside ClinSpEn2022 including (i) clinical cases

report; (ii) clinical terms, and (3) ontological concepts from the

biomedical domain.

Regarding the evaluation of these LMs, we used the evaluation

platform offered by ClinSpEn2022 shared task including several

automatic metrics such as BLEU, METEOR, ROUGE, COMET.

However, the automatic evaluation results did not give apparent

differentiation between models on some tasks. Furthermore, there

are issues like in-consistency regarding model ranking across

automatic metrics. To address these issues and give a high-

quality evaluation, we carried out an expert-based human

evaluation step on three models using outputs of Task one

“clinical case report”.

Our experimental investigation shows that (1) the extra-large

MMPLM does not necessarily win the small-sized MPLM on

clinical domain MT via fine-tuning; (2) our transfer-learning

model works successfully for clinical domain MT task on

language pairs that were not pre-trained upon but using fine-

tuning. The first finding can shed some light on the research

field that in clinical domain-specific MT, it is worthy to carry

out more work on data cleaning and fine-tuning rather than

building extra large LMs. Our second finding tells us the

capability of MMPLMs in generating a new language pair

knowledge space for translating clinical domain text even though

this language pair was unseen in the pre-training stage with our

experimental settings. This can be useful to low-resource NLP,

such as the work by (26, 27).2

The rest of this article is organised as below: Section 2. surveys

the related work to ours including clinical domain MT and

NLP, large LMs, and transfer learning. Section 3. details the three

LMs we deployed for comparison study. Section 4. introduces the

experimental work we carried out and automatic evaluation

outcomes. Section 5. follows up with expert-based human

evaluation and the results. Finally, Section 6. concludes our work

with discussion.
2 Related work

Applying NLP models to clinical healthcare has attracted much

attention of many researchers, such as the work on disease status

prediction using discharged summaries by Yang et al. (31),

temporal expressions and events extraction from clinical narratives

using combined methods of rules and machine learning by

Kovačević et al. (32), using knowledge-based and data-driven
frontiersin.org
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FIGURE 1

Illustration of the Investigation Workflow.
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methods for de-identification task in clinical narratives by Dehghan

et al. (33), systematic reviews on clinical text mining and healthcare

by Spasic et al. (5) and Elbattah and Dequen (34), etc.

However, using MT to help translate clinical text for

knowledge transformation and help clinical decision-making is

still a rising topic (14), even though it has been proven to be

useful in the history for assisting health communication especially

with post-editing strategies (35). This is partial because of the

sensitive domain and high risk in clinical settings (36). Some of

the recent progress on using MT for clinical text includes the

work by Soto et al. (37) which leverages SNOMED-CT terms

(38) and relations for MT between Basque and Spanish

languages, Mujjiga et al. (39) which applies NMT model to

identify semantic concepts in “abundant interchangeable words”

in clinical domain and their experimental result shows NMT

model can greatly improve the efficiency on extracting UMLS

(40) concepts from a single document by using 30 milliseconds

in comparison to traditional regular expression based methods

which takes 3 seconds, and Finley et al. (41) which uses NMT to

simplify the typical multi-stage workflow on clinical report

dictation and even correct the errors from speech recognition.

With the prevalence of multilingual PLMs (MPLMs) developed

from NLP fields, it becomes a current need to test their

performances in the clinical domain of NMT. MPLMs have been

adopted by many NLP tasks since the first emergence of the

Transformer based learning structure (16). Among these, Marian

is a small-sized MPLM led by Microsoft Translator based upon

Nenatus NMT (42) with around 7.6 million parameters (22).

Then, different research and development teams have been

competing on the size of their LMs in recent years, e.g. the

massive MPLMs (MMPLMs) WMT21fb and NLLB by Meta-AI

which have the number of parameters set of 4.7 billion and 54

billion respectively (24, 13). To investigate the performances of

these different models with varied model sizes towards clinical

domain NMT with fine-tuning, we set up all these three models

as our base models. To the best of our knowledge, our work is

the first one regarding the comparison between small-size and

extra-large MPLMs in the clinical domain of NMT.

Very close to the clinical domain, there has been a biomedical

domain MT challenge series together held with the Annual

Conference of MT (WMT), since 2016 (43, 44). The historical

biomedical MT task covered a corpus of biomedical terminologies,
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scientific abstracts from Medline, summaries of proposals for

animal experiments, etc. In 2022, it was the first time that this

Biomedical-MT shared task introduced clinical domain data for

Spanish-English language pairs (25).

As the WMT21fb model does not include Spanish in its pre-

training, we also examine the transfer learning technology into the

clinical domain NMT towards Spanish-English using the

WMT21fb model. Transfer-learning (45) has proved useful for text

classification and relation extraction (46, 47), and low-resource MT

(48) fields. However, to the best of our knowledge, we are the first

to test clinical domain NMT via transfer learning using MMPLMs.
3 Experimental designs

In this section, we introduce more details about the three

MPLMs that we investigate in this work, i.e., Marian (22),

WMT21fb (24), and NLLB (13).
3.1 Multilingual Marian NMT

Firstly, we draw a training diagram of the original Marian

model on its pre-training steps in Figure 2 according to (22).

The pre-processing step includes tokenisation, true-casing, and

Byte-Pair Encoding (BPE) for sub-words. The shallow training is

to learn a mid-phase translation model to produce temporary

target outputs for back-translation. Then, the back-translation

step produces the same amount of input source sentences to

enlarge the corpus. The deep-training step first uses four left-to-

right models which can be RNN (42) or Transformer (16)

structures, which is followed by four right-to-left models in the

opposite direction. The ensemble-decoding step will generate the

n-best hypothesis translations for each source input segment,

which will be re-ranked using a re-scoring mechanism. Finally,

in Marian NMT, there is an automatic post-editing step

integrated before producing the output. This step is also based

on an end-to-end neural structure by modelling the set(MT-

output, source sentence)!“post-edited output” as introduced by

Junczys-Dowmunt and Grundkiewicz (49).

The Marian NMT model we deployed is from the Language

Technology Research Group at the University of Helsinki led by
frontiersin.org
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FIGURE 2

Marian Pre-Trained NMT - Training Pipeline.
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Tiedemann and Thottingal (50) which is based on the original

Marian model but continuously trained on the multilingual

OPUS corpus (51) to make the model available to broader

languages. It includes Spanish$English (es$en) pre-trained

models and has 7.6 million parameters for fine-tuning.3
FIGURE 3

Several Attention based Transformer NMT structure (16).
3.2 Extra-large multilingual WMT21fb and
NLLB

Instead of the optional RNN structure used in the Marian model,

both massive-sized multilingual PLMs (MMPLMs) WMT21fb and

NLLB adopted Transformer as the main methodology. As shown in

Figure 3, Transformer’s main components for encoder include

position encoding, Multi-Head Attention, and Feed-Forward

Network with layer normalisation at both two steps. The decoder

uses Masked Multi-Head Attention to constrain the generation

model only taking the already generated text into account.

To increase the model capacity without making the extra-large

model too slow for training, inspired by the work from Lepikhin et al.

(52), the WMT21fb model included “Sparsely Gated Mixture-of-

Expert (MoE)” models into the FFN layer of Transformer, as shown

in Figure 4. The MoE model will only pass a sub-set of model

parameters into the next level, thus decreasing the computational

cost. However, this dropout is done in a random manner.

Furthermore, this structure design still needs language-specific

training, such as English-to-other and other-to-English used by

WMT21fb.

To further improve on this, the NLLB model designed a

Conditional MoE Routing layer inspired by Zhang et al. (53) to

ask the MoE model to decide which tokens to dropout according

to their capacity demanding or routing efficiency. This is

achieved by a binary gate, which assigns weights to dense FNN

FFNshared or MoE Gating, as in Figure 5. The Conditional MoE

also removes language-specific parameters for learning.

In summary, the WMT21fb and NLLB models share very

similar learning structures, but most differently WMT21fb used
3https://huggingface.co/Helsinki-NLP
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language-specific constrained learning. The WMT21fb model we

applied is ‘wmt21-dense-24-wide.En-X’ (and X-En direction)

which has 4.7 billion parameters4 and contains the language

pairs English $ Chinese, Czech, German, Hausa, Icelandic,

Japanese, and Russian. The full NLLB model includes 200+
4https://github.com/facebookresearch/fairseq/tree/main/examples/wmt21
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FIGURE 4

original dense Transformer (left) vs MoE Transformer (right) (13).
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languages and has 54.5 billion parameters. Due to the

computational restriction, we applied the distilled model of

NLLB, i.e. NLLB-distilled, which has 1.3 billion parameters.

The WMT21fb model does not have Spanish in the trained

language pairs, while NLLB includes Spanish as a high-resource
FIGURE 5

MoE vs Conditional MoE (13).

Frontiers in Digital Health 05
language. This is a perfect setting for us to examine the

transfer-learning technology on the clinical domain NMT by

fine-tuning a translation model for the Spanish language on

the WMT21fb model and comparing the output with the

NLLB model (Spanish version).
4 Experimental settings and
evaluations

4.1 Domain fine-tuning corpus

To fine-tune the three MPLMs for English$ Spanish language

pair towards the clinical domain, we used the medical bilingual

corpus MeSpEn from Villegas et al. (54), which contains

sentences, glossaries, and terminologies. We carried out data

cleaning and extracted around 250K pairs of segments on this

language pair for domain fine-tuning of the three models. These
frontiersin.org
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TABLE 1 Automatic Evaluation of Three MPLMs using ClinSpEn-2022 Platform. ‘plm.es’ means if the Spanish language is included in PLMs.

MT fine-tuning plm.es SACREBLEU METEOR COMET BLEU ROUGE-L-F1

Task-I: Clinical Cases (CC) EN!ES
Clinical-Marian Yes 38.18 0.6338 0.4237 0.3650 0.6271

Clnical-NLLB Yes 37.74 0.6273 0.4081 0.3601 0.6193

Clinical-WMT21fb No 34.30 0.5868 0.3448 0.3266 0.5927

Task-II: Clinical Terms (CT) EN ES
Clinical-Marian Yes 26.87 0.5885 0.9791 0.2667 0.6720

Clinical-NLLB Yes 28.57 0.5873 1.0290 0.2844 0.6710

Clinical-WMT21fb No 24.39 0.5840 0.8584 0.2431 0.6699

Task-III: Ontology Concept (OC) EN!ES
Clinical-Marian Yes 39.10 0.6262 0.9495 0.3675 0.7688

Clinical-NLLB Yes 41.63 0.6072 0.9180 0.3932 0.7477

Clinical-WMT21fb No 40.71 0.5686 0.9908 0.3859 0.7199

Han et al. 10.3389/fdgth.2024.1211564
extracted 250K pairs of segments are random from the original

MeSpEn corpus and we divided them into a 9:1 ratio for training

and development purposes. Because the WMT21fb pre-trained

model did not include Spanish as one of the pre-trained

language model, we could not use , 2es . (to-Spanish)

indicator for fine-tuning. As a solution, we used , 2ru . as the

indicator for this purpose (to-Spanish). This means a transfer

learning challenge to investigate if the extra-large multilingual

PLM (xL-PLM) WMT21fb has created a semantic space to

accommodate a new language pair for translation modelling

using the 250K size of corpus we extracted.
5https://temu.bsc.es/clinspen/
4.2 Model parameter settings

Some parameter settings for s-MPLM Marian model fine-

tuning are listed below. The last activation function for the

generative model is a linear layer. Within the decoder and

encoder, we used the Sigmoid Linear Units (SiLU) activation

function. More detailed parameter and layer settings are

displayed in Appendix Figure A1.

• learning rate ¼ 2e� 5

• batch size ¼ 128

• weight decay �0:01
• training epochs ¼ 1

• encoder-decoder layers ¼ 6þ 6

Some fine-tuning parameters for NLLB-200-distilled (13) are listed

below:

• batch size ¼ 24

• gradient accumulation steps ¼ 8

• weight decay ¼ 0:01

• learning rate ¼ 2e� 5

• Activation function (encoder/decoder) ¼ ReLU

• number of training epochs ¼ 1

• encoder-decoder layers ¼ 24þ 24

The fine-tuning parameters for WMT21fb model are the same as

the NLLB-200-distilled, except for the batch size value which is

set as 2. This is because the model is too large that we get out-

of-memory (OOM) errors if we increase the batch size larger
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than 2. More details on M2M-100 parameters and layer settings

for Conditional Generation Structure (55) we used for xL-MPLM

WMT21fb and NLLB-200 can be found in Appendix Figure A2.
4.3 Test sets and automatic evaluations

The evaluation corpus we used is from the ClinSpEn-2022

shared task challenge data organised as part of the Biomedical MT

track in WMT2022 (25). It has three sub-tasks: (1) EN!ES

translation of 202 COVID19 clinical case reports; (2) ES!EN 19K

clinical terms translation from biomedical literature and EHRs;

and (3) EN!ES 2K ontological concept from biomedical ontology.

The automatic evaluation metrics used for testing include BLEU

(HuggingFace) (56), ROUGE-L-F1 (57), METEOR (58), SACREBLEU

(59), and COMET (60), hosted by the ClinSpEn-2022 platform.5 The

metric scores are reported in Table 1 for three translation tasks. In the

table, the parameter ‘plm.es’ is a question mark asking if the Spanish

languagewas already included in the original off-the-shelf PLMs. For

this question, both Marian and NLLB have Spanish in their PLMs,

while WMT21fb does not, which indicates that Clinical-WMT21fb

is a transfer learning model for EN$ES language pair.

From this automatic evaluation result, firstly, it is surprising

that the much smaller-sized Clinical-Marian model won most of

the scores across three tasks, indicated by italic font. Secondly,

for two xL-MPLMs, even though the transfer-learning model

Clinical-WMT21fb has a certain score gap to Clinical-NLLB on

Task-1, it almost catches up with Clinical-NLLB for Task-2 and

3 even winning one score, the COMET for Task-3 (0.9908 vs

0.9180). This means the xL-MPLM has the capacity to create a

multilingual semantic space and the capability to generate a new

language model as long as there is enough fine-tuning of the

corpus for this new language. Thirdly, there are issues with

automatic metrics. This includes the confidence level on score

difference (significance test), such as the very closely related
frontiersin.org
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TABLE 2 Model Comparisons on 3 Tasks between Clinical-Marian and
Others.

Models SACREBLEU METEOR COMET BLEU ROUGE

Task-1: Translating Clinical Cases
Clinical-Marian 38.17 0.6337 0.4237 0.3650 0.6270

Optum 38.12 0.6447 0.4425 0.3642 0.6285

Task-2: Clinical Terminologies
Optum 44.97 0.5880 1.1197 0.4396 0.7479

Huawei 41.57 0.624 1.190 0.4132 0.721

Clinical-Marian 39.10 0.6261 0.9494 0.3674 0.7688

Task-3: Translating Ontology Concepts
Optum 44.97 0.5880 1.1197 0.4396 0.7479

Clinical-Marian 39.10 0.6261 0.9494 0.3674 0.7688

Han et al. 10.3389/fdgth.2024.1211564
scores for Task-1 on the first two winner models. In addition, the

winner models change across Task-2 and 3 via different metrics.

We also observed that there are 4 percent of Russian tokens in

the EN ! ES output from Clinical-WMT21fb model. This

indicates that the model keeps Russian tokens when it does not

know how to translate the English token into Spanish. This is

very interesting since the Russian tokens reserved in the text are

not-nonsense, instead, they are meaning correct tokens, just in a

foreign language. This might be the reason why COMET

generated higher score for Clinical-WMT21fb model than

Clinical-NLLB on Task-3 ‘ontological concept’, since COMET is

a neural metric that calculates the semantic similarity on an

embedding space, ignoring the word surface form.

To improve the trustworthiness of our empirical investigation

and generate more clear evaluation output across three models,

we carry out human expert-based evaluations in the next section.
4.4 Comparisons

To compare our much smaller sized clinical-Marian model

with other existing work on this shared task data, such as Optum

(61) and Huawei (62), we list the automatic evaluation scores in

Table 2 where Optum attended all three sub-tasks, while Huawei

only attended Task II: Clinical Terminology (CT). From the

comparison scores using automatic metrics, we can see that much

smaller-sized Clinical-Marian wins some metrics in each of the

tasks. In addition, Optum used their in-house clinical data as extra

training resources in addition to WMT offered training set, while

the 250K training set we used for Clinical-Marian is extracted only

using WMT data. Huawei’s model only wins one metric (COMET)

out of five metrics on Task-2 (CT), however, both Clinical-Marian

and Optum wins two metrics out of five. So there is not much

better performance from Huawei on this task even though they

have much more online resources and computational support.
6The 100 examples for evaluators were randomly selected from the

test dataset.
5 Human evaluation

As observed in the last section, there are two motivations for us

to set up the expert-based human evaluation: (1) it is really
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surprising that the much smaller-sized MPLM (s-MPLM)

Clinical-Marian wins the xL-MPLMs Clinical-NLLB and Clinical-

WMT21fb; (2) to verify the hypothesis from automatic

evaluation that Clinical-Marian really performs the best.
5.1 Human evaluation setup

To achieve both qualitative and quantitative human evaluation,

we deployed a human-centric expert-based post-editing quality

evaluation metric called HOPE by Gladkoff and Han (63) (it is

also called LOGIPEM invented from Logrus Global LLC, a

language service provider). HOPE evaluation metric has 8

predefined error types and each error type has corresponding

different levels of penalty points according to the severity level.

The sentence level and system level HOPE score is a

comprehensive score reflecting the overall quality of outputs.

Firstly, we recruited 5 human evaluators who have

backgrounds as professional translators, linguists, and biomedical

researchers. For the evaluation data set, we take all the test set

output from Task-1 ‘clinical case’ reports since this is the only

task with full sentences. For the other two tasks on term and

ontology level translation, MT engines can perform relatively

good outcomes even without an effective encoder-decoder neural

model, e.g. via a well prepared bilingual dictionary. We prepared

100 strings for each set and delivered all the sets to 5

professional evaluators.6 The tasks consisted of strings of medical

cases going in order one by one, so the context of each case was

clear to the evaluator.

Firstly, each one of them was given three files for evaluation

from different engines, and instructions were given on both the

online Perfectionist tool to be used for evaluation and the HOPE

metrics. To ensure the human evaluation quality, we have also

asked the strictest reviewer/evaluator to validate the work from

other evaluators. The strictest reviewer is one of our specialists

from the language service provider industry and has our trust

according to their long term experiences in post-editing MT

outputs and selecting MT engines in real world projects. The

strictest reviewer gave better distinctions among all three

evaluated models, while the less-strict reviewers sometimes gave

similar scores to these models without picking their errors strictly.
5.2 Human evaluation output

The results of the evaluation can be seen in the online

Perfectionist tool used, as downloaded from the tool in the form

of the familiar Excel scorecards. They are tallied in Figure 6 and

Table 3. The human evaluation result clearly shows which model is

the best with large score gap in-between, i.e. the Clinical-Marian
frontiersin.org
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FIGURE 6

Comparison of Automatic Evaluations against Human Evaluation (HOPE).

TABLE 3 Automatic Evaluations vs Human Evaluations (HOPE) on Three MPLMs

MPLMs Auto. Metrics Average Diff. in scores

METEOR ROUGE Averge(M,R) HOPE Auto. HOPE
Clinical-Marian 0.6338 0.6271 0.6304 0.8016 6.45% 13.62%

Clnical-NLLB 0.6273 0.6193 0.6233 0.7681 1.13% 4.18%

Clinical-WMT21fb 0.5868 0.5927 0.5898 0.6924 5.38% 9.85%
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with score 0.801625, followed by Clinical-NLLB and Clinical-

WMT21fb with scores 0.768125 and 0.692429 respectively.

To compare the human evaluation outputs with the automatic

metric scores, we also added two metrics into the figure, i.e.

METEOR and ROUGE, and the average score of these two

metrics. The reason we choose these two is that they have a

relatively positive correlation to human judgements. For the

other three metrics, firstly, BLEU shows NLLB as better for

terms and concepts, which does not correspond to human

judgement. More than that, BLEU shows WMT21fb concepts to

be better than the Marian Helsinki model, which is completely

incorrect. Secondly, COMET score for the NLLB model is higher

than 1, which is clearly caused by the fact that this

implementation of COMET was not normalised by the Sigmoid

function. Also, this COMET score for NLLB is higher than the

one for Marian Helsinki. Another error is that the COMET score

for clinical cases is much better than for both Marian and NLLB,

which is completely impossible due to the presence of foreign

language tokens in WMT21fb output. Finally, when we see

COMET scores like 0.99 and 0.949 for Concepts, the score 0.42,

0.40 and 0.34 for Cases look evidently out of whack. BLEU-HF

scores for all content types are ridiculously low on the scale of

[0, 1] for both Cases and especially for Terms.

We have some findings from the comparisons.

• Most importantly, all human evaluators consistently showed

positive correlation with preliminary human judgement of the

MT output quality. Some of them were stricter than the
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others, but all of them rated the worst model as the worst and

the best model as the best with only one exception. Results of

human evaluation fully confirm the initial hypothesis about

the quality of outputs of different engines, which is based on

initial holistic spot-check human evaluation.

• LOGIPEM/HOPE metric shows the difference in the quality

much bigger than any of the automated metrics. Where the

automatic score shows 6 percent difference, human evaluation

gives 14 percent. In other words, human linguists see the

significant difference between the output quality of different

engines very clearly. Even less trained evaluators show a

positive correlation with the hypothesis.

• Even for those automatic metrics which correlate with human

judgement, the score values do not seem to be representations

of the uniform interval of [0, 1]. LOGIPEM/HOPE score will

be exactly 1 if the segments, in reviewer’s opinion, do not

have to be edited, and LOGIPEM/HOPE score 0.8 means only

about 20% of work left to be done on the text with that score,

since LOGIPEM/HOPE scoring model is designed with

productivity assumptions in mind for various degrees of

quality. COMET or ROUGE score 0.6 means that MT

generated words different from those in the reference, this

means that a perfect translation which is different from the

reference would be rated much lower than 1. This is a huge

distortion of linearity, which is metric-specific because all

scores for different metrics live in their own ranges.

Automatic scores appear to live on some sort of non-uniform

scale of their own, which is yet another reason why they are
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not comparable to each other. The scale is compressed, and the

difference between samples becomes statistically insignificant.

• Themargin of error for all three engines is about 6%, which is about

the same as the difference between mean of the measurements for

different engines. This means that the difference between

measurement is statistically significant, but a lot depends on the

subjectivity of the reviewer, and the difference between reviewers’

positions may negate the difference in scores. However, even

despite the subjectivity of the reviewers, groups of measurements

for different engines appear to provide the statistically and

visually significant difference.

• In general, human evaluators are to be trained / highly

experienced, and need to maintain a certain level of rigour.

The desired target quality should be stipulated quite clearly by

customer specifications, as defined in ISO 11669 and ASTM

F2575. To avoid incorrect (inflated) scores and decrease Inter-

Rater Reliability (IRR), linguists must be tested prior to doing

evaluations, or cross-validated.

• One evaluation task only takes 1 hour. There were 24 evaluation

tasks in total, each task with 100 segments. It does not require

setting up any data processing, software development,

reference “golden standard” data or model-trained evaluation

metric, it is clearly faster, more economical and reliable than

research on whether automatic metric even pass the positive

correlation test with human judgement (3 out of 5 did not in

our case). While individual human measurements have

variance, they are all valid, all correlate with human

judgement if done with minimal training and rigour.

• Automatic metrics cannot be comparable across different

engines, different data sets, different languages and different

domains. On the contrary, human measurement is a golden

universal ruler which provides the least common denominator

between these scenarios. In other words, if Rouge is 0.67 for

En-Fr for medical text, and Rouge is 0.82 for En-De for

automotive text, we can’t compare these numbers. In contrast,

LOGIPEM/HOPE score would mean one and the same thing

across the board.

All of the above confirms the validity and interoperability of our

human evaluation using LOGIPEM/HOPE metrics, which can be
FIGURE 7

Summary of Human Expert-Based Evaluations.
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used as a single quick and easy validator of automatic metrics,

ultimate fast and easy way to carry out analytic quality

measurement to compare the engines and evaluate the quality of

translation and post-editing.
5.3 Inter-rater-reliability

To measure the inter-rater-reliability (IRR) of the human

evaluation we carried out, in Figure 7, we summarise the

evaluation output from five human evaluators on three models.

The summaries include the average scores for each model, the

score difference between these three models, and the average

scores from the three models, from each person.

In this case we have continuous ratings (ranging from 0 to 1)

rather than categorical ratings. Therefore, Cohen’s Kappa or

Fleiss’ Kappa are not the most appropriate measures for this

work. The Intraclass Correlation Coefficient (ICC) which

measures the reliability of ratings by comparing the variability of

different ratings of the same subject to the total variation across

all ratings and all subjects would also not be appropriate here

because there is a greater variation within the ratings of the same

MT engine than between different MT engines.

However, we can compute standard deviations of the

evaluations by different reviewers for each engine as follows:

• Marian: approximately 0.101

• NLLB: approximately 0.100

• WMT21: approximately 0.125

These values represent the amount of variability in the ratings

given by different reviewers for each engine. The confidence

intervals for these measurements for confidence level 80% are:

• Marian: approximately (0.759, 0.875)

• NLLB: approximately (0.729, 0.844)

• WMT21: approximately (0.658, 0.802)

In other words, with 80% confidence:

• Marian: 0.817 + 0.058

• NLLB: 0.7865 + 0.0575

• WMT21: 0.73 + 0.072
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FIGURE 8

Confidence Intervals of Three Models (M, N, W): Clinical-Marian, Clinical-NLLB, and Clinical-WMT21fb.
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This can be visualised in Figure 8. These intervals indeed overlap;

however, Marian is reliably better than NLLB, and it is of course

extremely surprising that WMT21fb rating is that high,

considering that this result has been achieved with transfer

learning by fine-tuning the engine without English-Spanish in

the original PLM training dataset! As we can see, for some

reviewers who are quite tolerant to errors (e.g. Evaluator-1) the

quality of all the engines is almost the same. The more proficient

and knowledgeable the reviewer is, the higher is the difference in

their ratings.
FIGURE 9

Task-1 Cases/Sentences EN-ES Translation Examples: clinic-WMT21fb vs cl
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5.4 Error analysis

We list sampled error analyses on the outputs from the fine-

tuned WMT21fb and NLLB models in Figures 9–11 for the three

tasks on translations of sentences, terms, and concepts. The

preferred translations are highlighted in green colour and “both

sounds ok” is marked in orange.

From the comparisons of sampled output sentences, we

discovered that the most frequent errors in a fine-grained

analysis include literal translations, oral vs written languages,
inic-NLLB.
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FIGURE 10

Task-2 Clinical Term ES-EN Translation Examples: clinic-WMT21fb vs clinic-NLLB.
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translation inconsistency, inaccuracy of terms, hallucination/made-

up words, and gender-related errors such as feminine vs masculine,

in addition to the standard fluency and adequacy that have been

commonly used by traditional MT researchers (64). For instance,

in Figure 9, the first two sentences (line 0 and 1) from the

clinical-WMT21fb model are more written Spanish than the

clinical-NLLB model which outputs are more oral Spanish.

However, line 6 from the clinical-WMT21fb model includes the

words “fuertes” which means “strong” that is not as accurate as

“severas/severe” from the other model. In addition, “de manana”

in the same line is less natural than “matinal” from clinical-

NLLB. Regarding gender-related issues, we can see the examples

also in line 6, where clinical-WMT21fb produced “el paciente” in

masculine while clinical-NLLB produced “la paciente” in

feminine. However, the source did not say what gender is “the

patient”. Regarding literal translation examples, we can see in

Figure 11, line ont-19 shows that clinical-WMT21fb gives more

literal translation “Mal función vesical” than the preferred one

“Función vesical deficiente” by clinical-NLLB when translating

“Poor bladder function”. The neural model output hallucinations

can also be found in Figure 11, e.g. “Vejícula” does not exist and

it is like a mix of “vejiga” and “vesicula” in Line ont_27;
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similarly, in Line ont_2, “multicística” is a mix of Spanish and

English, because the correct Spanish shall be “multiquística”.

As we mentioned in Section 4., there are 4% Russian tokens in

the English-to-Spanish translation outputs from the Clinical-

WMT21fb model which can be observed in Figures 9 and 11.

However, they are meaningful tokens instead of nonsense, e.g.

the Russian tokens in Figure 9 from line_n 4 means “soon” and

in Figure 11 means “type of” from ont_11.
6 Discussions and conclusions

To boost the knowledge transformation for digital healthcare

and make the most knowledge out of available clinical resources,

we explored the state-of-the-art neural language models

regarding their performances in clinical machine translation. We

investigated a smaller-sized multilingual pre-trained language

model (s-MPLM) Marian from the Helsinki NLP group, in

comparison to two extra-large MPLM (xL-MPLM) NLLB and

WMT21fb from Meta-AI. We also investigated the transfer-

learning possibility in clinical domain translation using xL-

MPLM WMT21fb. We carried out data cleaning and fine-tuning
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FIGURE 11

Task-3 Concept EN-ES Translation Examples: clinic-WMT21fb vs clinic-NLLB.
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in the clinical domain. We evaluated our work using both

automatic evaluation metrics and human expert-based evaluation

using the HOPE (63) framework.

The experiment also leads to very far-reaching conclusions

about MT models and their design, test, and applications:

(1) The bigger model does not mean that the quality is better.

This premise proved to be false, evidently because

researchers need vast amounts of data to train very large

models and very often such data is not clear enough. On the

contrary, when we clean the data very well for fine-tuning,

we can bring the model quality much higher in specific

domains, e.g. clinical text. We reached the point when the

data quality was more important than the model’s size.

One key takeaway for researchers and practitioners from this

point is that if it is possible to get 250,000 clean segments in a

new low-resource language, it is capable of fine-tuning large

language models (LLMs) and get a good enough engine in

this language. Then, the next step is to continue to get clean

data by post-editing translation output from that engine. This

is a very important conclusion for “low resource languages”.

(2) Automated metrics deliver an illusion of measurement – they

are a good tool for iterative stochastic gradient descent during
Frontiers in Digital Health 12
training, but they do not measure quality (only some sort of

similarity), are not compatible when any of the underlying

factors change, provide results on a non-uniform scale even

on their interval of validity, in general are not sufficiently

reliable, and may be misleading. We can’t rely on automatic

metrics alone. Instead, human translation quality validation

is a must and such validation can deny and reverse the

results of automatic measurement.
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Appendix
FIGURE A1

MarianNMT Fine-Tuning Parameters: Encoder and Decoder with 6þ 6 Layers.
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FIGURE A2

M2M-100 Model Structure For Conditional Generation: Encoder and Decoder Parameters with 24þ 24 Layers.
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