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Computational audiology (CA) has grown over the last few years with the
improvement of computing power and the growth of machine learning (ML)
models. There are today several audiogram databases which have been used
to improve the accuracy of CA models as well as reduce testing time and
diagnostic complexity. However, these CA models have mainly been trained
on single populations. This study integrated contextual and prior knowledge
from audiogram databases of multiple populations as informative priors to
estimate audiograms more precisely using two mechanisms: (1) a mapping
function drawn from feature-based homogeneous Transfer Learning (TL) also
known as Domain Adaptation (DA) and (2) Active Learning (Uncertainty
Sampling) using a stream-based query mechanism. Simulations of the Active
Transfer Learning (ATL) model were tested against a traditional adaptive
staircase method akin to the Hughson-Westlake (HW) method for the left ear
at frequencies v = 0.25, 0.5, 1, 2, 4, 8 kHz, resulting in accuracy and reliability
improvements. ATL improved HW tests from a mean of 41.3 sound stimuli
presentations and reliability of +9.02 dB down to 25.3+ 1.04 dB. Integrating
multiple databases also resulted in classifying the audiograms into 18
phenotypes, which means that with increasing data-driven CA, higher
precision is achievable, and a possible re-conceptualisation of the notion of
phenotype classifications might be required. The study contributes to CA in
identifying an ATL mechanism to leverage existing audiogram databases and
CA models across different population groups. Further studies can be done for
other psychophysical phenomena using ATL.
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1 Introduction

The World Health Organisation (WHO) estimates that more than 5% of the world’s

population, approximately 430 million people, currently have a degree of hearing loss and

require rehabilitation (1). The WHO further estimates that by 2,050, 2.5 billion people will

have a degree of hearing loss with 700 million requiring rehabilitation. While the challenge

of hearing loss is more common in low- to middle-income populations, the traditional

assessment of hearing is not easily accessible to these populations because it is time-

consuming and expensive.

Computational audiology (CA) has been shown to make hearing assessment more

accessible (2) by for example, reducing diagnostic time from hours to a few minutes with

significantly fewer stimuli presentations (3, 4), assessing both ears simultaneously (5),
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making distinctions at finer frequencies and intensity levels (6, 7) or

even conducting assessment on a mobile phone without the aid of an

audiology expert (5, 8, 9).

Nonetheless, CA has been slow to gain clinical acceptance (2)

despite the cost, access and time limitations with traditional

pure-tone audiometry (PTA). Other limitations of diagnostic

tests include instances where some patients have received normal

hearing results yet experience hearing loss (10), and errors

especially in bone conduction tests (11).

One of the other advantages that CA brings is the ability to

augment existing PTA diagnostic tests with other additional

factors in audiogram estimation such as altitude, tympanogram

data, otoscopic images, gender, age, medication history, noise

exposure and many others, to result in precision audiology at

low cost, reduced time and at a scale that will meet the demands

of society with increasing hearing loss challenges (1). For

example, Cox and De Vries (12) used age and gender to speed

the accuracy of audiogram estimation, and Zhao et al. (13) used

noise exposure at work to improve the accuracy. However, there

are few or no CA studies that have investigated how the different

additional factors influence hearing loss between different

population groups, nor how to transfer Machine Learning (ML)

models from one population group to another without losing

computational model performance.

This study focused on contributing to CA by introducing

Transfer Learning (TL) to identify informative priors using

audiogram databases from different population groups, and to

investigate the extent to which the informative priors from the

different population groups can speed up audiogram estimation.

TL is an area of ML that focuses on utilizing knowledge gained

while solving an ML problem and applying the same knowledge

to a different but related problem. Through TL, new systems can

quickly adapt to new situations, tasks and environments by re-
TABLE 1 Description of initial dataset of audiogram databases.

Database name Audiograms
Combined Age 1 2,571 Ages 18–40 combin

Combined Age 2 3,236 Ages 41–60 combin

Combined Age 3 4,796 Ages 61–80 combin

Combined Age 4 941 Ages . 80 combin

Combined Income 1 400 Low income count

Combined Income 2 4,128 Lower middle-inco

Combined Income 3 8,130 Upper middle-inco
Samoa, South Afric

Combined Sensorineural Hearing Loss (SNHL) 8,261 Combined SNHL a

Combined Total 11,544 Combined audiogr

East Asia and Pacific with SHNL 2,493 Cambodia, China,

East Asia and Pacific 3,490 Cambodia, China,

Europe and Central Asia with SHNL 2,588 Russia and Turkey

Europe and Central Asia 3,392 Russia and Turkey

Latin America and the Caribbean with SNHL 517 Dominican Republ

Latin America and the Caribbean 656 Dominican Republ

Middle East and North Africa with SNHL 672 Egypt and Jordan w

Middle East and North Africa 892 Egypt and Jordan

South Asia with SNHL 1,390 India and Nepal w

South Asia 2,318 India and Nepal

Sub-Saharan Africa with SNHL 608 Malawi and South

Sub-Saharan Africa 805 Malawi and South
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using pre-trained models (14). Like the similar notion of transfer

of learning in the education discipline, TL addresses how

learning in one context can be applied to learning in another

context, often with better or faster solutions. The key benefits of

TL are the maximization of limited ML and data resources, the

re-use of the ML and data resources for different tasks, the

beneficial adaptation of ML models to a new environment or

different context, and the ability to navigate beyond the growing

constraints around data because of privacy laws. This means that

through TL, audiogram estimation can be performed for

significantly less cost and in less time.

This study sought to answer two main research questions. First,

how can Transfer Learning (TL) be used to identify informative

priors from different population groups? Second, how can the

informative priors speed up audiogram estimation?
2 Data preparation

Table 1 describes the pure-tone audiogram databases that

were used in the study. The data is proprietary and obtainable

from the Scalable Hearing Rehabilitation for Low- and Middle-

Income Countries (SHRLMIC), Project reference: UNOPS/CFP-

2020/001/ATSCALE. The project was funded by the United

States Agency for International Development (USAID) in

support of the Global Partnership for Assistive Technology

(ATscale) and managed by the United Nations Office for

Project Services (UNOPS).

The project collected and aggregated audiogram data from various

regions and countries, resulting in diverse and comprehensive

audiogram databases. The data was also reorganized and classified

collectively based on age and income groups, which allows for more

nuanced analyses of global auditory health trends.
Brief description of database
ed audiograms

ed audiograms

ed audiograms

ed audiograms

ries (only Malawi)

me countries (Cambodia, Egypt, India, Nepal, Philippines)

me countries (China, Dominican Republic, Indonesia, Jordan, Malaysia, Russia,
a, Thailand and Turkey)

udiograms from the different populations, income groups and ages

ams from the different populations, income groups and ages (excluding SNHL)

Indonesia, Malaysia, Philippines, Samoa and Thailand with SHNL

Indonesia, Malaysia, Philippines, Samoa and Thailand

with SHNL

ic with SHNL

ic

ith SHNL

ith SHNL

Africa with SHNL

Africa
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We decided to exclude the sensorineural hearing loss (SNHL)

audiogram databases from the study due to their fundamental

differences from normal conductive hearing loss audiograms.

While the idea of transfer learning suggests that knowledge from

one domain should be able to transfer to another, it was essential

to consider the specific characteristics of each domain separately

for now. SNHL and conductive hearing loss, while sharing

knowledge and are related, exhibit distinct underlying

physiological mechanisms and hearing profiles. By focusing on

conductive hearing loss databases, we aimed to develop the

model to the specific features and challenges of conductive

hearing loss. We therefore considered that including SNHL

audiograms in the model is an area for further research.

Duplicate audiograms and audiograms with missing values

were removed. Outlier audiograms, that is, those with interaural

gaps or �50 dB in two or more thresholds were purposefully left

in the data similar to Parthasarathy et al. (15) and Charih et al.

(16) in order to better represent the prior information in its

original context. We then explored the statistical features

(Table 2) using the six frequency octaves: 250 Hz, 500 Hz,

1 kHz, 2 kHz, 4 kHz and 8 kHz.
3 Methods

We used an adaptive staircase method akin to the Hughson-

Westlake (HW) method for its flexibility for use in

computational modelling. The HW method uses reversals in

intensity from increasing (or decreasing) intensities to identify

the hearing thresholds. The more recent modified HW method is

automated and remains popular among audiologists (17).
3.1 Transfer learning

There are three main tasks in TL. First, to identify “what” to

transfer; second, to infer “how” to transfer; and third, to decide

“when” to transfer based on whether TL was beneficial in the context.

3.1.1 What to transfer
The starting point was to recognize that all the original and

reclassified audiogram databases shared several features,

particularly in using between 6–8 frequency octave intervals for

both ears. This means that all audiogram databases have a degree

of homogeneity. There is however also a degree of heterogeneity

in the databases usually from the different additional features

such as age, gender, location, noisy environment at work and

others. While these associated features are not mandatory, they

are valuable in ML methods to uniquely determine patterns such

as audiogram phenotypes. The first step was therefore to identify

the extent of homogeneity, whether marginal probability

P(Xs > Xt) = 0, and heterogeneity, whether P(Xs > Xt) ¼ 0

across the different audiogram databases.

Table 2 reveals descriptive heterogeneity between the audiogram

databases. It is particularly noticeable that the median threshold

value occurs from 40 dB HL upwards across all the frequencies in
Frontiers in Digital Health 03
all the databases. This finding supports the choice of using 40 dB

HL as recommended by Maltby (18) as a preferable starting

intensity and one that is not uncomfortable for all types of patients.

Despite the descriptive heterogeneity, it was necessary to use an

inferential method to specifically determine the extent of

homogeneity or heterogeneity. We opted for a Gaussian Mixture

Model (GMM) to infer the phenotypes within each of the

databases because GMMs allow for soft clustering, that is, a data

point can belong to more than one cluster in degrees (19). This

is different from hard clustering where a data point belongs to

strictly one cluster. GMMs are therefore ideal for modeling

audiogram phenotype categories. Previous work by Cox and De

Vries (12) used a GMM to introduce an informative prior as a

prior distribution p(tja, g) in audiogram assessment conditioned

on age a [ N and gender g [ {femalejmale}.

GMMs lean more towards being probabilistic distributions rather

than being models because they are a combination of different

Gaussian distributions (20). GMMs model discrete latent variables

as a linear combination of Gaussians (20) in the form:vv

p(x) ¼
XK
k¼1

pkN xjmk, Skð Þ (1)

where the Gaussian density N (xjmk, Sk) is a component of the

mixture and has its own mean mk and covariance Sk. pk is the

mixing coefficient that represents the degree to which a data point

fits within different clusters and is a valid probability such thatPK
k¼1

pk ¼ 1 and 0 � pk � 1.

The GMM is therefore governed by the parameters p, m and S.

The setting of the parameters using maximum likelihood makes the

solution analytically complex (20) and takes it out of the closed

form. Thus, our goal becomes the minimization of the negative

log-likelihood loss function, L 2:

L(p, m, S) ¼ �
Xn
i¼1

log
XK
k¼1

pkN (xijmk, Sk)

 !

þ l
XK
k¼1

kSkk2 (2)

where l is a regularization parameter. We included a regularization

value of 0.01 in the loss function to ensure that the covariance

matrix remained positive semi-definite.

We therefore used the Expectation Maximization (EM) method

because of its ability to estimate the parameters in an iterative and

efficient way.

We used k-means clustering with the gap statistic (21) to identify

the optimum number of K phenotypes. Figures 1, 2 present example

phenotypes using the number of clusters identified using the

k-means clustering method, in these examples, both 7 clusters.

The two figures visually reveal the heterogeneity. Table 3 presents

the phenotypes using the number of clusters identified and the pk

as the mixing coefficients of each cluster.

Based on the number of clusters and the differences in the

mixing coefficients (Table 3), and therefore the phenotypes, the
frontiersin.org
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TABLE 2 Statistical characteristics of the audiogram databases.

Audiogram database Statistic Thresholds at frequencies
v ¼ 0:25, 0:5, 1, 2, 4, 8 kHz

Combined Age 1 Interquartile range [45 40 45 45 50 60]

Median [45 50 50 50 55 60]

Mode [25 25 60 120 120 120]

Standard deviation [28.0 29.4 31.2 33.1 33.9 35.6]

Combined Age 2 Interquartile range [35 35 40 35 40 45]

Median [40 40 45 45 55 65]

Mode [20 25 25 30 60 120]

Standard deviation [25.8 27.5 27.4 27.5 28.6 31.0]

Combined Age 3 Interquartile range [35 35 30 30 30 30]

Median [40 45 50 55 65 75]

Mode [25 45 50 55 65 120]

Standard deviation [24.4 24.2 24.1 23.6 23.3 25.1]

Combined Age 4 Interquartile range [25 30 20 20 20 25]

Median [50 55 60 65 70 85]

Mode [45 50 60 65 70 120]

Standard deviation [21.3 20.4 18.9 17.6 18.3 20.4]

Combined Income 1 Interquartile range [30 30 30 30 35 40]

Median [60 60 60 65 75 80]

Mode [55 55 55 65 120 120]

Standard deviation [25.5 26.9 25.8 26.6 27.1 27.6]

Combined Income 2 Interquartile range [35 35 35 30 35 40]

Median [50 55 60 60 67.5 75]

Mode [40 50 60 60 70 120]

Standard deviation [25.1 25.5 26.0 26.6 27.3 29.7]

Combined Income 3 Interquartile range [35 35 40 35 35 40]

Median [45 45 50 55 60 70]

Mode [25 50 55 60 60 120]

Standard deviation [24.78 25.9 26.3 26.7 27.2 29.9]

East Asia and Pacific Interquartile range [35 40 40 40 40 45]

Median [45 50 55 60 65 75]

Mode [20 25 60 65 75 120]

Standard deviation [27.04 27.0 27.4 27.9 28.6 31.1]

Europe and Central Interquartile range [30 30 30 30 35 35]

Asia Median [40 40 45 50 60 65]

Mode [25 40 50 50 60 65]

Standard deviation [22.8 24.4 23.7 24.0 25.2 27.6]

Latin America and the Interquartile range [32.5 40 40 40 50 55]

Caribbean Median [35 35 35 40 50 55]

Mode [25 25 25 25 25 25]

Standard deviation [24.64 26.5 29.1 30.0 29.9 32.3]

Middle East and North Interquartile range [35 35 40 40 35 45]

Africa Median [40 40 45 50 55 67.5]

Mode [25 35 25 25 40 120]

Standard deviation [24.1 25.0 26.7 28.0 28.2 30.6]

South Asia Interquartile range [35 30 35 30 35 40]

Median [50 55 55 60 65 75]

Mode [40 50 60 60 70 120]

Standard deviation [24.9 25.1 25.7 26.2 26.8 28.8]

Sub-Saharan Africa Interquartile range [40 40 30 30 35 35]

Median [45 50 55 55 65 75]

Mode [30 55 55 55 120 120]

Standard deviation [27.6 27.5 27.3 26.4 26.5 29.4]

Twinomurinzi et al. 10.3389/fdgth.2024.1267799
audiogram databases were confirmed as heterogeneous, that is, the

marginal probabilities P(Xs > Xt) ¼ 0. The covariance matrix sets

were also heterogeneous, and the mean values in the component

models were all different which also pointed to heterogeneity.
Frontiers in Digital Health 04
This finding limited the TL approach to feature-based

options. The task was therefore to learn the mapping function

fs(�) ! ft(�) between the audiogram databases and the audiogram

estimation required.
frontiersin.org
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FIGURE 2

Phenotypes for combined income — upper middle income countries.

FIGURE 1

Phenotypes for ages 18–40 years.

Twinomurinzi et al. 10.3389/fdgth.2024.1267799
3.1.2 How to transfer
The results of the preceding step, “what to transfer”, are used to

inform the “how to transfer”, whether through common features,

instances, models or parameters.

We therefore turned to active learning, particularly stream-based

active learning to identify informative features from the audiogram

databases. In active learning, there is an intentionality about the

profile being searched for in every query; that is, the next query is

based on answers to the previous query (22). Based on the sets of

answers, the model or classifier is improved continually.

We combined all the audiogram databases into one large dataset,

and used the large dataset as the source data, Ds, from which to

discover and extract good features to use in the audiogram

estimation. Using the GMM, we discovered 18 phenotypes (Figure 3).

We regarded the profile being searched for as that which is

generated from the feature-based TL mapping function aimed at

learning a pair of mapping functions { fs(�), ft(�)} to map data

respectively from Ds and Dt to a common feature space, Dc,
Frontiers in Digital Health 05
(fs(Ds) 7! Dc and fs(Dt) 7! Dc) where the difference between Ds

and Dt can be reduced. Dc then serves as the input to the ML

algorithm. We used feature augmentation (14, 23) with set

membership where the common feature space is augmented at

every new query:

Dt , Dc ¼ 1
n

Xn
i¼i

{(xti þ 1)nti¼1} [ Ds
� �

(3)

where n are the number of features, and 1 is the error term which

in our study is an informativeness measure.

The combination, or active transfer learning (ATL), allows for

features identified using TL to be accepted or discarded by the

active learner based on the informativeness measure. We adopted

the informativeness measure 1 as a range of 5% between

neighbouring frequencies. This is because thresholds for each

frequency in normal hearing or conductive hearing loss are

usually close to each other (24). This phenomenon, where

thresholds for each frequency are typically closely grouped

together, is referred to as unilateral conductive hearing loss (24).

The low informativeness measure means that once a frequency

threshold is discovered, the neighbouring frequencies can be

estimated using the same informativeness measure. The next

section outlines the ATL algorithm applied to an adaptive

staircase method akin to the HW method.

3.1.3 Active transfer learning with the adaptive
staircase method akin to the Hughson-Westlake
method

First, the starting frequency is initialized at 40 dB HL, then

decreased (or increased) in steps of 20 dB HL until there is a

reversal (heard/not heard). For initialisation, the adaptive

staircase procedure is followed until the threshold for the starting

frequency t1 is identified. t1 is used to identify all audiograms

from Ds within 5% of t1, which then becomes K . The mean of K

then offers the starting intensity for the proceeding frequencies.

The process is repeated until all the thresholds are identified.

Figure 4 summarizes the ATL algorithm.
4 Results

We used a Dell Laptop computer with an Intel(R) Core(TM) i5-

8265U CPU 1.6GHz 1.80GHz. The memory capacity was 8GB. It

had a 64-bit Operating System with an x64-based processor

running Windows 10 version 2004 (OS Build 19041.1415). The

Hard Disk was a 473GB hard drive with 72.2GB of free space.
4.1 Large interaural gaps

The data in the Europe and Central Asia audiogram database

had several audiograms with large interaural ranges exceeding 50

dB. Specifically, 926 audiograms had interaural gaps of �50 dB,

with three audiograms having gaps of 110 dB. In this study, these
frontiersin.org
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TABLE 3 Phenotypes of the audiogram databases and their characteristics.

Audiogram database Phenotype features Number of clusters and corresponding
mixing coefficients in []

Combined Age 1 Number of clusters, k 7

pk , the mixing coefficients [0.1745 0.1365 0.0498 0.2489 0.1255 0.0847 0.1802]

Combined Age 2 Number of clusters, k 7

pk , the mixing coefficients [0.1881 0.1349 0.1356 0.3039 0.0495 0.0325 0.1556]

Combined Age 3 Number of clusters, k 7

pk , the mixing coefficients [0.0840 0.0927 0.0856 0.3458 0.1563 0.1007 0.1349]

Combined Age 4 Number of clusters, k 6

pk , the mixing coefficients [0.0963 0.0669 0.1726 0.4903 0.1595 0.0144]

Combined Income 1 Number of clusters, k 6

pk , the mixing coefficients [0.1179 0.1881 0.3561 0.0351 0.1200 0.1827]

Combined Income 2 Number of clusters, k 7

pk , the mixing coefficients [0.1632 0.1137 0.0048 0.1054 0.2005 0.1192 0.2932]

Combined Income 3 Number of clusters, k 7

pk , the mixing coefficients [0.1216 0.1348 0.0611 0.1085 0.2033 0.0476 0.3231]

East Asia and Pacific Number of cluster, k 7

pk , the mixing coefficients [0.1137 0.3674 0.1465 0.0297 0.1109 0.1531 0.0787]

Europe and Central Number of clusters, k 7

Asia pk , the mixing coefficients [0.2128 0.0856 0.1047 0.0676 0.2176 0.2125 0.0992]

Latin America and the Number of clusters, k 6

Caribbean pk , the mixing coefficients [0.0911 0.0290 0.1014 0.2984 0.1821 0.2980]

Middle East and North Number of clusters, k 4

Africa pk , the mixing coefficients [0.2238 0.1132 0.6084 0.0546]

South Asia Number of clusters, k 7

pk , the mixing coefficients [0.1777 0.0302 0.1514 0.3274 0.0275 0.1443 0.1416]

Sub-Saharan Africa Number of clusters, k 7

pk , the mixing coefficients [0.0919 0.1473 0.2313 0.0099 0.0993 0.2410 0.1793]

Twinomurinzi et al. 10.3389/fdgth.2024.1267799
interaural gaps were allowed. In later studies, a decision can be made

to eliminate these gaps as they tend to distort the phenotypes.
4.2 Cleaning up the data

The same database had several incorrect audiogram entries,

with one recorded at 510 dB for the 500 Hz frequency and many

others recorded strangely as 6, 8, 10, 11 and 12, which we infer
FIGURE 3

Phenotypes for combined audiograms.
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could have been incorrect entries for 60, 80, 100, 110 and 120.

Other strange values included 66, 81 and 21. These errors

seemed as though they were manually inserted, hence

introducing human error. These data anomalies were manually

deleted as part of the data preparation stage.

Theanomalies reveal the importanceof preparingdata andcreating

a database with verified and cleaned audiograms. This is important

because stream-based active learning is sensitive to such errors.
4.3 Increased phenotypes

We also found that the number of clusters (k ) that could be

identified using the k-means clustering method could be increased

to 18 clusters, as seen in Figure 3. Nonetheless, we limited the

number of clusters to 7 for each database to remain consistent with

the WHO standard of seven phenotypes (25) and allowed the

combined database to identify 18 clusters (phenotypes).

However, we note that as ML becomes more accessible, the

concept of phenotypes might need to be considered as precision

audiometry will allow multiple and various types of

classifications which might not lend themselves to carefully

curated phenotypical classes.
4.4 Accuracy and reliability benchmarks

We present the results of similar studies against which we

benchmarked this study. Song et al. (26) performed similar
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1267799
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 4

Algorithm for ATL with HW.

TABLE 4 Accuracy and reliability for 200 Halton samples in Song (26).

Frequency (kHz) 0.25 0.5 1 2 4 8
Mean a absolute error (dB) 1.53 1.60 1.70 1.86 2.47 3.32

Std a absolute error (dB) 1.03 1.09 1.17 1.32 1.90 2.60

TABLE 5 Accuracyand reliability of differentHalton sample sizes in Song (26).

Number of samples 20 50 100 200 500 1,000
Mean a absolute error (dB) 6.63 4.35 3.03 2.08 1.30 0.933

Std a absolute error (dB) 5.42 7.28 2.57 1.74 1.23 0.913

TABLE 6 Accuracy and reliability for 21 participants in Song (26).

Frequency (kHz) 0.25 0.5 1 2 4 8 All
Mean differences and standard deviations

Mean difference (dB HL) �0.15 1.55 1.63 0.26 1.03 0.03 0.75

Standard deviation (dB HL) 6.27 7.03 4.14 5.34 6.78 8.11 6.29

Average absolute differences and deviations

Mean absolute difference (dB HL) 4.80 5.05 3.58 3.95 3.95 5.03 0.75

Standard deviation (dB HL) 3.97 5.07 2.60 3.55 4.59 6.52 4.45

Median absolute difference (dB HL) 5.00 3.00 3.00 3.00 4.00 3.00 3.00

Interquartile range (dB HL) 4.00 6.00 3.50 4.00 4.00 5.00 4.00

Twinomurinzi et al. 10.3389/fdgth.2024.1267799
audiogram estimation simulations using Halton samples (low

discrepancy sequences that appear random). We use the results

from that study to benchmark our simulation results. Tables 4, 5

present the accuracy and reliability results that are used to

benchmark our results.

Song et al.’s (3) experiments with 21 participants gave 78.4

stimuli presentations +11 dB for both ears. Table 6 presents

their results.

Barbour et al.’s (27) experiments on 21 participants using the

same methods of Song et al. (3) implemented in an online

platform yielded a mean absolute difference between thresholds
Frontiers in Digital Health 07
of 3.2 presentations +5:15 dB. Heisey et al. (28) use a modified

version of Song et al. (3) for a mean absolute difference between

masked and unmasked experiments of under 5 dB at all

frequencies with an overall mean of 3.4 presentations +2:7 dB.
4.5 Simulations of HW and ATL

We performed ATL on randomly selected sets of 2, 5, 20, 56

and 556 audiograms from each of the 18 phenotypes identified

in the combined audiogram database. This gave 36, 90, 360,

1,008 and 10,008 simulations, respectively. Table 7 shows the
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TABLE 7 Stimuli presentations for the simulation of 36 audiograms (15
examples are shown).

Audiogram HW ATL
[5 10 5 0 10 10] 58 23

[25 35 30 30 25 20] 33 25

[20 30 30 25 30 25] 34 18

[25 25 25 20 25 25] 37 18

[10 10 10 5 15 20] 52 21

[15 15 15 15 20 15] 47 17

[30 30 25 30 15 30] 34 21

[45 40 25 25 25 35] 33 28

[15 30 40 40 35 45] 34 25

[25 25 30 20 15 10] 41 26

[35 35 30 40 35 40] 29 22

[40 20 20 20 15 10] 44 40

[25 20 25 20 25 25] 38 18

[25 25 30 20 15 10] 41 25

[15 30 40 45 45 50] 36 27

Mean presentations 41.3 22.0

Standard deviation (dB) 9.02 4.75

Minimum presentations 28 15

Maximum presentations 66 40

Mode presentations 34 18

TABLE 8 Stimuli presentations for the different audiogram simulations.

Simulations 36 90 360 1,008 10,008
Mean presentations 25.3 25.2 25.3 25.2 25.3

Standard deviation (dB) 1.06 1.06 1.06 1.08 1.07

Minimum presentations 24 24 24 24 24

Maximum presentations 28 28 29 30 35

Mode presentations 25 25 25 25 25
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mean, standard deviation, minimum, maximum and mode number

of stimuli presentations for the simulations of 36 audiograms.

Table 8 shows the results for the counts, and Tables 9–13 shows

the accuracy and reliability results for the different simulations.

ATL had lower stimuli presentation variability compared with

HW (Table 7) as seen in the improved lower mean of 22.0
TABLE 9 Accuracy and reliability for 36 simulations.

Frequency (kHz) 0.25 0.5 1
Mean (dB) 0.11 0.14 0.39 0.

Minimum (dB) �3.00 �2.00 �3.00 �2

Maximum (dB) 3.00 3.00 3.00 2.

Mode (dB) 1.00 �1.00 1.00 1.

Standard deviation (dB) 1.69 1.57 1.46 1.

Interquartile range (dB) 2.50 2.00 2.50 2.

TABLE 10 Accuracy and reliability for 90 simulations.

Frequency (kHz) 0.25 0.5 1
Mean (dB) 0.29 0.47 0.20 0.

Minimum (dB) �3.00 �2.00 �3.00 �3

Maximum (dB) 3.00 3.00 2.00 3.

Mode (dB) �1.00 1.00 �1.00 1.

Standard deviation (dB) 1.53 1.59 1.45 1.

Interquartile range (dB) 3.00 3.00 2.00 2.
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presentations with a reliability using standard deviation of +4:75

dB. The result is also lower than Song et al. (3) with an average

of 78.4 presentations +11 dB for both ears, which, when halved,

is 39.2 presentations. ATL also had a lower minimum stimuli

presentation of 15 compared with the HW minimum count of

28 (Table 7), while for the different simulations between 90 to

10,008, ATL had a minimum stimuli presentation of 25:2+ 1:06

dB and a maximum of 25:3+ 1:06 dB.

The ATL accuracy was evaluated using the non-parametric

numerical 50% probability point from the mean difference and

mean absolute difference (Tables 9–13). Reliability was

measured using the 25–75% interquartile range (29). The results

reveal that ATL accurately determined the threshold at each

frequency with very small margins of error of less than 5 dB.

ATL was also consistent with much less volatility in its results

across all the frequencies also giving a spread of less than 5 dB

as well. Even with the simulation of 10,008 audiograms where

some of the minimums were more than 125 dB, the spread was

still less than 5 dB.
5 Discussion and conclusions

We investigated the influence of informative priors derived

from audiogram databases of diverse populations, with an

emphasis placed on understanding the degree to which these

informative priors can improve CA models without losing

computational performance. Specifically, we hypothesized that TL

could offer informative priors that improve the accuracy of

probabilistic CA models.

The key finding was that Transfer Learning offers an

appropriate means to combine audiogram databases to extract

meaningful informative priors that can be used in CA. The

finding answers Wasmann et al.’s (2) suggestion to find ways to

maximise the disparate audiogram databases from around

the world.
2 4 8 Mean Mean (abs)
22 0.19 0.00 0.18 1.24

.00 �3.00 �3.00 �1.50 0.50

00 4.00 3.00 1.67 2.00

00 0.00 1.00 0.17 1.17

31 1.49 1.57 0.64 0.36

00 1.50 2.00 0.83 0.58

2 4 8 Mean Mean (abs)
21 0.59 �0.03 0.29 1.29

.00 �3.00 �3.00 �1.00 0.67

00 4.00 3.00 1.33 2.17

00 2.00 1.00 �0.17 1.33

37 1.68 1.56 0.56 0.33

00 3.00 2.00 1.00 0.50
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TABLE 12 Accuracy and reliability for 1,008 simulations.

Frequency (kHz) 0.25 0.5 1 2 4 8 Mean Mean (abs)
Mean (dB) 0.39 0.45 0.27 0.09 0.22 �0.09 0.22 1.32

Minimum (dB) �3.00 �2.00 �3.00 �3.00 �5.00 �125.00 �19.50 0.17

Maximum (dB) 4.00 3.00 3.00 4.00 4.00 4.00 2.00 22.17

Mode (dB) 1.00 1.00 0.00 0.00 �1.00 0.00 0.33 1.33

Standard deviation (dB) 1.65 1.54 1.36 1.57 1.71 4.24 0.87 0.75

Interquartile range (dB) 3.00 3.00 2.00 2.00 3.00 2.00 0.83 0.50

TABLE 11 Accuracy and reliability for 360 simulations.

Frequency (kHz) 0.25 0.5 1 2 4 8 Mean Mean (abs)
Mean (dB) 0.49 0.43 0.15 0.15 0.39 0.19 0.30 1.34

Minimum (dB) �3.00 �2.00 �3.00 �3.00 �5.00 �3.00 �1.33 0.50

Maximum (dB) 4.00 3.00 3.00 4.00 4.00 3.00 1.83 2.67

Mode (dB) 2.00 1.00 0.00 0.00 �1.00 1.00 0.50 1.17

Standard deviation (dB) 1.64 1.59 1.47 1.52 1.75 1.65 0.62 0.39

Interquartile range (dB) 3.00 3.00 2.00 2.00 3.00 2.00 0.83 0.58

TABLE 13 Accuracy and reliability for 10,008 simulations.

Frequency (kHz) 0.25 0.5 1 2 4 8 Mean Mean (abs)
Mean (dB) 0.35 0.45 0.07 0.11 0.27 �0.01 0.21 1.37

Minimum (dB) �3.00 �2.00 �125.00 �125.00 �10.00 �125.00 �43.50 0.17

Maximum (dB) 4.00 3.00 4.00 4.00 4.00 4.00 2.33 44.17

Mode (dB) 1.00 1.00 0.00 0.00 �1.00 0.00 0.33 1.33

Standard deviation (dB) 1.64 1.54 4.73 2.37 1.72 4.62 1.32 1.23

Interquartile range (dB) 3.00 3.00 2.00 2.00 3.00 2.00 0.83 0.50
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We offer ATL as a reliable and consistent approach to leverage

audiograms from multiple databases to speed up audiogram

estimation, in this study improving HW tests from a mean 41.3

presentations +9:02 dB down to 25.3 presentations +1:04 dB.

The reliability and time improvements were also better compared

to other existing CA models.

We also found that different population groups have different

phenotypes, and therefore are unlikely to share computational

parameters or hyperparameters. This means that CA methods on

audiogram estimation are likely to become more data-driven

compared with being model-driven.

ML methods also produced a varying number of phenotypes

from each population according to the data in the dataset.

Further research with other ML methods should look into this.

This use of TL to speed audiogram estimation is heavily

dependent on the cleanliness of the data. It reveals the importance

of preparing data and the necessity to create a database with

verified clean audiograms. One of the ways of achieving this is

through automating data capture of audiogram records.

We defined an approach as to when to transfer in TL; which is

one of the primary problems in TL (14). We also identified what

to transfer; the intensity of adjacent frequencies using an

exploration mechanism derived from active learning. We then

identified the how to transfer using an algorithm which uses

any identified intensity in one frequency to predict the intensity

in the adjacent frequencies.
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5.1 Limitations

We did not cater for imbalanced datasets and hence greater

accuracy can be achieved by incorporating algorithms that take

into account the imbalances in the datasets. For example, data

from Malawi was limited, that is, it had only 400 audiograms.
5.2 Areas for further research

The k number of clusters was intentionally limited to seven for

the individual databases in accordance with the WHO

recommended number of phenotypes (25). However, the GMM

cluster evaluation using k-means clustering yielded up to 18

clusters from the combined audiogram database. This shows,

similar to Parthasarathy et al. (15) who identified 10 clusters in

their data, that further research can be attempted with a higher

number of phenotypes for higher precision. This also brings into

question the notion of human audiogram phenotypes considering

that ML methods are only getting more advanced. We also

found that ATL is sensitive to negative thresholds and tends to

overshoot. This phenomenon needs to be investigated further.

We also propose that ATL could be extended to other population

databases, to include SNHL audiograms, and to include

additional information such as altitude and noise exposure.
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