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Deep breathing in your hands:
designing and assessing a DTx
mobile app
Harim Jeong1,2, Joo Hun Yoo2,3, Michelle Goh1 and Hayeon Song1*
1Department of Interaction Science, SungKyunKwan University, Seoul, South Korea, 2Department of
Artificial Intelligence, SungKyunKwan University, Suwon, South Korea, 3Hippo T&C, Suwon, South Korea
Digital Therapeutics (DTx) are experiencing rapid advancements within mobile
and mental healthcare sectors, with their ubiquity and enhanced accessibility
setting them apart as uniquely effective solutions. In this evolving context, our
research focuses on deep breathing, a vital technique in mental health
management, aiming to optimize its application in DTx mobile platforms.
Based on well-founded theories, we introduced a gamified and affordance-
driven design, facilitating intuitive breath control. To enhance user
engagement, we deployed the Mel Frequency Cepstral Coefficient (MFCC)-
driven personalized machine learning method for accurate biofeedback
visualization. To assess our design, we enlisted 70 participants, segregating
them into a control and an intervention group. We evaluated Heart Rate
Variability (HRV) metrics and collated user experience feedback. A key finding
of our research is the stabilization of the Standard Deviation of the NN Interval
(SDNN) within Heart Rate Variability (HRV), which is critical for stress reduction
and overall health improvement. Our intervention group observed a
pronounced stabilization in SDNN, indicating significant stress alleviation
compared to the control group. This finding underscores the practical impact
of our DTx solution in managing stress and promoting mental health.
Furthermore, in the assessment of our intervention cohort, we observed a
significant increase in perceived enjoyment, with a notable 22% higher score
and 10.69% increase in positive attitudes toward the application compared to
the control group. These metrics underscore our DTx solution’s effectiveness
in improving user engagement and fostering a positive disposition toward
digital therapeutic efficacy. Although current technology poses challenges in
seamlessly incorporating machine learning into mobile platforms, our model
demonstrated superior effectiveness and user experience compared to existing
solutions. We believe this result demonstrates the potential of our user-centric
machine learning techniques, such as gamified and affordance-based
approaches with MFCC, which could contribute significantly to the field of
mobile mental healthcare.

KEYWORDS

digital therapeutics (DTx), Human–Computer Interaction (HCI), mobile health

interventions, machine learning feedback, gamification design, user engagement

1 Introduction

The digital healthcare and digital therapeutics (DTx) market has been experiencing a

rapid expansion, a surge further catalyzed by the COVID-19 pandemic, which underscores

the need for digital solutions to address mental health disorders (1). Current research

indicates that of 18 identified DTx products, only six specifically target on treating
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mental disorders with a particular emphasis on depression, anxiety

disorders, and insomnia (2, 3). This pattern aligns with the

U.S. Food and Drug Administration’s (FDA) temporary policy to

broaden patient access to DTx for mental healthcare amidst

the pandemic (4).

In the realm of the mental health-centric DTx, the digital

implementations of Cognitive Behavioral Therapy (CBT) are

prevalent (3), often incorporating breathing exercises into these

interventions (5). Notably, the integration of CBT and breathing

exercises has been proposed to amplify therapeutic benefits (6).

Building on this foundation, our study introduces an innovative

approach to breathing exercises, aimed to enhance the

effectiveness of an array of DTx targeting mental disorders. We

aspire to increase their potency while ensuring sustained usage, a

crucial aspect of successful DTx deployment. Our primary

research goal is to foster the development of a more proficient

DTx by evaluating the effectiveness of our proposed breathing

exercise method.

Due to its potency in fostering engagement and elevating

motivation, gamification is an active method in learning domains

(7). It merges entertainment and tasks by integrating game

elements into non-gaming contexts. This technique is especially

prevalent in digital healthcare, essential for driving behavior

change. In digital health services, where prolonged use is often

necessary, gamification enhances engagement and supports

sustained user participation. This aligns with the goals of these

services. A systematic review demonstrates that gamification

and serious games effectively encourage behavior change and

heighten motivation (8). These elements contribute to the

expectation of improved treatment outcomes within digital

health interventions.

At present, DTx targeting mental health are mainly presented

as mobile applications (3). Numerous mobile applications focus

on deep breathing exercises. Unfortunately, many of these

applications primarily offer passive animations and fail to

actively engage users, a crucial component for effective DTx and

healthcare. Research suggests employing machine learning

techniques to offer personalized feedback in such applications

(9). Yet, the limited computational prowess of current mobile

devices introduces practical challenges. Accordingly, our study

presents an efficient system designed to minimize the model

weight for smooth operation in a mobile application

environment, thus actualizing the methods proposed in

prior research.
2 Literature review

2.1 Gamification effect

Following the broader discussion of gamification’s role in

digital healthcare in the introduction, we now focus on its

specific impact and application in digital therapeutic

interventions. While gamification has been acknowledged for its

ability to merge entertainment with tasks, its application in

digital health goes beyond mere engagement (10). It plays a
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significant role in facilitating sustained user interaction,

particularly in applications requiring long-term commitment

and adherence (11).

In the context of digital therapeutics, gamification is not just

about adding game-like elements; it’s about creating a more

immersive and interactive experience that resonates with users

(12). This approach is crucial in interventions where user

motivation and continuous participation are key to successful

outcomes. Moreover, gamification strategies in digital health have

been shown to effectively drive behavior change, a central goal in

many therapeutic interventions (13).

By integrating these elements into digital health interventions,

we can transform the user experience from passive to active,

thereby potentially improving adherence and treatment outcomes

(14). This aligns with the overarching goal of digital therapeutics:

to engage users in a meaningful way that promotes positive

health behaviors and outcomes. The use of gamification in our

study aims to leverage these benefits, creating an engaging and

effective platform for deep breathing exercises.

Based on our review of gamification and its application in

healthcare, the effects and flow of gamification have been

summarized as follows. This summary illustrates how

gamification can transition the user experience from a passive to

an active role, underlining its significance in enhancing user

engagement and motivation. This transformation is crucial in

digital therapeutics, where active participation can lead to

improved health outcomes. A visual representation of the effects

and flow of gamification, as derived from our review, is depicted

in Figure 1 below.
2.2 Gamification in deep breathing

As the digital therapeutic landscape continues to evolve, there’s

an increasing emphasis on enhancing user engagement to

maximize therapeutic benefits. One innovative strategy that’s

gaining traction is the incorporation of gamification into deep

breathing interventions. By gamifying deep breathing exercises,

these interventions aim not only to harness the therapeutic

advantages of controlled respiration but also to elevate user

commitment, thereby improving the overall effectiveness of the

intervention (15, 16).

Building upon the foundation set by previous studies, such as

“Calm: Blow away your Stress” and “Breeze”, our research

proposes an optimal design for gamifying deep breathing

interventions that target relaxation. For instance, the mobile

application “Calm: Blow away your Stress” (15) invites users to

dissipate twelve clouds using their breath through the

microphone. The application’s animated clouds and breath-based

feedback stimulate user curiosity and engagement. However, the

study did not distinctly address the explicit impact of these

elements on engagement.

Another gamified deep breathing intervention is exemplified by

“Breeze” (17). In this application, users control the sailing of a boat

in a game-like setting by breathing directly into the microphone.

The design incorporates a changing background as the boat sails
frontiersin.org
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FIGURE 1

Effects of gamification and its flow.
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further, encouraging continued user interaction. Feedback is

provided based on the user’s control over the boat’s movement,

with the Mel-Frequency Cepstral Coefficients (MFCC) feature

extraction technique ensuring the feedback’s accuracy by

assessing the user’s breathing state.
2.3 Affordance-based design

One of the main components of digital health is self-care. This

feature signifies a shift from the traditional approach of relying on

hospital visits and medical staff for diagnoses and treatments,

empowering individuals to manage their own health needs as

required (18). Because digital health or DTx requires self-

management and system utilization by the user, Human–

Computer Interaction (HCI) becomes an essential aspect.

Specifically, appropriate guidance should be integrated within the

system to ensure users can easily navigate digital health systems (19).

One design element to facilitate this intuitive guidance is

affordance-based design. Affordances, defined as the inherent

qualities of a design that dictate how an object should be

interacted with, can help address a major challenge in digital

health: providing comprehensive guidance with minimal user

effort (20). Beyond the affordance design for simple self-

management, it is posited that for digital health, the effectiveness

of treatment can be maximized when the five objectives—social,

cognitive, identity, emotional, and functional—are well-

communicated through affordances (21).

The paper emphasizes the different affordances’ importance in

digital health, which includes social elements fostering a sense of

belonging and support, cognitive aspects articulating the

service’s advantages, identity elements catering to users’ ideal

self-aspirations, emotional components generating positive

sentiments, and functional attributes using technology to

increase acceptance.

In summary, where self-care is paramount in digital health, an

affordance-based design that helps users easily understand how to
Frontiers in Digital Health 03
use the system is crucial. The effect can also be maximized when

the five key affordances are adequately fulfilled.
2.4 Machine learning for deep breathing

Technological advancements in machine learning have

significantly enhanced the domain of relaxation therapy,

especially in the application of deep breathing exercises (22). The

use of mobile devices’ microphone modules for real-time

assessment and feedback of breathing states represents a major

leap forward (17). This development is crucial for providing

users with immediate and accurate feedback on their breathing

patterns, essential for effective relaxation therapy (23).

Machine learning techniques, such as Mel Frequency Cepstral

Coefficient (MFCC), have been particularly instrumental in this

regard. Originally used in speech recognition (24, 25), MFCC has

now become a primary technique for analyzing breathing data.

Its ability to extract significant features through spectral analysis

has been crucial in developing more sophisticated and user-

friendly relaxation therapy applications (26).

Building on this foundation, our study has implemented a deep

breathing feature that provides accurate feedback using MFCC.

Considering that most mental healthcare software is currently

mobile-based, our focus has been on developing a system that is

well-suited for the mobile environment. This approach ensures

that our deep breathing exercises are not only effective but also

accessible and practical for users on mobile platforms, aligning

with the trend towards mobile health solutions in mental healthcare.
2.5 Heart rate variability (HRV)
measurement

Heart Rate Variability (HRV) serves as a major indicator of the

autonomic nervous system’s functionality and has gained

importance in the study of mental disorders (27). The analysis of
frontiersin.org
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FIGURE 2

Gamified deep breathing app design.

Jeong et al. 10.3389/fdgth.2024.1287340
HRV data, using methods such as frequency domain and time domain

analysis, provides valuable insights into an individual’s physiological

responses under different conditions (28). These insights are pivotal

for understanding the impact of various therapies, including deep

breathing exercises, on mental well-being (29).

The measurement of HRV, therefore, becomes an integral part

of our study, offering a window into the physiological impacts of

our proposed deep breathing exercises. This rich source of data is

instrumental in evaluating the efficacy of our interventions in a

quantifiable and scientific manner. Considering the objective and

scientific nature of HRV measurement, we have chosen this

method as a key component to substantiate the effectiveness of

our study. By proving the efficacy through HRV analysis, we aim

to provide more objective and concrete evidence of the

therapeutic benefits, further validating the practical implications

of our research in mental health treatment.
3 Methodology

3.1 Designing a gamified deep breathing
system

The present study introduces a gamified deep breathing system,

infusing gamification principles into relaxation exercises. This

novel approach aspires to alleviate the monotony of traditional

deep breathing exercises, aiming for increased user immersion.

To foster continuous engagement, our system offers real-time

feedback, employing machine learning to provide accurate

insights into the user’s breathing dynamics.

Our design incorporates ’affordance-based design’ principles,

facilitating intuitive user perception and interactions within the
Frontiers in Digital Health 04
application environment. The user interface employs

straightforward and intuitive on-screen visuals corresponding

with different breathing phases: inhalation, exhalation, and rest.

During inhalation, a ’wind’ effect descends on the screen, guiding

users to breathe in. For exhalation, users blow into the

microphone, causing the ’wind’ effect to ascend, reflecting the

exhale action. Finally, in the rest phase, the ’wind’ effect

disappears, signaling users to pause their breathing. The actual

implementation of this breathing system can be seen in Figure 3.

In contrast, the application used by the control group, while

also providing visual cues for breathing indication, lacked the

gamification and affordance design elements of our system. This

key difference lies in the absence of interactive elements such as

the ’wind’ effect and the dandelion seed metaphor, which are

integral to our system’s user engagement strategy. The control

group’s application primarily relied on simpler visual cues

without the interactive and immersive components that

characterize our gamified approach. An example screen of the

application used by the control group can be found in Figure 4.

This design approach ensures a more engaging and interactive

experience, aligning with our goal of enhancing user immersion in

deep breathing exercises through gamification. By visually and

interactively guiding users through each breathing phase, the

system provides a unique and effective way to practice deep

breathing, making the exercise both enjoyable and beneficial.

A pivotal design feature is the dandelion seed, a visual

metaphor symbolizing the need for gentle, controlled breathing.

Considering the key affordances of digital health outlined by

Wong et al. (21), our design integrates elements of cognitive,

emotional, identity, and functional affordances. The social aspect,

though ideal, is outside this study’s scope. For cognitive

reinforcement, the application elucidates the merits of deep
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FIGURE 3

Circle relaxation app design.

FIGURE 4

Overview of gamified deep breathing system.
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breathing and its mental health impacts. Positive feedback

messages uplift emotional affordance. The system’s visualization

of a dandelion ascending and ultimately blossoming reinforces

identity. Clear insights into the system’s workings (e.g., federated

learning) amplify functional affordance.

For the social aspect, the system would ideally allow users to

share their progress and engage with others, promoting a sense

of belonging and support. However, given the scope of this
Frontiers in Digital Health 05
study, this feature was not included in the current

implementation. To enhance cognitive affordance, the application

offers guidance on the benefits of deep breathing on relaxation

and its overall influence on mental health before exercise. This

approach strengthens users’ understanding of the intervention’s

efficacy and mechanics, potentially boosting its overall

effectiveness. Emotional affordance can be stimulated through

positive reinforcement and fostering a positive self-perception.
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The system achieves this by providing encouraging feedback, such

as “Good Job” and “Almost there,” following each game attempt.

The incremental progress towards the goal and culminating in a

blossoming flower upon a successful session establishes a

rewarding cycle that promotes emotional satisfaction. Identity

affordance is amplified through having a positive self-image

through a positive transformation, enhancing both self-efficacy

and motivation. Users are invited to embrace this positive

identity by envisioning themselves as a dandelion gradually

ascending the stairs and ultimately blooming into a flower in the

end. This imagery embodies personal growth and positive

transformation for the users. Lastly, functional affordance is

elevated when users have a clear comprehension of the system’s

technical mechanisms, such as federated learning, promoting

greater acceptance and trust in the system. We reinforced this by

including messages like “synching your breath with the system”

during moments of rest in the game.

To sustain user motivation, our system implements progressive

disclosure, unveiling features progressively to retain user

engagement (30). For instance, the dandelion seed’s ascension up

the stairs mirrors the user’s progress.

The efficacy of these design features in fostering engagement,

motivating users, and improving the intervention’s effectiveness

will be evaluated using appropriate evaluation metrics and

methods, which will be elaborated upon in the following sections.
3.2 Implementation

Our implementation strategy involved leveraging mobile device

technology to create an accessible and effective deep-breathing

application. The microphone module of the device is used to detect

the user’s breathing, with ambient noise levels measured to ensure

accuracy. The MFCC method is utilized for feature extraction,

differentiating between correct and incorrect breathing patterns.

During the deep breathing exercises, the system guides users

through a series of rest, inhale, and exhale phases, with the dandelion

seed’s movement on the screen corresponding to the user’s breathing.

We conducted a preliminary study with 40 college students to refine

the deep breathing recognition system, creating a dataset of breathing

recordings under diverse conditions. This data was used to train and

refine our model, ensuring its accuracy and reliability.

The final system was developed using Python and TensorFlow,

and the interface was built with Unity. Our approach emphasizes

the personalization of the breathing exercises, tailoring the

experience to each user’s needs and progress.

The application’s design leverages the built-in microphone of

mobile devices to detect users’ breathing patterns, thereby

providing gamified biofeedback. As users engage with the system,

their continuous breathing practice animates a dandelion seed in

the game interface. However, challenges arise when ambient noise

might erroneously influence the seed’s movement. Addressing

such potential inaccuracies was crucial, as inconsistencies in the

feedback can erode users’ trust in the application’s effectiveness (31).

Upon the game’s initiation, the microphone module

automatically measures the surrounding noise level for a span of
Frontiers in Digital Health 06
three seconds. This ambient noise reading serves as a baseline

against which the user’s breathing is compared with the help of a

threshold algorithm. To refine the accuracy of this system, we

employed the Mel-Frequency Cepstral Coefficient (MFCC) for

feature extraction. Furthermore, convolutional neural network

machine-learning techniques were used to discern genuine

breathing patterns from both ambient noise and incorrect

breathing phases. Figure 4 illustrates the steps of receiving user

input, recognizing the breathing phase, collecting newly acquired

data, and updating the application’s classification model.

Guided by the application, users cycle through a series of rest,

inhale, and exhale phases. During the exhale phase, the application

assesses the sound it captures. The dandelion seed’s movement on

the screen corresponds to this classified exhalation. A strong

exhalation might propel the seed considerably, while a weak one

might not move the seed at all. Such visual feedback is

instrumental, offering users insights into their breath strength. This

dynamic aims not just to mirror the user’s breathing pattern but

also to discourage behaviors like hyperventilation and instead foster

proper breathing techniques geared towards relaxation.

To refine the deep breathing recognition system, our team

conducted a study involving 40 college students. This exercise

produced a dataset of a total of 200 1-minute-long breathing

recordings made under diverse environmental conditions. Within

each recorded file, sections corresponding to exhale, inhale, and

rest phase were further subdivided using a windowing method.

These recordings were subsequently transformed from their

initial time-domain waveform format to a more illustrative mel-

spectrogram. The MFCC process was then used to extract

distinct sound characteristics from each recording.

The recorded audio signal data, initially in the form of a time-

domain waveform, was converted into a mel-spectrogram using a

Fourier transform in the frequency spectrum. This conversion

enabled us to represent the signal visually. Subsequently, the

MFCC method was carried out to extract representative features

of each recorded breathing phase (25). Firstly, windowing was

applied to divide each crucial section, after which the section

energy was computed using the Mel Filter Bank in the power

spectrum for each divided signal data (32). By applying cepstral

analysis to the Mel spectrum, which was analyzed through the

Mel Filter Bank, we could obtain the MFCC. Each audio signal

was thus converted into an MFCC format through these

processing steps, which facilitated the extraction of unique

characteristics of the corresponding sound.

Real-time classification of each breathing phase was made

possible by harnessing a MobileNetV2-based model. The

lightweight nature of MobileNetV2 made it an apt choice as the

foundational architecture for our custom breathing classification

model. When our initial model was tested against the MFCC

feature data, it boasted an impressive 93.33% accuracy. Moreover,

it achieved 93.65% average sensitivity and 96.58% average

specificity across the three distinct breathing phases.

A notable aspect of the deep breathing application presented in

this study is the personalized classification model update feature for

each user. While previous studies also apply transfer learning and

machine learning algorithms for user breathing measurement, they
frontiersin.org
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FIGURE 5

Classification model update process during deep breathing.
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implemented a single, generalized weight set model into the system.

Contrarily, we designed our proposed breathing application to

maximize the effectiveness of digital treatments by enabling each

user to cultivate their own optimized breathing model. Figure 5

describes the communication between mobile applications and

central servers and how individual models are updated.

As previously mentioned, we adopted and utilized the model

update process of the federated learning structure to create and

update a model for each user. In a manner similar to federated

learning, the initial model Wt is stored on a central server and

provided to a new user before the deep breathing system

commences. In the mobile application, the method repeats in the

order of rest-inhale-exhale and carries out breathing classification

and feature extraction using the current model Wt in each section.

The newly inputted user breathing data during the inhale and

exhale phases are processed, stored, and transmitted to the central

server during the next rest cycle. The central server then applies

the new input data to the transfer learning algorithm for model

weight updates, which are then returned to the mobile application

for system updates. A clustering algorithm was applied in the

transfer learning process, similar to the technology mentioned in

research (33), which helped set a threshold. This threshold allowed

individual users to understand the characteristics of each label

better. Through this personalized model weight update process,

the more each user utilizes the app, the more tailored the model

becomes, eventually leading to an optimized breathing threshold.

All these developments and refinements were achieved using

Python 3.9.17 and Tensorflow 2.10.1. The final iteration of the

system was built with Unity 2021.3.5f1 and optimized for a

platform equipped with an Intel Core i7-10700 processor and

NVIDIA GeForce RTX3070 graphics.
3.3 Experiment setting

To validate the effectiveness and usability of the proposed

deep-breathing mobile application, we conducted an experiment

with 70 participants. These participants were randomly assigned
Frontiers in Digital Health 07
to either the intervention group, which used our developed

system, or the control group, which used an existing deep-

breathing mobile application that provides an image to guide the

breathing rhythm. The experiment incorporated HRV (Heart

Rate Variability) measurements, taken with the ubpulse T1

device developed by LAXTHA, to assess the relaxation effects of

deep breathing. Initial baseline HRV measurements were

recorded, followed by a one-minute deep breathing session using

the respective applications. After the session, HRV measurements

were taken again. Following the HRV measurement, participants

completed a user experience survey to provide feedback.

Subsequently, our user experience survey was based on the

Technology Acceptance Model (TAM). This model emphasizes

perceived ease of use and perceived usefulness as key

determinants of user attitudes and intentions towards adopting

new technologies (34). The survey also incorporated measures of

perceived enjoyment, especially considering the gamification

elements integrated into our proposed system (35). The primary

objective of this survey was to gauge user experiences and their

intentions to continue using the deep breathing mobile

application over time.
4 Results

In our experiment, we enrolled a total of 70 participants. Both

the intervention group and the control group consisted of 35

individuals each. The participants had an average age of 33,

including 39 females and 31 males. They were meticulously

selected, ensuring none had specific heart conditions or were on

medications that might influence the Heart Rate Variability

(HRV) measurement.
4.1 Statistical analysis of HRV metrics

Our study revealed significant changes in the Heart Rate

Variability (HRV) indices following the deep breathing exercises.
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These indices, including normalized low frequency (normLF),

normalized high frequency (normHF), Standard Deviation of NN

Interval (SDNN), Total Power (TP), and HRV, are pivotal for

monitoring the autonomic nervous system’s functionality and

assessing resilience to stress.

For the intervention group, the baseline for normLF was

(M ¼ 53:58, SD ¼ 4:44). This value increased to (M ¼ 58:10,

SD ¼ 2:28) during the deep breathing exercises. In tandem with

this, the normHF values saw a decrease from its baseline of

(M ¼ 46:42, SD ¼ 4:43) to (M ¼ 41:89, SD ¼ 2:28) during

the exercises.

For the control group, the normLF values increased from a

baseline of (M ¼ 52:45, SD ¼ 5:56) to (M ¼ 55:47, SD ¼ 2:20)

during the exercises. Similarly, normHF values decreased from its

baseline (M ¼ 47:54, SD ¼ 5:56) to (M ¼ 44:52, SD ¼ 2:20).

The t-test revealed significant p-values for changes in normLF

and normHF for both groups, each being p 0.05. This indicates that

during deep breathing, there’s an increase in sympathetic nerve

activity due to lung movement and a corresponding decrease in

parasympathetic activity. Notably, the rise in sympathetic nerve

activity before and after the deep breathing exercise in the

intervention group was significantly pronounced, registering a

difference of þ4:52 (t ¼ �5:353, p , 0:001) in comparison to

the control group, which had a difference of þ3:02 (t ¼ �2:986,

p ¼ 0:004). This observation suggests that participants in the

intervention group were more engaged, resulting in heightened

sympathetic activity (36).

Following the deep breathing exercise, the LF and HF values were

measured once again during the recovery phase. The intervention

group displayed normLF values of (M ¼ 56:22, SD ¼ 4:69) and

normHF values of (M ¼ 43:77, SD ¼ 4:69). On the other hand, the

control group registered normLF values of (M ¼ 54:38, SD ¼ 5:28)

and normHF values of (M ¼ 45:61, SD ¼ 5:28). When juxtaposed

with the measurements taken during the deep breathing phase, it

was evident that both groups exhibited a drop in normLF and a rise

in normHF, signaling relaxation.

Delving deeper into the specifics, the intervention group

witnessed a statistically significant decline in normLF by �1:88

(t ¼ 2:126, p ¼ 0:038) and a corresponding increase in normHF

by þ1:88 (t ¼ �2:126, p ¼ 0:038). Conversely, the control group

noted a drop in normLF by �1:09 (t ¼ 1:13, p ¼ 0:264) and an

increase in normHF by þ1:09 (t ¼ �1:13, p ¼ 0:264), but

neither of these changes was statistically significant. This

indicates that the intervention group, who were more proactive

during deep breathing, experienced pronounced activation of the

sympathetic nerves and succeeded by activation of the

parasympathetic nerves. However, the control group, which was

relatively less engaged in deep breathing, did not exhibit a

substantial relaxation response afterward.

Subsequent measurements encompassed additional HRV

metrics, notably SDNN, TP, and HRV. To discern the

significance of these fluctuations, t-test evaluations were executed.

For the intervention group, the variations manifested as follows:

SDNN had a difference of þ24:08 (t ¼ �5:894, p , 0:001), TP

by þ1:07 (t ¼ �5:118, p , 0:001), and HRV by þ3:91

(t ¼ �3:622, p , 0:001), all being statistically significant. In the
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control group, SDNN changed by þ15:98 (t ¼ �3:309,

p ¼ 0:001), TP by þ0:88 (t ¼ �3:702, p , 0:001), and HRV by

þ3:4 (t ¼ �2:664, p ¼ 0:009). Though these changes were

significant, the scope and amplitude of these modifications were

more prominent in the intervention group.

These findings underscore significant shifts in markers of

autonomic nervous system activity, notably including the Standard

Deviation of the NN Interval (SDNN), TP, and HRV, during deep

breathing exercises. SDNN, as a sensitive marker within HRV,

plays a pivotal role in indicating an individual’s stress response

and overall autonomic nervous system balance (37). A lower

SDNN is often associated with reduced stress resilience and

poorer mental health outcomes. Thus, the observed reduction in

SDNN in our intervention group is particularly meaningful,

suggesting that our deep breathing system could be more effective

than conventional techniques in enhancing mental health care.

These markers not only trace changes in the autonomic nervous

system but also reflect an individual’s resilience to stress (38). The

more pronounced alterations in the intervention group as opposed

to the control group indicate that sustained use of our system

might amplify relaxation and bolster stress resilience by positively

modulating the autonomic nervous system. This offers valuable

support in managing mental health and demonstrates the practical

implications of our findings. A detailed breakdown of the HRV

measurements is available in Table 1.
4.2 Usability analysis

Our analysis extended beyond evaluating the efficacy of the

deep breathing system; we delved into its usability as well. A

preliminary reliability analysis was performed using Cronbach’s

alpha for the gathered results.

The user acceptance of our technology was assessed based on

the primary constructs of the Technology Acceptance Model

(TAM), specifically: perceived ease of use (PEOU), perceived

usefulness (PU), attitude towards using (ATT), and intention to

use (ITU). Additionally, we considered perceived enjoyment

(PENJ) given its relevance. The reliability metrics for each

construct were: PEOU(a ¼ 0:86), PU(a ¼ 0:73), PENJ

(a ¼ 0:93), ATT(a ¼ 0:83), and ITU(a ¼ 0:92). All the

Cronbach’s alpha values surpassed the 0.7 threshold, solidifying

the reliability of our measures.

Breaking down the results for the intervention group: PEOU

scored (M ¼ 6:10, SD ¼ 0:99), PU at (M ¼ 5:41, SD ¼ 1:07),

PENJ reached (M ¼ 5:91, SD ¼ 0:98), ATT scored (M ¼ 5:80,

SD ¼ 0:89), and ITU stood at (M ¼ 5:19, SD ¼ 1:24). In

contrast, the control group results were: PEOU (M ¼ 6:24,

SD ¼ 0:97), PU (M ¼ 5:28, SD ¼ 0:99), PENJ (M ¼ 5:00,

SD ¼ 1:37), ATT (M ¼ 5:24, SD ¼ 1:18), and ITU (M ¼ 4:87,

SD ¼ 1:70). Interestingly, aside from PEOU, all metrics indicated

a preference for the intervention system.

In the subsequent t-test, only PENJ (t ¼ 3:175, p ¼ 0:002) and

ATT (t ¼ 2:237, p ¼ 0:028) showcased significant disparities

between the groups. However, when introducing a regression

analysis, considering ITU as the dependent variable, both PENJ
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TABLE 1 Statistical Analysis result of Intervention group and Control group.

Frequency domain Time domain

2*norm LF 2*norm HF 2*SDNN 2*TP 2*HRV
Intervention group - Mean (SD)

Baseline 53.58 (4.44) 46.42 (4.43) 40.57 (18.20) 7.12 (0.92) 11.83 (4.27)

difference þ4:52 �4:53 þ24:08 þ1:07 þ3:91

(p , 0:001) (p , 0:001) (p ¼ 1:36e� 07) (p , 0:001) (p , 0:001)

Relaxation 58.10 (2.28) 41.89 (2.28) 64.65 (15.90) 8.19 (0.82) 15.74 (4.75)

difference �1:88 þ1:88 �27:08 �1:25 �5:31

(p ¼ 0:038) (p ¼ 0:038) (p , 0:001) (p , 0:001) (p , 0:001)

Recovery 56.22 (4.69) 43.77 (4.69) 37.57 (17.46) 6.94 (0.98) 10.43 (3.44)

Control Group - Mean (SD)

Baseline 52.45 (5.56) 47.54 (5.56) 48.82 (21.76) 7.43 (1.08) 12.90 (5.33)

difference þ3:02 �3:02 þ15:98 þ0:88 þ3:40

(p ¼ 0:004) (p ¼ 0:004) (p ¼ 0:001) (p , 0:001) (p ¼ 0:009)

Relaxation 55.47 (2.20) 44.52 (2.20) 64.80 (18.47) 8.31 (0.91) 16.30 (5.33)

difference �1:09 þ1:09 �21:16 �1:06 �3:72

(p ¼ 0:264) (p ¼ 0:264) (p , 0:001) (p , 0:001) (p , 0:001)

Recovery 54.38 (5.28) 45.61 (5.28) 43.74 (15.74) 7.25 (0.77) 12.58 (3.95)

Bold indicates significance at p-value < 0.05.

FIGURE 6

Boxplot of perceived enjoyment and attitude.
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(t ¼ 7:743, p , 0:001) and ATT (t ¼ 7:516, p , 0:001) emerged

significantly. This suggests that PENJ and ATT might play pivotal

roles in determining the long-term inclination towards our

deep breathing system. These findings are graphically represented

in Figure 6.
5 Discussion

In summarizing our findings regarding the efficacy and

usability of our evolving deep breathing system in the realm of

digital healthcare and Digital Therapeutics for mental well-being,

our study illuminates several key aspects and future potentials.
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The integration of gamification in our system, characterized by

elements such as enjoyment and interactive feedback, has

significantly improved participant commitment to deep breathing

exercises. Furthermore, the application of machine learning,

particularly the use of Mel Frequency Cepstral Coefficient

(MFCC) for real-time assessment and feedback of breathing

states, has shown promising results in enhancing the effectiveness

of our deep breathing exercises. Our results showed his

technological advancement is pivotal in creating a more

personalized and responsive therapeutic experience.

Moreover, our study’s utilization of Heart Rate Variability

(HRV) as a dynamic indicator of the autonomic nervous system’s

functionality has provided invaluable insights. The analysis of

HRV data, through frequency and time domain methods, has
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helped us understand the physiological impact of our deep

breathing exercises on mental well-being. This comprehensive

measurement approach underpins the potential effectiveness of

our interventions in managing mental health conditions like

anxiety, stress, and mood disorders.

Looking towards the future, we envision our system’s continued

refinement leading to more widespread and effective use in DTx

applications. Its ability to actively engage the autonomic nervous

system suggests that it could be applied to a broader range of

mental health conditions, potentially offering a non-invasive, user-

friendly alternative to more traditional therapies (39). The observed

patterns in Low Frequency (LF) and High Frequency (HF) values

during exercises indicate a direct impact on the autonomic nervous

system, providing a basis for exploring its application in managing

conditions like anxiety, stress, and mood disorders (40).

In terms of usability, our system’s positive reception compared to

traditional deep breathing exercises positions it as a more engaging

and effective tool for mental health management. This user-friendly

approach, coupled with the potential for sustained use, underlines

our system’s capacity to deliver long-term therapeutic benefits (41).

It also opens avenues for integration with other digital health

applications, enhancing overall mental health care efficacy (42).

Overall, the implications of our research extend beyond immediate

findings, suggesting a transformative potential for digital therapeutics

in mental health management, both now and in the future.
5.1 Limitation & future works

The present study mainly pivoted towards optimizing for

mobile platforms, mirroring the digital health industry’s

trajectory. Consequently, it might not have fully capitalized on

the potential of existing computer technology. For instance, our

study employed a model updating framework akin to federated

learning for personalizing the classification model. However,

inherent limitations in mobile-based self-learning prompted us to

rely on a method that sends user data to a central server. This

aspect highlights the necessity for subsequent research, especially

as mobile technologies continue to evolve. Moreover, our system

design didn’t manage to incorporate every suggested design

element derived from an affordance-based standpoint, primarily

because our focus was on initial validation in the absence of any

affordance-based designed breathing systems. We foresee more

refined research addressing these gaps. Finally, while the gender

and age distribution of our participants provided initial insights,

the limited sample size of 70 may constrain the generalizability

of our findings. Future studies with larger and more diverse

samples are essential to validate and extend our findings.
6 Conclusion

In our research, we introduced and assessed a deep breathing

system tailored for digital healthcare and Digital Therapeutics

contexts. Our findings underscore the system’s potential to

substantially enhance mental health by fostering engaging and
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personalized user interactions. The integration of gamification

and machine learning-driven personalized feedback has

successfully motivated users to be more proactive during the

deep breathing exercises. This heightened involvement manifests

physiologically, evidenced by the rise in LF values during

exercises, followed by an increase in HF, signifying exertion and

subsequent relaxation effects. Moreover, the data suggest that our

approach can invigorate the autonomic nervous system,

potentially boosting stress resilience and further emphasizing the

therapeutic promise of our solution.

From a usability perspective, participants expressed a marked

preference for our system over traditional deep breathing

alternatives, recounting a more delightful and affirmative

experience. This enthusiasm is a robust testament to the system’s

potential for consistent use, a crucial aspect for realizing

enduring therapeutic advantages.

Despite these positive strides, the study illuminated avenues for

refinement and future exploration. Prioritizing the full spectrum of

computer technology, embedding more affordance-driven design

facets, and tapping into a wider participant demographic

emerged as the study’s limitations. These identified gaps are

envisioned to steer forthcoming advancements and scholarly

pursuits, paving the way for even more sophisticated digital

therapeutic instruments dedicated to mental wellness.

In summation, our innovative deep breathing system represents

a seminal advancement in digital healthcare. It not only acts as a

potent stress alleviation tool but also cultivates a culture of active

user participation, leading to enhanced mental well-being. The

challenges and prospective research pathways spotlighted in our

study offer exciting prospects for refinement and breakthroughs

in this swiftly progressing sector.
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