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Business, Universitat Pompeu Fabra, Barcelona, Spain, 5Barcelona School of Economics, Barcelona,
Spain
Introduction: Individuals in the midst of a mental health crisis frequently exhibit
instability and face an elevated risk of recurring crises in the subsequent weeks,
which underscores the importance of timely intervention in mental healthcare. This
work presents a data-driven method to infer the mental state of a patient during the
weeks following a mental health crisis by leveraging their historical data.
Additionally, we propose a policy that determines the necessary duration for closely
monitoring a patient after a mental health crisis before considering them stable.
Methods: We model the patient’s mental state as a Hidden Markov Process, partially
observed through mental health crisis events. We introduce a closed-form solution
that leverages the model parameters to optimally estimate the risk of future mental
health crises. Our policy determines a patient should be closely monitored when
their estimated risk of crisis exceeds a predefined threshold. The method’s
performance is evaluated using both simulated data and a real-world dataset
comprising 162 anonymized psychiatric patients.
Results: In the simulations, 96.2% of the patients identified by the policy were in an
unstable state, achieving a F1 score of 0.74. In the real-world dataset, the policy
yielded an F1 score of 0.79, with a sensitivity of 79.8% and specificity of 88.9%.
Under this policy, 67.3% of the patients should undergo close monitoring for one
week, 21.6% during 2 weeks or more, while 11.1% do not need close monitoring.
Discussion: The simulation results provide compelling evidence that the method is
effective under the specified assumptions. When applied to actual psychiatric
patients, the proposed policy showed significant potential for providing an
individualized assessment of the required duration for close and automatic
monitoring after a mental health crisis to reduce the relapse risks.
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1 Introduction

A mental health crisis is any situation in which a person’s behavior puts them at risk of

hurting themselves or others and/or prevents them from being able to care for themselves or

function effectively in the community (1). Those situations include self-harm, delusions or

suicide attempts, often requiring hospitalization, and are very detrimental to the patient’s

mental and social wellbeing. Mental health crises are commonly suffered by patients

diagnosed with psychotic, personality or severe mood disorders. However, they also occur

to patients diagnosed with less severe disorders or even non diagnosed individuals under

stressful situations (1). The patient usually undergoes four phases in the process of a
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crisis (2), (i) an initial threat when the patient is stable, (ii) an

escalation phase, (iii) the crisis (iv) resolution and return to

stability or personality disorganization if the problem does not get

resolved. Once the patient destabilizes, they remain unstable for

some period of time during which they might suffer one or

multiple mental health crises. In order to avoid further escalation

and prevent subsequent crises, patients should be kept under close

monitoring and treatment until they stabilize (3–6). However, it is

difficult to ascertain when the patient has become stable.

In this work, we present a data-driven method to infer the

mental state of a patient given their history of mental health crises

and propose a policy to determine for how many weeks the

patient needs to receive close attention before being deemed stable.

This method is based on modeling the mental state of the patient

as a Hidden Markov Model (HMM) (7), a probabilistic framework

in which the observed data is generated by one or multiple hidden

states. This allows one to infer whether the patient is stable or

unstable and make a prediction of the risk that the patient is

going to suffer a mental health crisis. Under this modeling

framework, our method is implemented in the following way:

1. Learning the model parameters of each patient: Initially, the

model parameters for the average patient are determined by

maximizing the likelihood of the observed sequence of

mental health crises experienced by all patients. These

parameters are assigned to patients with a relatively short

history at the hospital (3 months or less in this study). For

patients with a longer history, the model parameters of each

patient are estimated from their individual observed sequence

of mental health crises.

2. Estimating the risk of mental health crisis at each week: For a

given patient, the risk is estimated based on the patient’s model

parameters, taking into account the time elapsed since their last

mental health crisis.

3. Selecting the patients to be closely monitored: Identify those

patients whose predicted risk of a mental health crisis exceeds a

predefined threshold. Patients that do not reach the threshold

are considered stable due to their low risk to suffer a mental

health crisis.

Probabilistic models are very well suited to uncover hidden

phenotypes or internal states in healthcare settings and to build

policies based on partial observability of internal states (8). The

use of HMM’s to infer the mental state of an individual has been

explored in the past for detecting depressive states or

schizophrenic episodes (9–11) and identifying mental disorders

(12, 13). A similar probabilistic model called maximum-entropy

Markov model was used to predict emergency psychiatric states

(14) from biometric sensors and questionnaires. However, these

studies rely on external data sources such as sensor data,

questionnaires or other user inputs. In contrast, our work

proposes a method that relies solely on past crises to infer the

mental state of the patient, which is accessible in any hospital

and does not require external data collection.

Previous research has demonstrated the feasibility of predicting

mental health crisis relapses when patients appear stable utilizing a

machine learning model based on Electronic Health Records
Frontiers in Digital Health 02
(EHR) (15, 16). However, these studies assumed that all patients

achieved stability after just one week without crisis events. In

reality, certain patients might necessitate prolonged and vigilant

monitoring to ascertain their stability accurately and avoid

readmission. The present study complements the existing literature

by introducing a method to determine the optimal duration of

monitoring required for each individual patient before they can be

confidently deemed stable. By adopting this data-driven approach,

clinicians can make informed decisions that facilitate personalized

care. This approach follows the principle of Precision Medicine,

a field that has been implemented across various healthcare

domains and is now gaining traction within the field of

psychiatry, promising enhanced patient outcomes and more

effective interventions (17, 18).
2 Materials and methods

In this section, we detail the steps required to implement our

proposed method. In Section 2.1, we formalize the problem and

the mental state model upon which our method is built, and

discuss the assumptions. In Section 2.2, we present an optimal

solution to predict the risk that a patient will suffer a mental

health crisis within the next week given the model parameters,

and how the risk evolves over time. In Section 2.3, we describe the

process to estimate the model parameters from a sequence of

weeks with and without mental health crisis events. Finally, in

Section 2.4, we propose a policy for determining the duration a

hospital should closely monitor patients before deeming them stable.
2.1 Mental health state probabilistic model

We consider a hospital with N patients, with each patient n having

an associated mental health state Xt,n [ {S, U} at each week

t ¼ 0, . . ., T and a binary random variable Yt,n that denotes

whether the patient had a mental crisis at week t (Yt,n ¼ 1) or not

(Yt,n ¼ 0). Every week t of the patient n is characterised by the

(Xt,n, Yt,n) pair and we denote by Ht,n ¼ {(X0,n, Y0,n), . . .,

(Xt,n, Yt,n)} the entire history of the patient up to week t. We use

xt,n and yt,n to denote the realizations of Xt,n and Yt,n, and

introduce the notation Yb
a,n ¼ (Ya,n, . . ., Yb,n), a , b [ Z (similarly

for other random variables Xb
a,n and realizations xba,n).
2.1.1 Assumptions
We consider the following set of assumptions associated with

our problem:

• There are two possible mental states that a patient n can have at

any week t, stable (S) or unstable (U), thus Xt,n [ {S, U},

8t ¼ 1, . . ., T .

• The mental state of the patient evolves following a Markov

Chain (i.e., P(Xt,n ¼ xt,njX0,n ¼ x0,n, . . ., Xt�1,n ¼ xt�1,n) ¼
P(Xt,n ¼ xt,njXt�1,n ¼ xt�1,n)). We denote by q ¼ P(Xt,n ¼ U j
Xt�1,n ¼ S) the transition probability from state S to state U

and by r ¼ P(Xt,n ¼ U jXt�1,n ¼ U) the transition probability
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from state U to state U , with q = r. This results in the following

transition matrix:

PX ¼ pSS pSU
pUS pUU

� �
¼ 1� q q

1� r r

� �

• The probability that the patient n has a mental health crisis at

time t depends solely on the state Xt,n. In particular, we

assume that the patient cannot suffer a mental health crisis

when the patient is at state S and when the patient is at state

U the probability of crisis if 0 , p , 1, that is,

P(Yt,n ¼ 1jXt,n ¼ xt,n) ¼ 0 ifxt,n ¼ S
p ifxt,n ¼ U

�

• The actual mental state of the patient is hidden and only

partially observed through the crisis variable. We denote by

Ot,n ¼ {Y0,n, . . ., Yt,n} the observed history up to time t.

We present two cases that depend on whether the patients of the

hospital are characterized by homogeneous or diverse model

parameters.

• Case 1: Each patient has a different set of model parameters.

• Case 2: All patients have the same set of model parameters.

2.2 Mental health crisis prediction

The purpose of the method is to predict whether a patient n is

going to have a mental health crisis at time t given the observed

history up to time t � 1, Ot�1,n. In particular, we want to

estimate the probability that Yt,n ¼ 1 given Ot�1,n. Considering

that the model parameters are known (or have been estimated as

we will see in the next section), we can make inference on the

current state of the patient given the observed history Ot�1,n and

use it to estimate the probability that the patient is going to have

a crisis at time t. Since the prediction is done for each patient

independently to the rest of the patients, we simplify the

notation in this section by removing the subscript n.

First, we consider the case in which the last state Xt�1

is observed (Xt�1 [ Ot�1). Using the Markov property we

obtain that

P(Yt ¼ 1jOt�1) ¼ P(Yt ¼ 1jXt ¼ U)P(Xt ¼ U jOt�1)

¼ P(Yt ¼ 1jXt ¼ U)P(Xt ¼ U jXt�1)

¼ pr ifXt�1 ¼ U

pq ifXt�1 ¼ S

�
:

A priori, we assumed that the state is never observed. However,

there might be cases in which it is possible to observe the state

either directly or indirectly. For instance, by monitoring the

patient, the clinical teams can infer whether the patient is at

stable state or not. Importantly, there are two consequences that

follow from the proposed model: first, when a mental health

crisis is observed at a time t � 1 (Yt�1 ¼ 1), we can infer that
Frontiers in Digital Health 03
Xt�1 ¼ U because a patient can only suffer a mental health crisis

when they are unstable; second, since the state transition is

Markov, if the state is known at s , t (Xs ¼ xs) and there are no

other known states between sþ 1 and Xt�1, then the distribution

over states at Xt�1 only depends on the observations between

s and t � 1 and Xs ¼ xs. Therefore, without loss of generality, we

can assume that the last observed state is at s ¼ 0 because the

observations prior to s do not influence the probability

distribution of states beyond s conditioned on Xs ¼ xs (by the

Markov property) - we could redefine a new t0 ¼ t � s.

The following theorem presents a function to estimate the risk

of mental health crisis at each week t after the last observed state.

This is particularly relevant because the occurrence of a mental

health crisis reveals that the patient is in an unstable state, and

the theorem enables the determination of the number of weeks

until the patient likely regains stability.

Theorem 1: Let Ot�1 ¼ {X0 ¼ x0, Y0 ¼ y0, Y1 ¼ 0, . . .,

Yt�1 ¼ 0} be the observed history of a patient n up to the

week t and p, q, r the model parameters associated with the

patient. Then, the probability that patient n suffers a mental

health crisis at week t is given by

P(Yt ¼ 1jOt�1) ¼

1� (1� pr þ r � q)
(y0 � y�)ytþ1

þ � (yþ � y0)ytþ1
�

(y0 � y�)ytþ � (yþ � y0)yt�
,

(1)

with

yþ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

(r � q)(1� p)

(1� pr þ r � q)2

s

2
,

y� ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

(r � q)(1� p)

(1� pr þ r � q)2

s

2
,

y0 ¼ 2Rwx0 � R
2Rþ wx0 � 1

,

where R ¼ (r�q)(1�p)
(1�prþr�q)2

, wU ¼ 1�pr
1�prþr�q (when x0 ¼ U) and

wS ¼ 1�pq
1�prþr�q (when x0 ¼ S).

To create a policy that works for all patients on a weekly basis,

we need to understand how the estimated risk of a patient n

experiencing a mental health crisis changes over time. The

analytical solution from the theorem is particularly useful for this

purpose, as it allows us to study how the risk evolves and

converges. The following corollary demonstrates the convergence

of the solution.

Corollary 1.1: The optimal solution to estimate the risk that a

patient with model parameters q, r, p converges to

1� (1� pr þ r � q)yþ when t grows.
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Due to the exponential convergence primarily driven by the yþ
term, the convergence of the solution is expected to be rapid. This

rapid convergence guarantees that the estimated risk does not

oscillate indefinitely but rather quickly stabilizes at a steady

value. Together, the results of Theorem 1 and the Corollary 1.1

show that we can estimate the risk of mental health crisis

analytically and determine the week when a patient is likely to

reach a stable state.

The proofs of Theorem 1 and Corollary 1.1 can be found in

Supplementary Appendix A.
2.3 Estimation of the model parameters

The HMM has 3 parameters (p, q, r), specifically:

• p: the probability of mental health crisis given that the patient is

at state U .

• q: the transition probability from state S to state U .

• r: the transition probability from state U to state U .

To simplify the notation, in this section we introduce

p(a) ¼ P(A ¼ a) to denote the probability that a random variable

A takes the value a (e.g., p(xt,n) ¼ P(Xt,n ¼ xt,n)). Similarly, we

use the same notation for joint probabilities and conditional

probabilities (e.g., p(yt0,n, xt,n) ¼ P(Yt
0,n ¼ yt0,n, Xt,n ¼ xt,n) or

p(yTtþ1,njxt,n) ¼ p(YT
tþ1,n ¼ yTtþ1,njXt,n ¼ xt,n)).

We use the Baum–Welch algorithm (19) to estimate the model

parameters from the observed history of the patients. This method,

is a standard algorithm that uses an Expectation–Maximization

approach to find the parameters that maximize the expected

likelihood of the observed data given the model HMM. The

Baum–Welch algorithm is guaranteed to converge to a local

optimum (20) and consists of the following steps:

1. Initialization: The parameters of the model are initialized

either randomly or using some reasonable estimates. In this

case, we initialize the parameters (p, q, r) at random.

2. Expectation step: In this step, the probabilities of being in each

hidden state at each time step t given the current model

parameters and the observed sequence Ot,n are calculated.

These probabilities are computed using the Forward-

Backward algorithm, that consist of a forward function

a(xt,n) ¼ p(yt0,n, xt,n) defined as the joint probability of the

observed data up to time t, and a backward function

b(xt,n) ¼ p(yTtþ1,njxt,n) defined as the conditional probability

of the observed data from time t þ 1 given the hidden state

at t. Here, we abuse notation in a(xt,n) and b(xt,n) by

omitting the dependence on yt0,n and yTtþ1,n respectively.

3. Maximization step: In this step, the probabilities calculated in

the Expectation step are used to update the model parameters

to maximize the expected log-likelihood of the observed data.

This involves adjusting the probability p of mental health

crisis when the patient is at state U and the transition

probabilities between hidden states (q, r).

4. Iterate: Steps 2 and 3 are repeated iteratively until a

convergence criterion is met. In this case, convergence

criteria is set to stop when the change between two
Frontiers in Digital Health 04
consecutive iterations is below a certain tolerance (10�5) or

until a maximum number of iterations are completed (100).

2.3.1 Case 1: Parameter estimation per patient
To estimate the parameters of the model for a patient n (pn, qn,

rn), we want to find the values q�n, r
�
n, p

�
n that maximize the likelihood

of the observed history of the patient. Since we are estimating the

parameters of the model, the likelihood and all the probability

distributions are conditioned to the value of the parameters, i.e.,

L(yT1,njqn, rn, pn) ¼ log p(yT0,njqn, rn, pn)
¼ log

X
xT0,n[{S,U}T

p(xT0,n, y
T
0 jqn, rn, pn):

For simplicity, we drop qn, rn, pn and the subscript n from the

notation in the following equations. Let’s start with the joint

probability of each state xt for t , T given a set of parameters qn,

rn, pn and the observed data On ¼ yT0,n.

p(xt , y
T
0 ) ¼ p(yT0 jxt)p(xt) ¼ p(yt0jxt)p(xt)p(yTtþ1jxt)

¼ p(yt0, xt)p(y
T
tþ1jxt) ¼ a(xt)b(xt),

with a(xt) ¼ p(yt0, xt) and b(xt) ¼ p(yTtþ1jxt) being the forward and

backward functions repectively. Both a(xt) and b(xt) can be

computed iteratively.

The process of computing the a(x0), . . ., a(xT ) is called

forward step and can be derived as follows:

a(xt) ¼ p(yt0, xt) ¼
X

xt�1[{S,U}

a(xt�1)p(xt jxt�1)p(yt jxt),

with a(x0) ¼ p(x0)p(y0jx0).
b(x0), . . ., b(xT) are computed iteratively starting backwards,

this process is called the backward step:

b(xt) ¼ p(yTtþ1jxt) ¼
X

xtþ1[{S,U}

b(xtþ1)p(ytþ1jxtþ1)p(xtþ1jxt),

with b(xT ) ¼ 1 and b(xT�1) ¼
P

xT[{S,U}
p(yT jxT )p(xT jxT�1).

Through these expressions, a(xt) and b(xt) can be computed

for all t ¼ 0, . . ., T (21). From a(xt) and b(xt) we can compute

the probability distribution of the hidden states given the

observations as

g(xt) ¼ p(xt jyT0 ) ¼
p(xt , yT0 )
p(yT0 )

¼ a(xt)b(xt)
p(yT0 )

¼ a(xt)b(xt)P
xt[{S,U}

a(xt)b(xt)
: (2)

To finish the Expectation step, we need to compute the probability
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distribution of the transitions given the observations:

j(xt , xtþ1) ¼ p(xt , xtþ1jyT0 ) ¼
p(xt , xtþ1, yT0 )

p(yT0 )

¼ a(xt)p(xtþ1jxt)p(ytþ1jxtþ1)b(xtþ1)P
xt ,xtþ1[{S,U}2

a(xt)b(xtþ1)p(xtþ1jxt)p(ytþ1jxtþ1)
: (3)

In both Equations 2 and 3 the denominators are computed by

regularizing the numerator to convert it to probabilities. Observe

that we abused notation by omitting the dependence on yT0 when

we defined g(xt) and j(xt , xtþ1).

Once the probability distribution of the hidden states and the

transition probabilities given the observed data are computed, we

can use them in order to estimate the new set of parameters in

the Maximization step. In particular, the estimated value for the

parameter qn, q̂n, can be calculated as the expected number of

transitions from state S to state U divided by the expected

number of transitions starting at state S

q̂n ¼
PT�1

t¼0
j(xt,n ¼ S, xtþ1,n ¼ U)

PT�1

t¼0
g(xt,n ¼ S)

:

The estimated value r̂n for the parameter rn, can be computed as

the expected number of transitions from state U to state U

divided by the expected number of transitions starting at state U ,

r̂n ¼
PT�1

t¼0
j(xt,n ¼ U , xtþ1,n ¼ U)

PT�1

t¼0
g(xt,n ¼ U)

,

and the estimated value for the parameter pn, p̂n, can be estimated

as the expected number of times at state U and observing a crisis

divided by the expected number of times at state U ,

p̂n ¼
PT�1

t¼0
1yt,n¼1g(xt,n ¼ U)

PT�1

t¼0
g(xt,n ¼ U)

:

By iterating over the Expectation and Maximization step

the algorithm converges to a local maximum on the

likelihood function.
2.3.2 Case 2: Single parameter estimation for all
patients

To estimate the parameters of the model assuming that all the

patients have the same parameter values (p, q, r), we want to find

the values p�, q� and r� that maximize the likelihood of the

observed history of all the patients. Since the observations of
Frontiers in Digital Health 05
each patient are independent of the rest of the patients, we have

L(yT0,1, . . ., yT1,N jq, r, p) ¼ log p(yT0,1, . . ., y
T
0,N jq, r, p)

¼
XN
n¼1

log
X

xT0,n[{S,U}T
p(xT0,n, y

T
0 jq, r, p):

Furthermore, the joint probabilities, given the parameters p, q and

r, can be computed per patient independently. Therefore, the

results of the expectation step derived in the previous section can

be used to compute the probability distribution of the hidden

states and the probability distribution of the transitions given the

observations of the patient. In this case, we define an(xt,n),

bn(xtþ1,n), gn(xt,n) and jn(xt,n, xtþ1,n) for each patient n like in

Case 1, which are computed as

an(xt,n)¼
X

xt�1,n[{S,U}

an(xt�1,n)p(xt,njxt�1,n)p(yt,njxt,n),

bn(xt,n)¼
X

xtþ1,n[{S,U}

bn(xtþ1,n)p(ytþ1,njxtþ1,n)p(xtþ1,njxt,n),

gn(xt,n)¼
an(xt,n)bn(xt,n)P

xt,n[{S,U}
an(xt,n)bn(xt,n)

:

jn(xt,n, xtþ1,n)¼ an(xt,n)p(xtþ1,njxt,n)p(ytþ1,njxtþ1,n)bn(xtþ1,n)P
xt,n ,xtþ1,n[{S,U}2

an(xt,n)bn(xtþ1,n)p(xtþ1,njxt,n)p(ytþ1,njx

In the maximization step, the new set of parameters can be

estimated in a similar way as shown in the previous section. In

this case, the expected values are computed using the

distributions of all patients. As a result, we obtain the following

formulas for the maximization step:

q̂¼
PN
n¼1

PT�1

t¼0
jn(xt,n¼S, xtþ1,n¼U)

PN
n¼1

PT�1

t¼0
gn(xt,n¼S)

,

r̂¼
PN
n¼1

PT�1

t¼0
jn(xt,n¼U , xtþ1,n¼U)

PN
n¼1

PT�1

t¼0
gn(xt,n¼U)

,

p̂¼
PN
n¼1

PT�1

t¼0
1yt,n¼1gn(xt,n¼U)

PN
n¼1

PT�1

t¼0
gn(xt,n¼U)

:

2.4 Patient monitoring policy

The final stage of this method is to devise a policy to decide

when the patient is unstable or at a high enough risk of mental

health crisis to require close monitoring from the clinical teams.

For this, we define a threshold t above which the patient has a

high risk of crisis and needs to be followed closely. To generate
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our results we used t ¼ 0:35, which maximizes the F1 score in the

simulation. This threshold implies an estimated risk of crisis of

35%, but this threshold is adjustable depending on the capacity

of the hospital. In order to implement this monitoring policy in

clinical practice, we may follow the next steps:

1. Estimate the model parameters for each patient. First, the model

parameters for an average patient are estimated using the data

from all the patients in the hospital. These model parameters

are assigned to all patients that have less than 3 months of data,

as they have limited history with the hospital (the minimum

number of months is configurable per hospital). The model

parameters for the patients with more than 3 months of data

are estimated using their individual history of data.

2. Compute the probability of mental health crisis. We can use the

estimated parameters of each patient together with the time since

their last observed crisis to compute the risk that the patient is

going to suffer a mental health crisis during the current week.

3. Decide whether the patient needs close monitoring. If the risk to

suffer a mental health crisis is higher than the threshold t the

patient is given close monitoring. Otherwise, the patient is

deemed stable and they can be followed through less intensive

means.

2.5 Data source

The results shown in this paper are based on simulations and

an anonymised dataset. This anonymised dataset comprises 4,871

mental health crises from 162 psychiatric patients from the

Birmingham and Solihull Mental Health Foundation Trust. The

methods described in this manuscript are general and can be

applied on similar datasets.

The programming language used to make the simulations,

estimate the model parameters and produce the results was

Python 3.9.8.
FIGURE 1

Evolution of the expected value of mental health crisis after the last
crisis based on the parameters estimated using all the patients
(q� ¼ 0:037, r� ¼ 0:86 and p� ¼ 0:95). The green line shows how
the risk of crisis decreases with the number of weeks without crisis
and the red line shows the value below which the patient is
considered stable.
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3 Results

3.1 Policy evaluation with data from a
psychiatric hospital

To evaluate the performance of our method with actual data,

we applied the steps described in Section 2.4 to a cohort of 162

patients that suffered mental health crises between September of

2012 and August 2016. We divided the dataset into the

parameter learning set and the evaluation set. We used the data
FIGURE 2

Estimated model parameters’ distributions. (A) Distribution of
estimated parameter q, (B) distribution of estimated parameter r,
(C) distribution of estimated parameter p.

frontiersin.org

https://doi.org/10.3389/fdgth.2024.1322555
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Garriga et al. 10.3389/fdgth.2024.1322555
from 2012 until the end of 2015 to learn the model parameters

(parameter learning set) and evaluated the performance of the

model using the data from 2016 (evaluation set). The evaluation

set corresponds roughly 30% of the data (note that not all

patients had their first record during September 2012). The

policy threshold was set to 0:35.

We started by estimating the parameters of the average

patient following the procedure described at Section 2.3.2.

We run the Baum–Welch algorithm with 100 different

initial conditions, obtaining p� ¼ 0:95, q� ¼ 0:037 and

r� ¼ 0:86 in all of them. This suggests that we reached the
FIGURE 3

Estimated risk evolution. (A–F) Examples of how the estimated risk of mental
patients that had different model parameters.
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global optimum because all the initializations converged to

the same model parameters.

As shown in Figure 1, with these parameters the risk of mental

health crisis starts at 0:81 during the first week after a crisis and

decreases each week until the 5th one, when the risk stabilises to

0:037. Under this setting and with the policy threshold at 0:35,

the patient should be monitored during the week following a

mental health crisis and would be considered to be stable starting

the second week after their last crisis.

Then, we estimated the parameters for each patient separately.

There were 23 patients (14:1%) that had less than 3 months of
health crisis evolves over the weeks following a mental health crisis for 6

frontiersin.org

https://doi.org/10.3389/fdgth.2024.1322555
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Garriga et al. 10.3389/fdgth.2024.1322555
data at the end of 2015. The parameters estimated using the

complete set of patients were assigned to these patients. For the

remaining patients, we individually estimated the model

parameters based on their particular observed histories. The

distribution of the estimated parameters is shown in Figure 2. The

distribution of estimated q is skewed towards 0, denoting that

most of the patients have a low probability of relapsing once they

are stable. By looking at the distribution of estimated r we see that

a large portion of patients (85%) have a probability of staying in

an unstable state higher than 0.5. This indicates that most patients

tend to stay unstable for more than one week. A significant

portion of patients (11:5%) have r ¼ 0, which means that these

patients usually have isolated crisis and stabilize quickly. Finally,

the distribution of estimated p is very skewed towards 1, which

means that most patients experience a crisis when they are unstable.

The evolution of the estimated risk of mental health crisis over

time depends on the patient’s model parameters. Figure 3 shows

some examples of how this risk evolves after the patient’s last

crisis. Most patients display a pattern similar to A, B and C,

having a fast decrease on the estimated risk during the second

week after the crisis and reaching convergence to a certain risk

level in 3 or 4 weeks. Some other patients, such as examples D, E,

had a slower convergence rate that required more than 7 iterations

to converge. There were three patients that did not display a

significant decrease until 13 weeks after the patient had their

last crisis, a representative example is shown in F. These

patients exhibit the estimated parameters r and q close to 1

and 0 respectively.

In Figure 4, we show the distribution of the number of weeks

that the patient needs close monitoring before is considered stable.

The proposed policy established that 67:3% of the patients should
FIGURE 4

Distribution of the number of weeks that a patient needs to be closely mon
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be closely monitored only one week after their last mental health

crisis, 16:7% during the following two weeks and 4:9% for 3

weeks or more (including 2:5% that should be always monitored).

The remaining 11:1% were patients whose risk of mental health

crisis was lower than the policy threshold at all weeks.

By following this policy, 56 patients would be closely

monitored each week on average (corresponding to 34:3% of

the patients) -close to the 55 (33:7%) mental health crisis that

occur on average-, among which 78:6% would be patients that

suffer a mental health crisis (precision). This policy detects

79:8% of the crises (recall) with a false positive rate of 11:1%,

corresponding to a F1-score (22) of 0:79. Figure 5 shows the

confusion matrix.
3.2 Model learning and policy validation in a
hospital simulation

To test how well our method performs given that our

assumptions hold, we simulated 5 years of data from a

cohort of 3,000 random patients. Each patient has a different

set of model parameters generated at random. We chose the

distributions to generate the model parameters to resemble

the distribution of the estimated model parameters with the

data from the psychiatric hospital (see Figure 2). Specifically,

we sampled ~p, ~q and ~r from a lognormal distribution

according to

~p � logN (0, 1:2)

~q � logN (0, 1)

~r � logN (0, 0:3):
itored before deemed stable.
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FIGURE 5

Confusion matrix of the detected crisis by following the policy with a
threshold of 0:35.

FIGURE 6

Distribution of the model parameters used in the simulation. (A)
Distribution of parameter q, (B) distribution of parameter r, (C)
distribution of parameter p.
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Then, the values generated by ~p, ~q and ~r were scaled and

transformed to get the p, q and r to lie within the range

(0:02, 0:98), (0:02, 0:5) and (0:02, 0:98) respectively. Since we

observed that the estimated value of r for around 10% of the

patients in the real hospital was 0, we selected 300 patients

from the simulation at random and assigned them r ¼ 0. The

distribution of p, q and r are shown in Figure 6.

For each of the patients, we estimated the model parameters by

following the steps described in Section 2.3.1 using the data from

the first 4 years (parameter learning set). We executed the

Expectation and Maximization steps iteratively until convergence

or until 1000 iterations were completed. Convergence was

defined as the point at which the difference in log-likelihood

between two consecutive iterations was less than 10�5.

Remarkably, convergence was achieved in 98:5% of the patients,

requiring no more than 50 iterations in 91:4% of the cases. The

distribution of iteration counts leading to convergence is shown

in Figure 7. The parameter estimation process had a mean

absolute error of 0:03 for the parameter q, 0:06 for the parameter

r and 0:08 for parameter p. The distribution of the errors is

shown in Figure 8.

The estimated model parameters were then used to produce the

predicted risk of mental health crisis using the Equation 1 from

Theorem 1. We computed the predictions for every patient and

every week of the last year of the simulation (evaluation set). For

the purpose of this simulation, we decided that the policy

threshold from which the patients would be considered to be at a

high risk of suffering a mental health crisis was 0:35, which

corresponded to the maximum F1-score (22) (0:74) in the

evaluation set. With this threshold, 77:3% of the patients were

considered stable after a week of not having a mental health

crisis, 9:0% required 2 weeks to be deemed stable, while 12:7%
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were estimated to not need close attention even the first week

after the mental health crisis occurred. The rest of the patients

(1:0%) required 3 or more weeks without a mental health crisis

before they are considered to be stable (0:2%) or were considered

always unstable (0:8%). Figure 9A shows the distribution of the

number of weeks without crisis before a patient is deemed stable.

Under this policy there are on average 608 patients at risk of

suffering a mental health crisis that should be closely monitored

each week, corresponding to 20:3% of the total number of

patients. In the same period of time, there were 602 patients on

average that suffered a mental health crisis (corresponding to
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FIGURE 7

Distribution of the number of iterations required before convergence.
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20:0%), which is close to the number of flagged patients. Among

the cases in which a patient was flagged to be monitored closely,

96:2% were patients at state U . In comparison, the patient was at

state U only in 25:1% of the cases at the week that the patient

was deemed stable and 6:5% of the instances during the

following 4 weeks. Figure 9B shows the percentage of patients at

state U at each week after the one they were considered to be stable.
4 Discussion

In this work, we introduced a novel method to determine the

optimal monitoring duration for a psychiatric patient following a

mental health crisis before being considered stable. Our method

leverages a probabilistic framework utilizing a HMM that solely

relies on the historical record of observed crises. To estimate the

parameters of the HMM we employed the Baum–Welch

algorithm, a well-established technique that remains as the

preferred choice to optimize the parameters of a HMM. These

parameters can be used to infer the probability that a patient is

unstable during the weeks following a mental health crisis and to

estimate the risk of a new crisis occurring at each week. Through

the resolution of a Ricatti difference equation we demonstrated

the existence of a closed-form solution that exhibits exponential

convergence and estimated the probability of a mental health

crisis at each week following the last occurrence. These results

enable the development of a policy for determining the point at

which a patient can be deemed stable, with a minimal risk of

experiencing a new mental health crisis.

When defining the probabilistic model for mental health states,

we established four assumptions. First, we assumed that patients can
Frontiers in Digital Health 10
be in one of two possible mental states during any given week: stable

(S) or unstable (U). These states evolve following a Markov Chain,

providing a simplified framework that reduces the complexity of

the model and makes it more tractable for analysis. Another key

assumption is that the patient’s mental state remains hidden and

is only partially observable through the crisis variable. This

assumption reflects the practical constraints associated with

directly measuring a patient’s mental state. It aligns with real-

world scenarios, where a patient’s state is indirectly inferred

through interactions with the hospital. Furthermore, we assumed

that patients in state S cannot experience a crisis, while those at

state U have a non-zero probability of suffering a crisis. This

assumption aligns with reality and simplifies the modeling of crisis

events by directly linking them to the patient’s current mental

state. Finally, we assumed that p , 1 and q = r as it enables the

solution of the Riccati equation presented in Section 2.2. This is a

reasonable assumption because patients in an unstable state do not

experience crises continuously until they stabilize, and patients are

often more likely to remain in their current state than to switch

(typically, r . q).

The assumptions we made serve the purpose of simplifying a

complex problem, making it tractable for analysis, all while

maintaining consistency with real-world scenario. However, it is

essential to acknowledge potential limitations. Firstly, the

evolution of a patient’s mental state is a complex process and

our model may not fully capture the spectrum of mental states a

patient can experience or the intricacy of their transitions. To

address this, the model could be extended by introducing a

broader range of possible states and considering a higher order

Markov Chain (23), which accounts for the influence of past

mental states. Although this would yield different analytical
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FIGURE 8

Distribution of the errors during the parameter estimation using the
data from the simulation. The error for each of the parameters is
computed as estimated parameter minus the actual value of the
parameter. (A) Distribution of estimation error for parameter q, (B)
distribution of estimation error for parameter r, (C) distribution of
estimation error for parameter p.
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results in Section 2.2, similar steps could be taken, and an adapted

version of the Baum–Welch algorithm could be applied to estimate

the model parameters in higher order HMM (24). However, the

introduction of additional parameters to the model would make

the parameter estimation harder. Secondly, we assumed that the

probability that a patient in state U suffers a mental health crisis

remains constant, yet this probability might increase or decrease

over time in state U. Introducing a time dependence to the

variable p would not alter the solution from Theorem 1, but
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the parameter estimation would change based on the chosen

family of functions used to define this time dependence. Finally,

while mental health crises are the sole observed signal in our

model, clinicians may directly or indirectly observe the mental

state of a patient during regular visits. Theorem 1 provides the

solution when an S state is observed, and the inclusion of these

observations would enhance the estimation of the model

parameters. However, the incorporation of additional relevant

information, such as data from routine visits between crises,

diagnosed disorders, or prescribed medications, would require

further research.

We presented two sets of results. The first set, based on

actual data collected at a psychiatric hospital, aimed to

assess the performance of our method in a real-world

scenario. When we estimated the model parameters

assuming uniform model parameters for all patients, the

predicted risk of mental health crisis dropped substantially

between the first and the second week after the last mental

health crisis, from 0.81 to 0.21. This suggests that by

employing a one-size-fits-all approach, patients can generally

be considered stable after just one week, aligning with

previous literature assumptions (15, 16). However, when we

estimated the parameters individually for each patient,

significant variations emerged. In most cases, p� exceeded

0:9, but r� ranged from 0 in 11:5% of the cases to skewing

towards 1 in the remainder, while q� predominantly skewed

towards 0. Each patient’s risk of crisis exhibited distinct

patterns based on their estimated parameters. Under our

policy, 67:3% of the patients required close monitoring only

during the first week after their last mental health crisis,

16:7% for two weeks, and 4:9% for three weeks or more. A

small percentage of patients (2:5%) maintained a risk above

0.35 even after convergence, requiring continuous close

monitoring. In contrast, 11:1% of patients never exceeded

and did not necessitate monitoring according to our policy.

The application of this policy yielded an F1 score of 0.79 in

the evaluation set, detecting 79:8% of the crises with a false

positive rate of 11:1%. While these outcomes underscore the

method’s strong performance with real-world data and its

potential to determine the optimal monitoring duration for

each patient before deeming them stable, it is essential to

note that these conclusions are drawn from a sample size of

162. This limitation suggests the importance of further

validation with larger patient cohorts.

The second set of results, based on a simulation designed to

validate the performance of our method when our underlying

assumptions are met. In this analysis, we observed rapid

convergence in the parameter estimation step across nearly all

the cases, with a mean absolute error below 0:1 for all three

estimated parameters. However, it is important to note that in a

small number of instances, substantial differences emerged

between our estimated parameters and their actual values.

Leveraging these estimated model parameters, we predicted the

risk of mental health crisis as outlined in Theorem 1 and created

a policy to identify those patients with a risk exceeding a defined

threshold (0.35 in this particular case). By applying this policy,
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FIGURE 9

(A) Distribution of weeks required to consider the patient “stable”. (B) Percentage of U state at each week after the patient is “stable”.
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we obtained an F1 score of 0.74, with 96:2% of the flagged patients

in an unstable state. These results provide compelling evidence

that our method performs as intended when our model

assumptions hold.

Recurring mental health crises pose a profound threat to both

the individual patient’s mental and social well-being, and by

extension, that of their family. With each hospital admission, a

substantial allocation of resources becomes imperative, imposing

a considerable financial burden on mental healthcare facilities.

While hospitals typically implement one-size-fits-all policies

shaped by the needs of the majority of patients, these policies

often overlook the nuanced variations in mental health disorders

and among individual patients. Our innovative data-driven

approach offers a bespoke assessment that meticulously considers
Frontiers in Digital Health 12
these variations, paving the way for more personalized and

effective mental healthcare interventions.

Recurring mental health crises pose a profound threat to both

the individual patient’s mental and social well-being, and by

extension, that of their family. With each hospital admission, a

large quantity of resources needs to be allocated to treat the

patient, imposing a considerable financial burden on mental

healthcare facilities. While hospitals typically implement

one-size-fits-all policies driven by the needs of the majority of

patients, these policies often overlook the nuanced variations in

mental health disorders and among individual patients. Our

data-driven approach provides an individualized assessment that

considers these variations, paving the way for more personalized

and effective mental healthcare interventions.
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