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Validity of resting heart rate
derived from contact-based
smartphone
photoplethysmography compared
with electrocardiography: a
scoping review and checklist for
optimal acquisition and reporting
James D. Mather1, Lawrence D. Hayes1, Jacqueline L. Mair2,3* and
Nicholas F. Sculthorpe1

1Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the
West of Scotland, Glasgow, United Kingdom, 2Future Health Technologies, Singapore-ETH Centre,
Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore, 3Saw
Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
Background: With the rise of smartphone ownership and increasing evidence to
support the suitability of smartphone usage in healthcare, the light source and
smartphone camera could be utilized to perform photoplethysmography
(PPG) for the assessment of vital signs, such as heart rate (HR). However, until
rigorous validity assessment has been conducted, PPG will have limited use in
clinical settings.
Objective: We aimed to conduct a scoping review assessing the validity of
resting heart rate (RHR) acquisition from PPG utilizing contact-based
smartphone devices. Our four specific objectives of this scoping review were
to (1) conduct a systematic search of the published literature concerning
contact-based smartphone device-derived PPG, (2) map study characteristics
and methodologies, (3) identify if methodological and technological
advancements have been made, and (4) provide recommendations for
the advancement of the investigative area.
Methods: ScienceDirect, PubMed and SPORTDiscus were searched for relevant
studies between January 1st, 2007, and November 6th, 2022. Filters were
applied to ensure only literature written in English were included. Reference
lists of included studies were manually searched for additional eligible studies.
Results: In total 10 articles were included. Articles varied in terms of
methodology including study characteristics, index measurement
characteristics, criterion measurement characteristics, and experimental
procedure. Additionally, there were variations in reporting details including
primary outcome measure and measure of validity. However, all studies
reached the same conclusion, with agreement ranging between good to very
strong and correlations ranging from r= .98 to 1.
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Conclusions: Smartphone applications measuring RHR derived from contact-
based smartphone PPG appear to agree with gold standard electrocardiography
(ECG) in healthy subjects. However, agreement was established under highly
controlled conditions. Future research could investigate their validity and
consider effective approaches that transfer these methods from laboratory
conditions into the “real-world”, in both healthy and clinical populations.
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Introduction

Rationale

Photoplethysmography (PPG) can provide important clinical

outcome measures and has been used for the diagnosis, monitoring,

and screening of various diseases and disorders (1).

“Photoplethysmography” consists of “photo,” meaning light;

“plethysmo,” meaning volume; and “graphy” meaning recording (2).

PPG was first suggested as a technique for measuring blood volume

changes by Hertzman in 1937 (3, 4). PPG is a measurement of light

either absorbed (transmissive photoplethysmography) or reflected

(reflective photoplethysmography) by human tissues (1), and is

based on optical properties such as absorption, scattering and

transmission (5). Transmissive PPG measures light that passes

through the various human tissues and is mainly used at the distal

parts of the body where those tissues are thin, for example at the

fingers, toes, and earlobes. Reflective PPG measures scattered light

that irradiates skin tissue and produces a reduced light intensity (6).

While transmissive PPG exhibits more stable PPG performance (7)

since the reflective type of signal is degraded, the latter has the

advantage of a greater number of measurement sites such as the

forehead, wrist, carotid artery, and esophagus, where transmissive

PPG would be difficult (8, 9).

As such, PPG data is explained by Beer-Lambert’s Law which

defines resultant light intensity by the extinction coefficient,

concentration, and optical path length of a medium when light

passes through it (10). The Beer–Lambert law can be described by:

I ¼ I0 � e�1(l) �r�d

Whereby: the transmitted light intensity (I) through a medium

will decrease exponentially in irradiated light intensity (I0) in

relation to the absorption coefficient (ϵ), where (λ) is the specific

absorptivity, characteristic of the traversed tissue and dependent

on the light wavelength λ, ρ is the density of the tissue, and d is

the light pathlength (6).

Since most of these factors are constant for a given tissue the

signal quality is mainly impacted through the later part of the

equation, through manipulation of λ, ρ and d, which can be

modified through measurement site selection, wavelength

selection and contact pressure, resulting in a reduced ϵ, which

could explain why fingers and earlobes are preferred.

Various PPG devices have been utilized in clinical practice (1).

However, since the release of the first iPhone in 2007, smartphones
02
have been widely adopted globally (11) and are now considered a

tool with high utility, avoiding some major pitfalls of traditional

data collection techniques. The traditional approach where an

individual’s health is monitored periodically, often by appointment,

may not be an accurate representation of the possible variations in

physiological measurements that occur longitudinally (12, 13).

Moreover, smartphone technology and embedded cameras allow

PPG acquisition without the need for additional, potentially costly,

external devices (14) and could be suitable for targeting populations

in traditionally underserved groups (15) particularly those whose

demographic, geographic, or economic characteristics negatively

affect health care access and delivery (16, 17). Therefore,

telemedicine technologies are becoming more widely adopted in

practice, especially since the recent COVID-19 pandemic, which

highlighted the need for vital signs evaluated using telemonitoring

(14, 18, 19). As a result, the proliferation of smartphone-based

telemedicine appears to be here to stay and could address the

United Nations Sustainable Development Goals (UN SDGs) (20),

in particular UN SDG 3 (21).

Smartphone PPG has been previously utilized to estimate resting

heart rate (RHR) through the measurement of distal pulse rate (PR)

at rest, during exercise, and whilst completing mental tasks (1).

However, at the time of writing, there is no consensus on what

metric should be used to establish the validity of smartphone-based

PPG or under what conditions. Another issue is that to convert the

PPG signal, a mathematical algorithm is required which not only

affects smartphone performance but also validity and reliability. This

is problematic given the proliferation of telemedicine, and it is

therefore essential mobile health (mHealth) technologies are

considered reliable and valid compared to gold standard

measurements before universal adoption (22). In this context, De

Ridder et al. (23) conducted a meta-analysis of articles published

between 1st January 2009 and 7th December 2016 investigating the

use of smartphones to measure PR by performing PPG in

comparison with a range of methods, including ECG, pulse oximetry

and radial pulse. Although these methods suffer various pitfalls,

comparisons with multiple validation methods could strengthen

smartphone device and application validity. Results revealed good

agreement between smartphone-derived (HR-PPG) and validated

method-derived RHR. These authors therefore concluded that RHR

obtained from a smartphone PPG signal could be used as an

alternative to traditional methods, such as ECG, in an adult

population, in the right context. However, De Ridder et al. (23)

highlighted several limitations to the included studies. Firstly, there

was high statistical heterogeneity between studies, ostensibly due to
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participant characteristics, measurement conditions, and the

smartphone devices utilized (23). Secondly, the latest IOS device

reviewed was the iPhone 5 (released 2012) and the latest android was

the Samsung Galaxy S4 (released 2013). Emerging evidence suggests

advancements in technology, such as the availability of various

camera positions (i.e., front-facing vs. rear-facing) and the advent of

multiple lenses, could result in improvements in PPG acquisition (14).

These technological enhancements are promising for the

telemedicine sphere as HR-PPG could be considered a population-

level biomarker, utilized for screening, surveillance, and to monitor

responses to policy interventions in epidemiology and public

health. Population-level biomarkers are easy to measure in the

real-world, low-cost and scalable (24). RHR has considerable

population-level applicability and can predict adverse outcomes

and the development of disease. As smartphone ownership is

increasing [80% of over 65-year-olds own a smartphone in the UK

(25, 26)], and smartphone HR-PPG removes the barrier to

scalability of “wearable” ownership, valid contact-based HR-PPG

from a smartphone device has significant scope for public health

surveillance. However, before that goal is reached, it is imperative

to consider the existing literature in terms of HR-PPG validity.

Two approaches of measuring PR via PPG are known: contact

and non-contact. With contact PPG, PR is measured by placing a

finger on the phone rear camera, while in non-contact, imaging

photoplethysmography (iPPG) is extracted from the face, without

the need for direct skin contact. iPGG has some advantages over

contact-based PPG, such as detecting PR in crowds and at long-

distance (27, 28). However, in general, contact PPG exhibits better

accuracy than non-contact PPG (29). Considering that contact-

based PPG is generally more accurate than non-contact PPG, and

our group’s interest in this methodology, we were interested in the

validity of RHR acquisition from PPG utilizing contact-based

smartphone devices.
Objectives

As a result of the importance of using validated PPG for

telemedicine, and the rapidly improving technology, we aimed to

conduct a scoping review assessing the validity of RHR acquisition

from PPG (referred to as HR-PPG) utilizing contact-based

smartphone devices against gold standard ECG (referred to as HR-

ECG). Our four specific objectives of this scoping review were to 1)

conduct a systematic search of the published literature concerning

contact-based smartphone device-derived PPG, 2) map study

characteristics and methodologies, 3) identify if methodological and

technological advancements have been made, and 4) provide

recommendations for the advancement of the investigative area.
Methods

Protocol and registration

The review was not preregistered, as scoping reviews are not. This

review was conducted and reported in accordance with the Preferred
Frontiers in Digital Health 03
reporting items for systematic reviews and meta-analyses extension

for scoping reviews (PRISMA-ScR) guidelines (30).
Eligibility criteria

Studies were included if the measurement of HR-PPG was

conducted via the front or rear facing camera of a smartphone

by contact-based PPG. Only studies compared with the gold

standard measurement [electrocardiography (ECG)], were

included. Studies were excluded if the index measurement was

conducted with a device connected to a smartphone, such as a

mobile sensor, medical device or wearable device; the paper did

not include validity assessment of HR-PPG and HR-ECG as an

outcome measurement; the study used a clinical population (we

assumed healthy population unless stated otherwise); the paper

was not an original article (i.e., utilized a database from a

secondary source); the paper was a review; there was no abstract

or full text available.
Literature search

We conducted a systematic literature search of ScienceDirect,

PubMed and SPORTDiscus from January 1st, 2007, to November

6th, 2022, with the following search key: (((((“validity”) AND

(“mobile”)) AND (“photoplethysmography”)) OR (“PPG”)) AND

(“heart rate”)) NOT (“wearable”) AND [2007:2022(pdat)], which

were developed through examination of previously published original

and review articles. Filters were applied to ensure only literature

written in English were included. Reference lists of included studies

were manually searched for additional eligible studies.
Study selection

Studies were identified by the first author and evaluated by

JDM and LDH independently and compared in an unblinded

and standardized manner. Once database searches were complete,

all studies were downloaded to a single reference list [utilizing

Zotero software (version 6.0.26)] and duplicates were removed.

First, titles and abstracts were screened for eligibility (JDM). Full

text articles were then read and coded in relation to exclusion

criteria, utilizing “tags” in Zotero [version 6.0.26], which was

reviewed by the second author (LDH). This process involved a

thorough assessment of all eligibility criteria with authors JDM

and LDH confirming inclusion and exclusion. Additionally,

disagreements were addressed by a third reviewer (NFS).
Data extraction

Data extracted from each study included author(s), sample size,

participant sex, country of study, age, skin pigmentation, if

participants were considered healthy, smartphone model, name

of application utilized, whether the application was commercially
frontiersin.org
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available, index measurement sampling rate, camera position and

resolution, flash (torch) settings, channel used for computations,

ECG device utilized, electrode placement, ECG processing

information, instructions given to participants, dietary control,

participant posture, region of interest, breathing pattern,

environmental conditions, stabilization period, duration of

measurement, number of attempts or trials, primary outcome

measures and measures of validity.
TABLE 1 Items to consider when reporting validity protocols for the acquisit

Domain Item
Target
population

1 BMI (kg/m2)

2 Body height (m or cm)

3 Skin tone (State scale utilized and distribution)

4 Sample size (number of subjects)

5 Participant age (years)

6 Participant sex (n =male, n = female)

7 Healthy vs. clinical [if clinical report condition and medicat

8 Sampling method (random, convenient etc.)

Criterion
measure

9 ECG manufacturer’s details (model and brand)

10 Number of leads

11 Number of channels

12 Pre-measurement preparation (i.e., skin preparation procedu

13 Placement according to manufacturer’s details or state if oth

14 ECG sampling frequency (Hz)

15 Type of electrode (make, wet vs. dry)

Index measure 16 Device manufacturer’s details

17 Application name, version and commercial availability

18 Sampling rate (Hz)

19 Camera(s) utilized (i.e., front- and/or rear-facing)

20 Camera resolution (pixels)

21 Torch/flash setting during measurements

22 Wavelength channel used for computations (RGB)

Testing
conditions

23 Clear and concise participant instructions

24 State dietary control (duration, hours prior to testing)

25 Report medication (including dosage)

26 Any physical exercise restrictions imposed (report in hours

27 Participant posture(s)

28 Body region(s) measured

29 Breathing pattern (spontaneous vs. metronome rate)

30 Environmental conditions (Environmental noise, temperatur
environment)

31 Stabilization period (minutes or seconds)

32 Duration of measurement (minutes or seconds)

33 Number of attempts

34 Artificially induced motion artifact (MA) should describe the
the MA induced (Hz)

35 Define mental stress tasks (if any) (i.e., mental arithmetic/m

36 State if criterion and index measurements were simultaneou

37 Testing conditions reviewed with expert input (i.e., physiolo

Data processing 38 State PPG noise removal (motion artifact, baseline wandering
etc.)

39 State cut off frequencies for noise removal.

40 State pre-processing techniques (frequency filtering, empiric

41 State method of peak detection (zero-crossing, local maxima

42 Report any PPG waveform reconstruction.

Statistical
analysis

43 Report correlation coefficient results utilizing guidelines pro

44 Report Post-hoc comparisons utilized.

45 Utilize inferential statistics for sample sizes >30 participants

Frontiers in Digital Health 04
Outcome measures

Our primary interests were measurements of validity and mean

differences between heart rate via gold standard ECG measurement

(HR-ECG), and pulse rate measured by contact-based smartphone

PPG (HR-PPG). Additionally, issues that arose regarding the

reporting and conducting of HR-PPG validity assessment were

compiled into a checklist (Table 1).
ion of RHR via contact-based PPG, using smartphone devices.

Description Tick
Ο

Ο

Ο

Ο

Ο

Ο

ion(s)] Ο

Ο

Ο

Ο

Ο

re) Ο

erwise Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

Ο

prior) Ο

Ο

Ο

Ο

e, ambient lighting conditions, indoors, outdoors, laboratory vs. free-living Ο

Ο

Ο

Ο

method used to induce the MA (i.e., shaking the device) and the frequency of Ο

irror tracing) Ο

s Ο

gist) Ο

and hypoperfusion) technique(s) (i.e., frequency domain filter, high-pass filter Ο

Ο

al mode decomposition, wavelet transform etc.). Ο

or minima, adaptive threshold, machine learning etc.). Ο

Ο

posed by Vincent (1999) or justify otherwise. Ο

Ο

. Ο
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Results

Study selection

Following initial database searches, 1,401 articleswere identified, and

1,365 titles and abstracts were screened once duplicates (n = 36) were

removed. These were screened for inclusion, resulting in 251 full text

articles being screened. Of these 247 were excluded and four remained.

A further six articles were manually identified by consulting reference

lists of the included four articles, resulting in a further six articles, and

therefore a total of 10 articles were included in analysis (Figure 1).
Study characteristics

Of the ten studies included in the review, all (100%) reported the

country of study, which were upper-middle to high income countries.
FIGURE 1

Records identified through reference list searching.
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Sample sizes were reported in all studies (100%) (11, 31–39) and

ranged from one to 50 participants. Seven (70%) reported the

number of male and female participants, of which most were male,

and seven (70%) studies reported participant age (33–39). Only one

study (10%) reported participant skin colour (36) and five (50%)

reported participants’ health status (11, 34–37) (Table 2).
Index measurement characteristics

Index measurement characteristics are displayed in Figure 2A and

Table 3 (measurement settings) and Table 4 (device hardware

specifications). Eight studies (80%) used a single smartphone for

data collection (11, 32–37, 39) and two studies (20%) utilized two

or more devices (31, 38). Four articles (40%) stated the name of the

smartphone application (33, 34, 36, 38), three (30%) of which were

commercially available (33, 34, 38). In the remaining seven studies

(70%), commercial availability was not reported (11, 31, 32, 35–37,
frontiersin.org
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TABLE 2 General study information of investigations concerning smartphone rear-facing PPG measurement and ECG for the determination of heart rate
(pulse rate) and descriptive statistics of participants.

Reference Sample
size

Sex (M/F) Country of study Participant age
(mean ± SD or

range)

Skin color Healthy
population

Bánhalmi et al., (37) 50 39/11 Hungary 27 Not reported Y

Bolkhovsky, Scully and
Chon (31)

22 Not reported United States Not reported Not reported Not reported

Drijkoningen et al., (11) 28 Not reported Belgium Not reported Not reported Y

Matsumura and
Yamakoshi (33)

12 7/5 Japan 21–24 Not reported Not reported

Matsumura et al., (34) 12 12/0 Japan 20.6 ± 0.76 Not reported Y

Nam et al., (35) 11 9/2 Korea, United States and China 20–40 Not reported Y

Nemcova et al., (38) 22 9/13 Czech Republic 18–78 Not reported Not reported

Nemcova et al., (39) 12 6/6 Czech Republic 21–61 Not reported Not reported

Scully et al., (32) 1 Not reported United States Not reported Not reported Not reported

Yan et al., (36) 40 20/20 China 24.7 ± 5.2 von Luschan skin color, median
[IQR (Interquartile range)] Male:
23.5 (22–24), Female: 19 (18–25.75),
All: 23 (19–25), P = .19.

Y

FIGURE 2

Number of papers reporting index (A), criterion (B) and environmental (C) characteristics.

Mather et al. 10.3389/fdgth.2024.1326511
39). No studies (0%) reported beat detection algorithm. Eight studies

(80%) reported which camera recorded smartphone PPG

measurements (32–39) of which the rear-facing camera was utilized

for all with torch (flash) turned on. Two studies (20%) failed to

report camera location and torch (flash) settings (11, 31). Camera

resolution was reported in six studies (60%) (32–35, 37, 39) and

varied in resolution. In the remaining studies resolution was not

reported (40%) (11, 31, 36, 38). Smartphone sampling rate was

reported in nine studies (90%) (11, 31–35, 37–39) and one study

(10%) did not report sampling rate (36). Of the nine studies that

did report sampling rate six (60%) recorded at 30 Hz (11, 33–35,
Frontiers in Digital Health 06
38, 39) one (10%) recorded at 30 Hz and 20 Hz, which was

dependent on smartphone device (31), one study (10%) recorded

at 24.99 Hz (32) and the final study (10%) that reported sampling

rate recorded in “slow-motion” capture mode at 240 Hz (37). Nine

studies (90%) reported the color channel used during analysis (11,

31–35, 37–39), and in one study (10%) it was not reported (36).

Of these studies two studies (20%) utilized red, green and blue

color channels (34, 38). Three studies (30%) utilized green only

(32, 33, 35). One study (10%) utilized red and green depending on

smartphone used (31). Two studies (20%) utilized red only (37,

39). Finally, one study (10%) converted to a single grey value (11).
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TABLE 4 Index device hardware technical specifications for included studies.

Reference Model Display Chip Camera Video Recording

Bánhalmi et al.,
(37)

iPhone 6 Retina HD display A8 chip with 64-bit
architecture

8-megapixel iSight camera with 1.5 µ pixels 1080 p HD video recording
(30 fps or 60 fps)4.7-inch (diagonal) LED-

backlit widescreen Multi-
Touch display with IPS
technology

True tone flash

Autofocus with Focus Pixels Slo-mo video (120 fps or
240 fps)

ƒ/2.2 aperture Time-lapse video with
stabilization

Optical image stabilization (iPhone 6 Plus only) Cinematic video stabilization

Continuous autofocus video

Take still photos while
recording video

M8 motion coprocessor

Improved face detection

True tone flash 3x zoom

Five-element lens Video geotagging

1,334-by-750-pixel
resolution at 326 ppi

Hybrid IR filter

1,400:1 contrast ratio
(typical)

Backside illumination sensor

500 cd/m2 max brightness
(typical)

Sapphire crystal lens cover

Full sRGB standard Auto image stabilization

Dual-domain pixels for wide
viewing angles

Auto HDR for photos

Face detection

Exposure control

Panorama (up to 43 megapixels)

Burst mode

Tap to focus

Fingerprint-resistant
oleophobic coating on front

Photo geotagging

Timer mode
Support for display of
multiple languages and
characters simultaneously

Display zoom

Reachability

Bolkhovsky,
Scully and Chon
(31)

iPhone 4S Retina display 8-megapixel camera

3.5-inch (diagonal) widescreen
Multi-Touch display

Autofocus

Tap to focus

Face detection in still images

LED flash

960-by-640-pixel resolution
at 326 ppi

Video recording, HD (1080 p) up to 30 frames
per second with audio

800:1 contrast ratio (typical)

500 cd/m2 max brightness
(typical)

Fingerprint-resistant
oleophobic coating on front
and back

Video stabilization

Front camera with VGA-quality photos and
video at up to 30 frames per second

Support for display of
multiple languages and
characters simultaneously

Photo and video geotagging

Bolkhovsky, Scully
and Chon (31)

Motorola
Droid

Information not available Information not
available

Information not available Information not available

Drijkoningen
et al., (11)

Samsung
Galaxy S4

Technology CPU Type Camera Resolution (Rear) Video Codec

FHD sAMOLED Quad CMOS, 13MP Camera Resolution (Front) MPEG4, H.263, H.264, DivX,
DivX3.11, VC-1, VP8, WMV7
/ 8, Sorenson Spark, HEVC

Colour Depth CPU Speed

16M 1.9GHz CMOS, 2MP Flash

Size Power LED (1EA) Auto Focus Yes Video Resolution

5″ Full HD (1080 p) Video
Playback

Resolution Video Frame rate

1,920 × 1,080 30fps

Audio Codec

MP3, AAC, AAC+, eAAC+,
AMR-NB / WB, OGG,
FLAC, AC-3, apt-X
(Bluetooth)

(Continued)
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TABLE 4 Continued

Reference Model Display Chip Camera Video Recording

Matsumura and
Yamakoshi (33)

iPhone 4S Retina display 8-megapixel camera Information not available

3.5-inch (diagonal)
widescreen Multi-Touch
display

Autofocus

Tap to focus

960-by-640-pixel resolution
at 326 ppi

Face detection in still images

800:1 contrast ratio (typical) LED flash

500 cd/m2 max brightness
(typical)

Video recording, HD (1080 p) up to 30 frames
per second with audio

Fingerprint-resistant
oleophobic coating on front
and back

Video stabilization

Front camera with VGA-quality photos and
video at up to 30 frames per second

Support for display of
multiple languages and
characters simultaneously

Photo and video geotagging

Matsumura et al.,
(34)

iPhone 4S Retina display 8-megapixel camera Information not available

3.5-inch (diagonal)
widescreen Multi-Touch
display

Autofocus

Tap to focus

Face detection in still images
960-by-640-pixel resolution
at 326 ppi

LED flash

Video recording, HD (1080 p) up to 30 frames
per second with audio800:1 contrast ratio (typical)

500 cd/m2 max brightness
(typical)

Video stabilization

Front camera with VGA-quality photos and
video at up to 30 frames per secondFingerprint-resistant

oleophobic coating on front
and back

Photo and video geotagging

Support for display of
multiple languages and
characters simultaneously

Nam et al., (35) HTC One
M8

5.0 inch Qualcomm®

SnapdragonTM 801,
quad-core CPUs

Primary camera: Information not available

Full HD 1080 p HTC UltraPixelTM camera

BSI sensor

pixel size 2.0 um

sensor size 1/3"

ƒ/2.0
28 mm lens

HTC ImageChip 2.

1080 p Full HD video recording with HDR video

Secondary camera:

Capture depth information

Nemcova et al.,
(38)

Lenovo
Vibe S1

Capacitive touchscreen, MT6752 64-bit 1.7 GHz
Octa-Core

Rear: Information not available

16M colors, 5-point
multitouch 5.0" (1,920 ×
1,080) Full HD

13MP AF with dual-color flash,

PDAF, BSI sensor

IPS display @ 440 ppi

Honor 7
Lite

Size CPU Model Triple Rear Camera Information not available

6.5 inches, Aspect Ratio Qualcomm Snapdragon
480 Plus

50 MP camera ( f/1.8)+depth camera ( f/2.4)
+Macro camera ( f/2.4)20:9, Colour

16.7 million colours, Type CPU Type

TFTLCD, Resolution Octa-core processors

1,600*720, Gestures CPU Dominant
Frequency

Video Shooting

Multi-touch geatures, up to
10 touch points supported

2*A76*2.2GHz +
6*A55*1.9GHz

Support 1080 P video shooting

GPU Focus Mode

Up to 8x digital zoom.

Image Resolution

Support up to 4,096 × 3,072 pixelsAdrenoTM 619

*The actual image resolution may vary
depending on the shooting mode.

Keyboard Type

Gestures, Three-key
navigation, Navigation
dock

Video Resolution

Support up to 1,920 × 1,080 pixels
Features *The actual video resolution may vary

depending on the shooting mode.

(Continued)
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TABLE 4 Continued

Reference Model Display Chip Camera Video Recording

Face Recognition/One-
Handed mode/App
Lock/App Twin

Rear Flashlight

Support

Capture Mode

Rear Camera: Aperture, Night, Portrait
(including beauty mode and bokeh), Pro,
Panorama, HDR, Stickers, time-lapse
photography, Super macro, High-res, dual-view,
story, Capture smile

iPhone SE Retina HD display A15 Bionic chip 12MP Main camera 4K video recording at 24 fps,
25 fps, 30 fps or 60 fps4.7-inch (diagonal)

widescreen LCD Multi-
Touch display with IPS
technology

6-core CPU with 2
performance and 4
efficiency cores

ƒ/1.8 aperture

Digital zoom up to 5x 1080 p HD video recording
at 25 fps, 30 fps or 60 fps

4-core GPU Portrait mode with Depth Control 720 p HD video recording at
30 fps

16-core Neural Engine Extended dynamic range for
video up to 30 fps

Portrait Lighting with six effects Optical image stabilisation
for video

1334 × 750-pixel resolution
at 326 ppi

Digital zoom up to 3x

LED true tone flash

Optical image stabilisation QuickTake video

Slo-mo video support for
1080 p at 120 fps or 240 fps

1,400:1 contrast ratio
(typical)

True tone flash with slow sync

Time-lapse video with
stabilisation

True tone display

Night mode Time-lapse

Cinematic video stabilisation
(4K, 1080 p and 720 p)

Wide colour display (P3) Panorama (up to 63MP)

Haptic Touch Sapphire crystal lens cover
Continuous autofocus video625 nits max brightness

(typical)
Autofocus with Focus Pixels

Take 8MP still photos while
recording 4K video

Fingerprint-resistant
oleophobic coating

Wide colour capture for photos and Live Photos Playback zoom

Video formats recorded:
HEVC and H.264Display zoom Deep Fusion

Stereo recordingReachability Smart HDR 4

Photographic Styles

Advanced red-eye correction

Auto image stabilisation

Burst mode

Photo geotagging

Image formats captured: HEIF and JPEG

Lenovo S60 Capacitive touchscreen, Qualcomm®

SnapdragonTM
Rear: Information not available

16M colors, MSM8916 1.2 GHz 64-
bit Quad Core

13MP auto-focus, LED Flash

5-point multitouch 5.0" HD
(1280 × 720)

IPS display

Xiaomi
Redmi 3

Information not available Information not
available

Information not available Information not available

Samsung
Galaxy S4

Technology CPU Type Camera Resolution(Rear) Video Codec

FHD sAMOLED Quad CMOS, 13MP Camera Resolution(Front) MPEG4, H.263, H.264, DivX,
DivX3.11, VC-1, VP8,
WMV7 / 8, Sorenson Spark,
HEVC

Colour Depth CPU Speed

16M 1.9GHz CMOS, 2MP Flash

Size Power LED (1EA) Auto Focus Yes

5" Video Resolution

Resolution Full HD (1080 p) Video
Playback1,920 × 1,080
Video Frame rate

30fps

Audio Codec

MP3, AAC, AAC+, eAAC+,
AMR-NB / WB, OGG,
FLAC, AC-3, apt-X
(Bluetooth)

(Continued)
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TABLE 4 Continued

Reference Model Display Chip Camera Video Recording

Samsung
Galaxy J5

Size (Main Display) CPU Speed Main Camera—Resolution Information not available

5.2” (131.8 mm) 1.6GHz

Resolution (Main Display) CPU Type CMOS 13.0 MP

720 × 1,280 (HD) Octa-Core Main Camera—F Number

F1.7

Technology (Main Display) Main Camera—Auto Focus

Super AMOLED

Color Depth (Main Display) Yes

16M Front Camera—Resolution

S Pen Support

No CMOS 13.0 MP

Front Camera—F Number

F1.9

Main Camera—Flash

Yes

Video Recording Resolution

FHD (1,920 × 1,080) @30fps

Lenovo
Vibeshot

Capacitive touchscreen, 64-bit Qualcomm®

SnapdragonTM 615
1.7 GHz

Rear: Information not available

16M colors, 5-point
multitouch 5.0" (1,920 ×
1,080) Full HD

16MP AF with true 16:9 BSI

Octa Core sensor, tricolor flash, OIS,

IR sensor, 6P lens with blue glass

IPS display @ 440 ppi filter and sapphire cover

Lenovo
S750

Information not available Information not
available

Information not available Information not available

Huawei P10 Information not available Information not
available

Information not available Information not available

Samsung
Galaxy A3

Size (Main Display) CPU Speed Main Camera—Resolution Information not available

4.7" (120.4 mm) 1.5GHz CMOS 13.0 MP

Resolution (Main Display) CPU Type Main Camera—F Number

720 × 1,280 (HD) Quad-Core f/1.9

Main Camera—Auto Focus

Yes

Front Camera—Resolution

CMOS 5.0 MP

Technology (Main Display) Front Camera—F Number

Super AMOLED f/1.9

Color Depth (Main Display) Main Camera—Flash

16M Yes

S Pen Support Video Recording Resolution

No FHD (1,920 × 1,080) @30fps

iPhone 6S Retina HD display with 3D
Touch

A9 chip with 64-bit
architecture

12-megapixel camera 4K video recording at 30 fps

Embedded M9 motion
coprocessor

Live Photos with stabilization 1080 p HD video recording
at 30 fps or 60 fps

4.7-inch (diagonal)
widescreen LCD Multi-
Touch display with IPS
technology

720 p HD video recording at
30 fps

Autofocus with Focus Pixels

Optical image stabilization
for video (iPhone 6s Plus
only)

Optical image stabilization (iPhone 6s Plus only)

1,334-by-750-pixel
resolution at 326 ppi

True tone flash

Slo-mo video support for
1080 p at 120 fps and 720 p
at 240 fps

True tone flash

Panorama (up to 63 megapixels)

Time-lapse video with
stabilization

1,400:1 contrast ratio
(typical)

Cinematic video stabilization
(1080 p and 720 p)

Auto HDR for photos

Exposure control
Continuous autofocus video

Burst mode Noise reduction

Take 8-megapixel still photos
while recording 4K video

500 cd/m2 max brightness
(typical)

Timer mode

ƒ/2.2 aperture Playback zoom

Five-element lens 3x digital zoom

(Continued)
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TABLE 4 Continued

Reference Model Display Chip Camera Video Recording

5x digital zoom Face detection

Hybrid IR filter Video geotagging

Backside illumination sensorFull sRGB standard

Sapphire crystal lens cover

Dual-domain pixels for wide
viewing angles

Auto image stabilization

Local tone mapping

Noise reduction

Face detection

Photo geotaggingFingerprint-resistant
oleophobic coating on front

Support for display of
multiple languages and
characters simultaneously

Display zoom

Reachability

Nemcova et al.,
(39)

Xiaomi Mi9 Information not available Information not
available

Information not available Information not available

Scully et al., (32) Motorola
Droid

Information not available Information not
available

Information not available Information not available

Yan et al., (36) iPhone 6S Retina HD display with 3D
Touch

A9 chip with 64-bit
architecture

12-megapixel camera 4K video recording at 30 fps

Embedded M9 motion
coprocessor

Live Photos with stabilization 1080 p HD video recording
at 30 fps or 60 fps

4.7-inch (diagonal)
widescreen LCD Multi-
Touch display with IPS
technology

720 p HD video recording at
30 fps

Autofocus with Focus Pixels

Optical image stabilization for
video (iPhone 6s Plus only)

Optical image stabilization (iPhone 6s Plus only)

1,334-by-750-pixel
resolution at 326 ppi

True tone flash

Slo-mo video support for
1080 p at 120 fps and 720 p
at 240 fps

True tone flash

Panorama (up to 63 megapixels)

Time-lapse video with
stabilization

1,400:1 contrast ratio
(typical)

Cinematic video stabilization
(1080 p and 720 p)

Auto HDR for photos

500 cd/m2 max brightness
(typical)

Exposure control Continuous autofocus video

Burst mode

Timer mode Noise reduction

ƒ/2.2 aperture Take 8-megapixel still photos
while recording 4K videoFive-element lens

5x digital zoom

Hybrid IR filter Playback zoom

Backside illumination sensor 3x digital zoom

Full sRGB standard Face detectionSapphire crystal lens cover

Auto image stabilization

Dual-domain pixels for wide
viewing angles

Local tone mapping Video geotagging

Noise reduction

Fingerprint-resistant
oleophobic coating on front

Face detection

Photo geotagging
Support for display of
multiple languages and
characters simultaneously

Display zoom

Reachability

Mather et al. 10.3389/fdgth.2024.1326511
Criterion measurement characteristics

Criterion measurement characteristics are reported in Figure 2B

and Table 5. 12-Lead ECG was used in two studies (20%) (11, 36),

three studies (30%) used 5-lead (31, 32, 35), one study (10%) used 4-

lead (37), two studies (20%) used 2-lead (33, 34), and two studies

(20%) used 1-lead (38, 39). Six studies (60%) reported ECG

electrode placement and sampling frequency (32, 34, 35, 37–39).
Frontiers in Digital Health 12
Experimental procedure characteristics

Environmental procedure characteristics are reported in

Figure 2C and Table 6. Nine studies (90%) provided participant

instructions (11, 31–38) and two studies (20%) had dietary

restrictions (33, 34). Participant postures were stated in six studies

(60%) (31, 33–35, 37, 39). Of these studies four (40%) were

measured in seated posture (33–35, 37) and two studies (20%)
frontiersin.org
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TABLE 5 Methodology of included studies.

Reference Electrocardiogram (ECG) utilized Electrode placement ECG Processing information
Bánhalmi et al., (37) 4-lead Cardiax PC-ECG device Four electrodes connected to the four

limbs of the participants (3 channel data)
∼500 Hz

Bolkhovsky, Scully and Chon (31) 5-lead ECG HP 78354A system Not reported Not reported

Drijkoningen et al., (11) 12-lead ECG Not reported Not reported

Matsumura and Yamakoshi (33) 2-lead ECG Not reported Not reported

Matsumura et al., (34) 2-lead ECG (Kanazawa University) Spot electrode at the wrist, left leg and
body earth.

All signals were sampled using an A/D
converter at a rate of 1 kHz with a resolution
of 16 bits, and stored digitally in a computer

Nam et al., (35) 5-lead ECG HP 78354A system Standard 5-lead configuration 1,000 Hz

Nemcova et al., (38) 1-lead Bittium Faros 180 ECG Recording of one bipolar lead of ECG
signal from the chest

Sampling frequency of up to 1,000 Hz

Nemcova et al., (39) 1-lead Bittium Faros 360 ECG Electrodes attached to the chest according
to device manual

1,000 Hz

Scully et al., (32) 5-lead ECG HP 78354A system Standard 5-lead configuration 400 Hz

Yan et al., (36) 12-lead ECG (GE Series 2,000) Not reported Not reported

Hz, hertz.

Mather et al. 10.3389/fdgth.2024.1326511
were measured participants in two or more postures (31, 39). All

studies (100%) reported measurement site (11, 31–39). Of these

studies four (40%) were measured at the index finger (left) (32–

35), two (20%) at the index finger (right) (11, 31), and four (40%)

at the index finger (left or right not reported) (36–39). Two studies

(20%) reported breathing pattern (32, 35) and participants were

instructed to breathe at various metronome rates. Environmental

conditions were reported in three studies (30%) (33, 34, 36) and

not reported in the remaining seven (70%) (11, 31, 32, 35, 37–39).

Stabilization period was reported in five studies (50%) (33–37). Of

these studies one (10%) allowed participants 10 min for

stabilization (33), two studies (20%) allowed participants 5 min (34,

36), one (10%) was permitted 20 s (37), and one (10%) was given

an unspecified stabilization period (35). All other studies (50%) did

not report stabilization period (11, 31, 32, 38, 39). Measurement

duration was reported in all ten studies (100%) (11, 31–39).

Finally, the number of attempts allowed per participant was

reported in five studies (50%) (31–35). No study reported skin

temperature and one study (38) measured contact pressure using

the strain gauge array under the screen (3D Touch) but this was

for the estimate of BP, and the actual force values were not reported.
Primary outcome measure(s) and results of
included studies

Seven studies (70%) reported mean and standard deviation for

HR acquisition via criterion ECG (31–36, 38) and eight studies

(80%) reported mean and standard deviation for HR acquisition

via smartphone PPG measurement (31–36, 38, 39). Only one

study (10%) reported the mean difference and its significance

between criterion and index measurement (36) (Table 7).
Measures of validity

Correlations were reported in seven studies (70%) (11, 31, 34–38),

Limits of agreement (LoA) (Bland-Altman method) were calculated
Frontiers in Digital Health 13
in seven studies (70%) (11, 31, 33–37), ANOVA, Tukey HSD and

geometric mean regression (GMR) were utilized concurrently in

one study (10%) (34), Wilcoxon ranked sum test, were reported in

two studies (20%) (36, 38), paired student t test were reported in

one study (10%) (36), one study (10%) reported mean ± SD only

(32) and one study (10%) utilized a non-numeric technical

validation method of five expert reviewers (39). All studies (100%)

(11, 31, 33–39) reported agreement, ranging from good to very

strong and correlations ranging from r = .98 to 1, between HR-PPG

and HR-ECG utilizing the methods outlined above (Table 8).
Discussion

Principle findings

This scoping review provided an overview of existing literature

regarding the acquisition and validity of HR-PPG, in healthy

subjects at rest utilizing smartphone devices, with the aim of

facilitating improvements in future research and clinical practice.

In relation to our objective of assessing the validity of HR-PPG

acquisition from PPG measurement utilizing contact-based

smartphone devices, this review highlighted several methodological

and reporting discrepancies between studies which can lead to

different results that do not reflect outcome of comparison (22).

As there is currently no consensus on what metric should be used

to establish the validity of smartphone-based PPG or under what

conditions, the reviewed research appears to have utilized an

exploratory approach. However, with the rapid development in

technology and an improved understanding of this research area,

we have highlighted key considerations for reporting contact-based

PPG RHR acquisition with smartphones (Table 1).
Target population considerations

With regards to the general study information reported

(Table 2) results revealed only one study (10%) (37) met the
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TABLE 7 Primary outcome measure(s) and results of included studies. .

Reference Device/conditions N ECG
(Mean ± SD)

PPG (Mean ± SD) Mean Diff. P-Value

Bánhalmi et al., (37) iPhone 6 50 Not reported Not reported Not reported Not reported

Bolkhovsky, Scully and Chon (31) iPhone 4s supine: 9 70.8 ± 12.2 70.7 ± 12.1 Not reported Not reported

iPhone 4s tilt: 9 75.8 ± 12.0* 75.8 ± 11.9*

Droid supine: 13 71.9 ± 7.9 71.7 ± 7.9

Droid tilt: 13 77.4 ± 6.9* 77.1 ± 7.3*

Drijkoningen et al., (11) Samsung Galaxy S4 28 Not reported Not reported Not reported Not reported

Matsumura and Yamakoshi (33) Rest 12 71.0 ± 9.6 71.2 ± 9.8 Not reported Not reported

MA 12 86.7 ± 14.7 86.8 ± 14.6

MT 12 75.1 ± 12.3 75.4 ± 12.1

Matsumura et al., (34) HR-BL 12 69.8 ± 7.7 Red: 69.8 ± 7.7, Green: 70.0 ± 7.8,
Blue: 69.9 ± 7.9

Not reported Not reported

HR-HMA 12 70.4 ± 8.2 Red: 70.2 ± 8.3, Green: 70.5 ± 8.3,
Blue: 70.4 ± 8.6

HR-VMA 12 70.3 ± 9.3 Red: 70.3 ± 9.1, Green: 70.4 ± 9.2,
Blue: 70.5 ± 9.2

Nam et al., (35) HTC One M8 (All BR at rest) 11 74.9 ± 7.4 74.8 ± 8.0 Not reported Not reported

Nemcova et al., (38) Training dataset 30 83.97 83.4 Not reported Not reported

Testing dataset (Lenovo Vibe S1) 10 71.3 71.8

10 70.7 69.3Testing dataset (Various smartphones)

Nemcova et al., (39) Xiaomi Mi9 12 Not reported SWT -2nd Band (3.8–7.5 Hz): 119 Not reported Not reported

SWT -3rd Band (1.9–3.8 Hz): 117

SWT -4th Band (0.94–1.9 Hz): 96

SWT -5th Band (0.47–0.94 Hz): 54

SWT -6th Band (0.23–0.47 Hz): 30

Scully et al., (32) Motorola Droid R 1 92.2 ± 5.3 92.3 ± 5.9 Not reported Not reported

Yan et al., (36) iPhone 6S 40 73.46 ± 12.74 73.41 ± 12.60 −0.05 (1.03) 0.69

*Represents significant difference (p < 0.05) between supine and tilt position with paired samples t-test: BL, baseline; HMA, horizontal motion artifact; VMA, vertical motion

artifact; SWT, stationary wavelet transforms; Hz, hertz; MA, mental arithmetic; MT, mirror tracing.

Mather et al. 10.3389/fdgth.2024.1326511
suggested guidelines for validating heart rate devices (albeit

wearables) suggested by Mühlen et al. (40). Overall reporting was

poor with small and unjustified sample sizes, and few studies

adequately reported sex, skin color, or age of participants. An

expert consensus suggested that studies validating HR-PPG

should determine sample size based on an expected mean

absolute difference, expected SD of differences and a pre-defined

clinical maximum difference needed to obtain a power of 80% or

90% to assess agreement with sufficient precision (41). If no a

priori level of “in agreement” is specified a sample size of 45 is

recommended (42). However, all but one study had a sample size

of n < 45, and therefore results could be under powered (43). We

suggest sample sizes should be carefully calculated during study

design utilising current guidelines (43) and these calculations

should be presented in the methods section.

Comorbidities were poorly reported, particularly those that might

affect pulse rate or amplitude, such as arterial stiffening or conditions

affecting cardiac electrophysiology (33, 44). At a minimum, studies

should report either that participants were free from such health

conditions, or clearly state their health conditions, if their aim is to

validate HR-PPG in a particular population.

Additionally, there was inadequate reporting of participant skin

color within this review. Felix von Luschan chromatic scale (VLCS)

(range 1–36) was utilized, which is a validated method of skin color

evaluation (45). Skin color is an important consideration during

PPG acquisition as skin tone may affect the accuracy of
Frontiers in Digital Health 16
measurements (40). However, a recent systematic review of

wrist-word devices, which utilize reflective PPG, stated evidence is

inconclusive possibly due to small sample sizes and the

requirement for a more objective way of identifying participants’

skin tone (46). Nevertheless, authors suggested HR-PPG detection

may be less accurate in darker skin tones (46). Since the papers in

this review failed to adequately report skin tone this cannot be

corroborated with regards to camera-based methods and although

Yan at al. (36) measured skin tone (Table 2), participants fell

within the mid-range of the skin tone spectrum (range 19–25),

with one representing light skin and 36 representing dark skin

(45). Consequently, it is not clear if participants’ skin tone

influenced the results of the studies in the present review.

Therefore, human factors such as skin color should be recorded

(47) and appropriate light wavelength should be selected (48).

Moreover, it is evident that more research is required investigating

the effect of darker skin tones on signal quality.
Index measurement considerations

Interestingly, the majority of studies reported the use of a single

smartphone device (11, 32–37, 39). This of course maximizes

internal validity of each study, but does somewhat hamper

ecological validity and generalizability, given the vast options in

terms of smartphones at the time of writing. Additionally, since
frontiersin.org
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TABLE 8 Results for heart rate: correlations, measures of validity and summary of results.

Reference Results Measure of validity Summary of result
Bánhalmi et al.,
(37)

HR (b/min) results: Pearson correlation, Lin. m and b represent the
coefficients for the linear regression on HRV (PRV) with
the corresponding mean error (err) (MSE), R2 is the
coefficient of determination, and bias, SD, and BAR
values are the results of the Bland-Altman analysis.

Significant very strong correlation between smartphone
device/application and Cardiax PC-ECG device (r = 1,
P = <0.001).

Pearson correlation: 1

P value: <10−23

Lin. m: 1.00

Lin. b: −0.12
Lin. err (MSE): 0.011

Lin. R2: 1

Bias: 0.032

SD: 0.110

BAR: <0.001

Bolkhovsky, Scully
and Chon (31)

iPhone 4s supine: Pearson
correlation: >.99

Pearson correlation and Bland-Altman method to
calculate 95% LoA.

Very strong correlation between both smartphone devices
and 5-lead ECG HP 78354A system in both postures
(supine, tilt) (Sig. not reported).LoA: 0.29

iPhone 4s tilt: Pearson
correlation:>.99

LoA: 0.29

Droid supine: Pearson
correlation:.98

LoA: 3.20

Droid tilt: Pearson correlation:
>.99

LoA: 1.40

Drijkoningen et al.,
(11)

Correlation: Correlation coefficient and Bland-Altman ratio (BAR). Significant very strong correlation between smartphone
device/application and 12-lead ECG device (r = .98,
P = <.001) (De Ridder et al., 2018). BAR indicated no
significant changes (results not reported).

R2 (%): 95.7

P-Value: <.001

Matsumura and
Yamakoshi (33)

Correlation: ANOVA, Tukey HSD, GMR [95% CI], and Bland-
Altman method to calculate 95% LoA.

Very strong correlation (r = .999) between iPhysioMeter
and 2-lead ECG measured by geometric mean regressions
and r = .060 measured by Bland-Altman method (Sig. not
reported).

GMR = .999 [.9985, .9993],

BAP = .060 [−.131, .246]
Bias: −0.20
SD: 0.63

LoA: −1.43, 1.03
Matsumura et al.,
(34)

Red: Mean (SD), Pearson correlation [95% CI], ANOVA,
Tukey HSD, GMR [95% CI], and Bland-Altman method
to calculate 95% LoA.

Very strong agreement for R, G and B channels measured
with iPhone 4s (r = .9960, .9991 and.9975, respectively) in
comparison with 2-lead ECG. For HR, the repeated-
measures ANOVA did not reveal any significant main
effects of measurement, F(3, 33) = 2.39, p = 0.119, ϵ = 0.63,
ηp2 = 0.18, and condition, F(2, 22) = 0.25, p =thinsp;0.783,
ηp2 = 0.02, and measurement × condition interaction, F(6,
66) = 0.76, p = 0.502, ϵ = 0.40, ηp2 = 0.06.

GMR-R: 0.9960 [.9935, .9975]

BAP-R: 0.03 [−0.20, 0.26]
Bias: 0.10

SD: 0.74

LoA: −1.36, 1.56
Green:

GMR-G: 0.9991 [.9985, .9994]

BAP-G: −0.14 [−0.36, 0.10]
Bias: −0.12
SD: 0.36

LoA: −0.83, 0.58
Blue:

GMR-B: 0.9975 [.9961, .9985]

BAP-B: −0.29 [−0.48, −0.06]
Bias: −0.07
SD: 0.61

LoA: −1.27, 1.13
Nam et al., (35) Bias: 0.12 Pearson correlation [95% CI], LoA, and Bland-Altman

plot method to calculate 95% LoA.
Bland-Altman and correlation plots, both show good
agreement with non-statistically significant bias, in HR
between the green color band of the HTC camera and
ECG measurements.

LoA: −5.58, 5.52

Nemcova et al.,
(38)

Training dataset: Wilcoxon rank-sum test, Pearson and Spearman
correlation [95% CI].

Wilcoxon p-value is higher than α = 0.05 for both
datasets. The null hypothesis (H0: there is no relationship
between estimated and reference values) was rejected
(p < 0.05) in all cases.

Pearson R: 0.9844

Spearman P: 0.9796

Wilcoxon test: 0.8298

Pearson: 1.14E-22

Spearman: 4.71E-21

(Continued)
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TABLE 8 Continued

Reference Results Measure of validity Summary of result
MAE: 1.3 bpm (1.61%)

MAX: 4 bpm

Testing dataset:

Pearson R: 0.9907

Spearman P: 0.9902

Wilcoxon test: 0.9136

Pearson: 4.95E-17

Spearman: 7.92E-17

MAE: 1.4 bpm (1.89%)

P < 0.05 [all values]

Nemcova et al.,
(39)

Total 48 signals. Technical validation of waveforms from five expert
annotators.

31 of 48 signals were regarded “good quality” and had a
HR error equal or lower than 5 bpm for each expert.Of 48 signals, 31 were regarded

“good quality” according to all
annotators.

Scully et al., (32) The mean ± SD was 92.2 ±
5.3 bpm for HR-ECG and 92.3 ±
5.9 bpm for HR-GREEN.

Mean (SD) Diff. Authors confirmed the accuracy of HR-GREEN vs.
HR-ECG (Sig. not reported).

Yan et al., (36) Pearson R:.997 (P < .001) Mean (SD) Diff., Pearson R, Wilcoxon rank-sum test,
Paired student t test, Bland-Altman plots.

Significant very strong correlation between smartphone
device/application and 12-lead ECG device (r = .99,
P = <.001).

R2 (%): 99.3

Wilcoxon test: 0.53

Paired student t test: 0.69

Bias: 0.046

LoA: −1.98, 2.07

Mather et al. 10.3389/fdgth.2024.1326511
a major advantage of mHealth technologies are their reach, it is

advisable to assess the index measurements validity cross-

platform, at a minimum of one phone from each. Moreover, the

most recent article was Nemcova et al. published in 2021 (28),

suggesting future measurements could improve through the

utilization of newer technology (14).

As highlighted in the results, heterogeneity existed between

smartphone model and application utilized and although authors

reported the name of the smartphone application, zero studies

reported the specific programming code utilized for beat

detection. This could be due to financial, security and/or privacy

reasons, as some applications were commercially available. This

makes direct comparisons between apps and devices difficult as

there is no guarantee two apps used the same code. Additionally,

around half of the studies stated the application utilized was

developed specifically for the intended research, therefore the

algorithm could have been described or the code made available.

Consequently, validation of specific algorithms within this review

was not possible, this could be feasible in future if algorithms

and build versions were explicit (49). Moreover, it is difficult to

extrapolate these data to the real world without testing the

efficacy of those applications outside stringent conditions of a

laboratory. Identification of certain smartphones or applications

which produce better PPG signals could lead to improvements in

HR measures (23). However, this is difficult as there is currently

no consensus on what metric should be used to establish the

validity of smartphone-based PPG or under what conditions,

therefore protocols vary dramatically. Identifying optimal device

(s) and application(s) is difficult. Therefore, we present a

checklist (Table 1) to facilitate superior acquisition of HR-PPG

via smartphone devices.
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Although there has been a considerable increase in the number

of mobile apps, many have been designed without regulation

regarding development, risk mitigation, and quality control.

Therefore, we advise future developers to adhere to the

guidelines proposed by Llorens-Vernet and Miro (50), which

consist of 36 important criteria and outline standards for mobile

health-related applications. These criteria are grouped into eight

categories including usability, privacy, security, appropriateness

and suitability, transparency and content, safety, technical

support and updates, and technology.

Most studies reported which camera recorded smartphone

PPG measurements (32–39) of which the rear-facing camera was

utilized for all with torch (flash) turned on. However, recent

research investigating rear- vs. front-facing PPG smartphone

measurement revealed the front-facing camera to be more

advantageous when considering greater control over the emitted

light and finger detection. It is possible that previous research

has not utilized this method as smartphone devices with front-

facing camera capabilities are a newer technology that is still

under development (14). However, regardless of the camera

selected it is advisable to state this as camera selection clearly

influences PPG signal quality.

Over half of the studies reported camera resolution (32–35, 37,

39). However, it was not clear if the reported resolution was

referring to the smartphone cameras hardware settings or if the

resolution was selected through the applications capture settings.

Raposo et al., (14) suggest resolution should be set to its

minimum value to reduce computational load. Moreover,

implementation of interpolation techniques can be used to

increase fiducial point detection through improvements in

temporal resolution (51). This could influence device selection as
frontiersin.org
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future research could utilize devices with theoretically suboptimal

resolution. For example, a device that, without adjustment of

capture resolution would have high computational load, yet have

other PPG performance advantages, we could then manually

determine the resolution to the desired level within capture

settings (i.e., reducing the capture resolution within the app),

potentially improving PPG signal quality, and reducing

computational load. For this reason, it is important to report

what the resolution is and how it was acquired since newer

devices often provide multiple rear-facing lenses, of which some

have “slow-motion” technology, providing potentially enhanced

sampling rate capabilities.

Smartphone sampling rate was reported in most studies (11,

31–35, 37–39). Sampling rate can be as high as 1,000 Hz for

medical equipment (52) however, for most smartphone cameras,

it is typically less than 30 Hz (53), which can result in inaccurate

waveform analysis (54). As outlined in our results, sampling rate

was generally 20–30 Hz. For context, the latest smartphone

model in the reviewed studies was the iPhone 6s (released 2015),

which has a sampling rate of 30, 60 or 240 Hz, depending on

the resolution settings during recording. Implications of

inappropriate sampling frequency selection could result in

inaccurate waveform analysis (54) and HR-PPG determination.

Beres and Hejjel (51) investigated the minimum sampling

frequency requirements for HR-PPG parameters in healthy

individuals and concluded a minimum of 5 Hz is sufficient

without interpolation, for pulse rate determination. However,

although lower sampling frequencies minimize the computational

load and, as a result, the power consumption consequently

extending battery life (51), they can also deteriorate the accuracy

of fiducial point detection in HR-PPG and/or HR-ECG,

decreasing signal accuracy. Moreover, applications intending on

measuring other parameters, for example those related to HRV,

would require higher sampling rates with possible interpolation

(51). As sampling rate is largely determined by smartphone

make/model, we advise future research to utilise devices with

higher sampling rate capabilities and/or implement interpolation

techniques. When designing an application, it is important to

consider the parameter being measured (higher sampling rates

required for HRV in comparison to HR analysis) and the target

demographic, as applications that are compatible with newer and

older smartphone models could provide for broader scope,

especially for those in low- and middle-income countries (LMIC)

that may not have access to adequate healthcare.

As various wavelengths interact differently with blood and

tissues (55), important consideration must be had with regards to

wavelength selection (56) (i.e., red, green or blue colour

channels). Emerging research suggests green wavelengths

demonstrated stronger cardiac pulse signals in comparison with

red or blue bands during remote PPG imaging (37). However,

this was demonstrated in wrist-worn devices and more research

is required in smartphone-derived PPG. Finally, improvements in

pulse signal could be attained through optimization of the pixel

averaging region (32), whereby the video area closest to the light

source is analysed increasing the overall gain of the signal and

therefore improving signal quality (14).
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Experimental procedure considerations

Firstly, when describing the experimental procedure, studies

described the technical computer science methods well. However,

their relationship to physiology (i.e., what variable they are

measuring and the relationship between the signal capture and the

underpinning physiology) was not described in as much detail.

Nearly all studies provided participant instructions (11, 31–38),

however, some study designs were hard to follow and not enough

detail was provided to allow accurate replication. Studies that

provided sufficient detail utilized schematic diagrams and detailed

subsections within the methods as to index and criterion

measurements, experimental procedure, and participant instructions.

Over half the studies reported participant postures with the

seated posture being the most frequently utilized measurement

position. Postural changes can result in deviations in

cardiovascular measurements, such as HR (57, 58). Therefore,

participant measurement posture should be reported when

describing the experimental procedure. In addition to

measurement posture, measurement site is also an important

consideration. Hartmann et al. (59) investigated the effect of

measurement site on HR-PPG waveform characteristics utilizing a

reflective PPG sensor with a peak wavelength of 880 nm,

comparable with reflective wavelengths utilized in smartphone

devices that utilize an infrared light wavelength (880–940 nm) (6).

Authors determined that under normal and deep breathing

conditions the finger produced the most analyzable waveforms

(95% and 86% analyzable, respectively) in terms of mean

amplitude, pulse peak time (Tp), dicrotic notch time (Tn), and the

reflection index (RI) (all p < 0.001), which could be due to higher

sensitivity to volumetric fluctuations in the cutaneous vascular

walls of the finger compared with other measurement sites (59).

The application of pressure at the measurement site is

something to be considered, as this is the fundamental of blood

pressure measurement (i.e., an increase in pressure eventually

results in occlusion). Variations in contact pressure can result in

changes in several waveform characteristics (60). Increased contact

pressure decreases the optical path length through the tissue,

increasing AC amplitude. AC amplitude reaches its maximum

when transmural pressure, defined as the difference between

intraarterial pressure on the vessel wall and contact pressure,

reach zero (61, 62). Additional pressure beyond this begins to

occlude the vessel reducing amplitude until no signal is visible.

Conversely, contact pressure applied too softly increases the

optical path length through the tissue, decreasing AC amplitude.

Considering this, applying enough pressure to create conditions

where transmural pressure is zero could be beneficial for RHR

determination, as this could make peaks more easily identifiable.

While this paragraph briefly outlines the underlying physiology

and AC amplitude changes form varying contact pressures, from

a technical standpoint, Apple stopped incorporating the strain

gauge array under the screen (3D Touch) from ∼2017 onwards.

Therefore, no force measures can be obtained directly from the

device. For this reason, our in-house pilot testing has suggested

that providing the app user with the real-time PPG signal (i.e.,

visual feedback) can enhance the quality of the PPG signal. This
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1326511
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Mather et al. 10.3389/fdgth.2024.1326511
approach has been previously conducted by Nemcova et al. (38)

who reported they provided app feedback (visual peaks presented

on the smartphone display) to enhance signal quality during

measurement conditions. These authors stated that quality was

evaluated visually by the users; quasi-periodic peaks/spikes must

be seen in the signals. A flat signal or a signal with many peaks/

spikes with the absence of quasi-periodicity represents a low-

quality signal. The user should iteratively change the position of

the smartphone according to the feedback of the application.

Therefore, applying contact pressure which allows a signal which

displays key pulse wave fiducial points, that has many quasi-

periodic peaks would be considered ideal.

Previous research stated environmental conditions such as

ambient light or motion can influence HR measurement (49, 63).

In addition, careful consideration of the environmental

temperature has the benefit of reducing possible HR-ECG and

HR-PPG noise due to shivering (64). Of course, these

environmental conditions ultimately influence participant

temperature, and temperature of the measurement site (i.e., skin

temperature). However, no study included in this review reported

skin temperature. From a technical standpoint, the device

temperature sensors are only designed for management of the

CPU and battery, so measurement of environmental or skin

temperature is beyond the scope of those sensors. Thus, skin

temperature reporting would require an additional device such as

a skin thermometer. From our in-house pilot testing, we have

observed that having cold hands can reduce the quality of the

PPG signal (by “quality” we mean a signal which displays key

pulse wave fiducial points, that has many quasi-periodic peaks

would be considered ideal). This in-house pilot testing in our lab

is supported by previous work suggesting that both increased

and decreased skin temperature can alter the increased PPG

amplitude and total signal, PPG waveform amplitude, and PPT

(60, 65–68). Research suggests ambient light may also affect light

sensitive diodes; however, the size of the effect is currently

unknown (40). Allen (47) suggests correct positioning of the

device and the use of light modulation filtering can reduce

ambient light interference.

We identified HR-ECG and HR-PPG were generally recorded

simultaneously for short durations (<3 min), which is acceptable.

Nemcova et al. (39) suggest ultrashort- (< 5 min) and short-term

(∼ 5 min) measurements have several advantages over longer

term measurements, including minimal risk of data loss during

measurement, subject comfort (including flash/torch burn risk)

and reduced computational demands that influence battery

capacity and memory. Definitions of short- and ultra-short vary

depending on the intended research, 10 s duration is commonly

cited as the most appropriate duration within the literature, for

HR-PPG acquisition. However, although all studies in the current

review reported measurement duration (Table 6), no study

compared the effect of increased or reduced measurement

duration on signal quality. Therefore, the impact of measurement

duration in the present review is unclear.

The time taken for a pulse wave to travel along a fixed arterial

length is considered the pulse transit time (PTT). When that pulse

arrives, known as pulse arrival time (PAT), it is represented by a
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peak in the HR-PPG signal, however due to the PTT, there is

misalignment, or “time lag”, between the R wave of the HR-ECG

signal and the HR-PPG peak (69). A recent review of open-

source beat detection algorithms describes a method of time

alignment where HR-ECG and HR-PPG derived beats within the

range of <150 ms were determined to be correctly identified. The

time lag between beats was manipulated by offsetting the beats in

increments of 20 ms. The time lag that resulted in the most

correctly identified beats (the most HR-ECG and HR-PPG beats

within the range of <150 ms) was considered the “true lag” (70).

Time alignment allows for direct beat comparison and ensures

that not only are the same time frames are being analysed but

also the same beats, improving validity assessment. However,

only Bolkhovsky et al. (31) explicitly stated that HR-ECG and

HR-PPG were aligned during post-recording data analysis.

Finally, the number of attempts allowed per participant was

inadequately reported (Table 6). Holmes et al. (71) suggest

number of attempts should be limited to three as additional

measurements would counteract the advantages of ultrashort-

term measures outlined above. We argue that there is a

compromise to be made between end-user burden/acceptability

and reliability/precision. Whilst it is likely that more trials per

participant will increase the chances of acquiring a good signal

and therefore improve validity, the more trials a user completes

the greater the data entry burden (72), which could reduce

usability and adherence.
Primary outcome and statistical measures
of validity considerations

Results of this scoping review highlight the agreement between

HR-PPG and HR-ECG (Table 8). In this scoping review CIs, LoA,

or bias [from which LoA can be derived (LoA = bias ± 1.96 SD)]

were not reported in all studies. Yet Mühlen et al. (40) state 95%

confidence intervals (CIs) and LoAs should be provided for

between-device comparisons. Interestingly, given the large

number of studies reporting correlation coefficients, zero papers

defined guidelines utilized to determine strength of coefficients

(73, 74). We conducted post hoc interpretation and six articles

(11, 31, 34, 36–38) exceeded the minimum requirements for

“high” or “strong” correlation using previously reported

guidelines (73, 74). However, it was unclear whether these

studies examined mean HR agreement, rather than time

alignment and beat to beat agreement.

Nam et al. (35) stated PPG measured from the green wavelength

(HR-Green) demonstrated “good agreement” (Table 8) in

comparison with HR-ECG, however, neither the coefficient itself,

nor the criteria for this qualitative assessment was provided. In

summary, statistical interpretation could be improved in future

research, utilizing the Bland-Altman method (75) for testing

agreement between HR-ECG and HR-PPG, rather than

relationship between the two (as agreement and relationship are

different concepts). We also propose greater transparency in

statistical reporting, including precise coefficients, a priori

thresholds for interpretation (i.e., “poor”, “good”, “very good”) etc.
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Effects of mobile platform (iOS and android)

It is worth noting that there are technical and practical issues

related to the platform (iOS vs. Android) used to collect PPG data.

A common approach is splitting the captured image into its

primary colour components since red or green channels often

provide a better signal. This technique largely hinges on the

sensor’s colour sensitivity and its colour filter array (CFA)

precision. Given the stricter manufacturing control, Apple’s iOS

devices have a more uniform sensor technology and will likely offer

a consistent baseline for PPG measurements between devices. The

wider range of Android manufacturers means devices will use

sensors from different producers, resulting in a broader range of

sensor metrics between devices. The distinct approaches to sensor

integration and image processing algorithms may further

compound these differences. Apple’s control over hardware and

software typically results in predictable sensor performance. In

contrast, Android devices might exhibit significant variability in

sensor behaviour, potentially impacting homogeneity of PPG

measurements across devices.

While these differences mean different phones may have

different magnitudes of sensor values, the degree to which this

impacts peak detection or other variables (such as frequency

domain HRV) has yet to be widely investigated. More broadly,

both platforms offer frame rates that enable sampling at 30 Hz.

While this is suitable for peak detection, more nuanced analyses,

such as wave morphology and feature identification, are

challenging at this frame rate. Both manufacturers have started to

include higher framerate video capture, such as “slow motion”

modes with frame rates between 120 and 240 Hz. While these

modes may reveal more significant detail in the collected wave

data, the validity and reliability of this higher framerate regarding

critical variables (e.g., the consistency of the period between

frames) is not known.

There are other more practical issues regarding using phones

for widescale HR monitoring. While not a significant feature of

this review, in our testing (our unpublished observation) we have

found that the flash on some Android phones gets

uncomfortably hot when used in bulb mode (necessary to

generate the PPG data). Similarly, the trend for integrating more

lenses into the phone has, in some cases, moved the lenses

further from the flash, resulting in less consistent lighting across

the tissue in contact with the lens (our unpublished observation).
Conclusions and practical
recommendations

To ensure validity and comparability with previous research, we

have proposed a framework for optimal reporting (Table 1). This was

based on the “Towards Intelligent Health and Well-Being: Network of

Physical Activity Assessment” (INTERLIVE) best-practice

recommendations (40). We took the INTERLIVE statement for

wearable devices and adapted it for phone camera-based PPG. The

validation process should consider six domains: the target population,
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criterion measure, index measure, testing conditions, data processing

and the statistical analysis (40). Adherence to the checklist will result

in superior acquisition of HR-PPG via smartphone devices, facilitating

improvements in research and clinical practice. Future research could

investigate validity with consideration towards effective approaches

that transfer these methods from laboratory conditions into the “real-

world”, in both healthy and clinical populations.
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