
TYPE Original Research
PUBLISHED 26 January 2024| DOI 10.3389/fdgth.2024.1336050
EDITED BY

Tjalf Ziemssen,

University Hospital Carl Gustav Carus,

Germany

REVIEWED BY

Paraskevi Papadopoulou,

American College of Greece, Greece

Karthik Seetharam,

West Virginia State University, United States

*CORRESPONDENCE

Ilya Shmulevich

ilya.shmulevich@isbscience.org

RECEIVED 09 November 2023

ACCEPTED 15 January 2024

PUBLISHED 26 January 2024

CITATION

Zhang Y, Qin G, Aguilar B, Rappaport N,

Yurkovich JT, Pflieger L, Huang S, Hood L and

Shmulevich I (2024) A framework towards

digital twins for type 2 diabetes.

Front. Digit. Health 6:1336050.

doi: 10.3389/fdgth.2024.1336050

COPYRIGHT

© 2024 Zhang, Qin, Aguilar, Rappaport,
Yurkovich, Pflieger, Huang, Hood and
Shmulevich. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Digital Health
A framework towards digital
twins for type 2 diabetes
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and Ilya Shmulevich1*
1Institute for Systems Biology, Seattle, WA, United States, 2Center for Phenomic Health, Buck Institute
for Research on Aging, Novato, CA, United States, 3Phenome Health, Seattle, WA, United States
Introduction: A digital twin is a virtual representation of a patient’s disease,
facilitating real-time monitoring, analysis, and simulation. This enables the
prediction of disease progression, optimization of care delivery, and
improvement of outcomes.
Methods: Here, we introduce a digital twin framework for type 2 diabetes (T2D)
that integrates machine learning with multiomic data, knowledge graphs, and
mechanistic models. By analyzing a substantial multiomic and clinical dataset,
we constructed predictive machine learning models to forecast disease
progression. Furthermore, knowledge graphs were employed to elucidate and
contextualize multiomic–disease relationships.
Results and discussion: Our findings not only reaffirm known targetable disease
components but also spotlight novel ones, unveiled through this integrated
approach. The versatile components presented in this study can be
incorporated into a digital twin system, enhancing our grasp of diseases and
propelling the advancement of precision medicine.
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1 Introduction

The concept of digital twins (DTs) has recently garnered attention in the realms of

biomedical and clinical research, as well as among the general public. DTs were

originally employed in the aerospace industry and subsequently in manufacturing and

product life-cycle management (1, 2). In the biomedical field, the recognition that

individual pathophysiological idiosyncrasies limit the applicability of traditional cohort-

derived care guidelines has underscored the need for personalized (patient-tailored)

disease management. In this evolving paradigm of clinical thinking—and buoyed by the

surge in patient data made possible by molecular profiling technologies—the DT has

emerged as a promising tool for realizing such highly personalized monitoring and

intervention. A primary objective of a DT is to represent and simulate a patient’s health

trajectory, monitor disease progression, and discern potential treatment responses to

guide corrective intervention. Given the inherent complexity of biological systems, DT

can be designed with varying levels of abstraction and granularity, tailored to

specific applications.

Within various disease domains, the concept of DTs has evolved into diverse and

specialized variants. Hernandez-Boussard et al. proposed cancer patient digital twins

that utilize emerging computing and biotechnologies to build in silico representations of

individuals. These representations dynamically capture molecular, physiological, and

lifestyle status across different treatment regimens and timelines in order to aid in
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clinical decision making (3). Voigt et al. suggested digital twins for

multiple sclerosis that use artificial intelligence-based analysis of

several disease parameters—including clinical and para-clinical

outcomes, multiomics, biomarkers, patient-related data, and

information about the patient’s life circumstances and plans—as

well as medical procedures, all paired to patient characteristics

(4). Corral-Acero et al. emphasized the synergies between

mechanistic and statistical models in cardiovascular digital twins

(5). However, while existing disease-specific DTs have shown

promise in enhancing our understanding and management of

complex medical conditions, there remain critical gaps in the

integration, scalability, and standardization of digital twin

methodologies across various clinical applications, notably, in the

ability to accommodate data derived from longitudinal monitoring.

Type 2 diabetes (T2D) is a disease with a complex and

heterogeneous developmental process (6), making it an ideal

candidate for evaluating the application of biomedical DTs. T2D

is a metabolic disorder characterized by insulin resistance and, in

later stages, relative insulin deficiency due to the exhaustion of

pancreatic β-cells. It constitutes a growing global health crisis,

with approximately 415 million people affected worldwide (7, 8).

T2D also poses a high risk for cardiovascular diseases and

chronic kidney disease (CKD), among other complications (9); it

accounts for $1 of every $4 spent on healthcare in the United

States (10). Given the increasing prevalence of T2D and the

variability in its progression and prognosis across patient

populations, the management of T2D stands to benefit from

modeling through a DT system.

The extensive scientific understanding of the pathophysiology of

T2D can be encoded into a knowledge graph, facilitating the

organization and computational processing of complex

information essential for constructing the DT. Knowledge graphs

serve as expansive networks that map known relationships

between various biomedical entities, such as genes, proteins,

metabolites, drugs, and clinical phenotypes. These relationships

may be derived from experiments, scientific literature, or

ontological frameworks (11, 12). Knowledge graphs can contribute

to both data analysis and modeling efforts. For example, they can

assist in hypothesizing or explaining why certain entities constitute

sets of features with predictive value. Alternatively, knowledge

graphs can inform the development of predictive mechanistic

models by providing curated causal relationships between entities.

One of the most extensive biomedical knowledge graphs is

SPOKE, “Scalable Precision Medicine Open Knowledge Engine,” a

manually curated resource that encompasses over 27 million nodes

and 53 million edges (13). The SPOKE knowledge graph

consolidates information from 41 databases across diverse

domains, including mechanistic information relevant to T2D.

Here, we introduce a framework for a T2D DT designed to

continuously monitor patients, assimilate high-dimensional

(“omics scale”) data, and predict changes in clinical variables.

Our DT comprises three key computational components:

machine learning, knowledge graphs, and mechanistic models—

the overall framework is illustrated in Figure 1. The machine

learning models are trained to forecast disease progression and

identify relevant clinical measurements for ongoing monitoring
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of disease progression, exemplified by variables such as glycated

hemoglobin percentage (HbA1c) and estimated glomerular

filtration rate (eGFR). Knowledge graphs, which encode existing

scientific knowledge into a machine-readable format, can

elucidate the predictive features identified by the machine

learning models in terms of known mechanistic or causal

relationships. They also assist in feature selection relevant to

disease progression. Mechanistic models can serve as digital

representations of individual patients but require a more

comprehensive understanding of both the disease and the patient

than current pathway knowledge provides. Therefore, the current

study focuses primarily on the machine learning and knowledge

graph elements of our designed digital twin system.
2 Materials and methods

2.1 Dataset description and processing

In this study we used the Arivale dataset, described in detail in

(14, 15). Briefly, the Arivale dataset includes longitudinal data from

∼5,000 deeply phenotyped individuals undergoing a wellness

program. These data include comprehensive self-reported data

coupled with multiomic data (proteomics, metabolomics, clinical

labs). The process of collecting multiomic and clinical data in

Arivale has been described in the existing literature (15).

We selected a number of clinical variables related to T2D for

further study: HbA1c (glycated hemoglobin percentage), eGFR

(estimated glomerular filtration rate), glucose, insulin, and

HOMA-IR (homeostatic model assessment of insulin resistance).

HbA1c, Glucose, and Insulin are key clinical variables used to

evaluate T2D progression in the clinical settings (16). We also

included eGFR because we were interested in the transition from

T2D to T2D with chronic kidney disease (CKD) as a

complication (17). In order to train predictive models for

changes in T2D-related clinical variables, after data pre-

processing (see Methods), we selected a longitudinal dataset from

1,356 participants with data at ∼6 months, of which 738 had a

longitudinal followup data at ∼1 year. In total, we analyzed 1,042

blood multiomic features: 262 proteins, 710 metabolites, and 70

clinical labs or demographic variables. A full list of variables is

shown in Supplementary Table 1. To model the change in

clinical variables over time, we computed the deltas (i.e.,

changes) in the selected clinical outcomes between the six-month

and one-year follow-ups and the baseline (intake) values. These

values are shown in Table 1.

Prior to analysis, the data were filtered and cleaned in a number

of ways. First, we only included the subjects for which

demographic, clinical, proteomic, and metabolomic data were

available for at least two time points (N = 2,008). Next, we

excluded subjects that had missing values for any of the five

studied clinical variables in the first two time points. We then

removed the clinical, proteomic, and metabolomic features that

had more than 10% missingness across the data, and afterwards,

we removed subjects with more than 10% missingness in the

remaining metabolomic features, or any missingness in the
frontiersin.org
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TABLE 1 Table of sample characteristics. This table shows descriptive
statistics for the test sample after filtering the data.

Variable Count Min Mean Median Max Std
Age 1,131 18.00 49.53 49.00 87.00 11.29

bmi 1,131 17.74 27.63 26.15 53.35 6.04

HbA1c 1,131 3.60 5.51 5.50 8.30 0.43

Glucose 1,131 70.00 93.24 91.00 199.00 12.18

eGFR 1,131 41.00 90.17 90.00 131.00 15.17

Insulin 1,131 1.40 10.67 8.90 55.10 7.34

HOMA-IR 1,131 0.25 2.56 1.98 20.34 2.16

FIGURE 1

Overall structure of the digital twin system. The predictive core in our digital twin system includes machine learning models, knowledge graphs and
mechanistic models. The machine learning models are used to forecast disease progression by predicting some clinical measurements which can be
used for monitoring disease progression. Knowledge graphs can help select features for the machine learning models, and explain the predictive
features. It can also leverage the personalized data to provide templates for mechanistic models. The Mechanistic models can give feedback to
the machine learning models to improve the accuracy, or directly predict future clinical features or disease progression.
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remaining proteomic or clinical features. Imputation with

missforest (18) (implemented in the python missingpy package)

was performed to fill in missing values for the remaining

metabolomic features. Subjects with values for clinical variables

above certain thresholds (HbA1c>12, glucose >200, insulin >60)

were removed. In total, this resulted in 1,131 subjects with data

at 6 months, of which 639 had results at 1 year.
2.2 Machine learning models

An important component of a digital twin system is the

implementation of predictive models that, given current and
Frontiers in Digital Health 03
historical data, predicts the system’s future state. To implement

this aspect of the digital twin, we constructed machine learning

models to predict the changes in T2D-related clinical outcome

variables using clinical and multiomic data.

The overall process of predicting clinical trajectories is

described in Figure 2A. Using the datasets described in Table 2,

including clinical, proteomic, and metabolomic features, we

trained machine learning models to predict the changes (delta) in

the values of the five key T2D-related clinical variables (HbA1c,

glucose, insulin, HOMA-IR, eGFR). Since values for the selected

clinical tests generally remain steady over time, we used the

baseline test results as an additional feature when predicting the

deltas. Using data from time t0 (the first recorded data for a

given subject), we predicted the changes at times t1

(approximately 6 months) and t2 (approximately 1 year). In

every case, we used 10-fold cross-validation to assess the

performance of the models and feature sets, using 90% of the

data for training and 10% of the data for testing. Z-score

normalization was used on all of the feature sets, applying the

mean and variance for each variable from the training set on

both the training and test sets. Machine learning models were

implemented using the Scikit-learn library in python (19).

We used both regression and classification models for the delta

predictions. In regression, we predicted the value of the change. To
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FIGURE 2

(A) This is an overview of the machine learning prediction method. Data from the intake time point were used to predict the values of the listed T2D-
related clinical variables at 6 months and 1 year. (B–F) Prediction results for changes in HbA1c, eGFR, Glucose, Insulin, and HOMA-IR. These results
used a logistic regression model (for classification) with L1 regularization on each of the listed feature sets to predict whether the given clinical variable
would increase by at least 5% (or decrease by at least 5% in the case of eGFR).

Zhang et al. 10.3389/fdgth.2024.1336050
convert this into a classification problem, we designed a binary

classification task where a positive value indicates an increase of

at least 5% in the clinical variable from t0 to t1 or t2 (or a 5%

decrease in the case of eGFR). Binary variables were generated

for all five clinical variables at both time points. We

hypothesized that transforming the prediction task into a

classification problem would render the analysis more robust

against the fluctuations observed over the relatively short follow-

up time scales. A description of the changes in the clinical

variables is shown in Table 3.

We tested a variety of machine learning models for these tasks,

including various linear models as well as nonlinear models for
Frontiers in Digital Health 04
regression and classification such as random forests and support

vector machines. All of the regression models and classification

models are shown in Supplementary Table 4.
2.3 Graph analysis

Considering the importance of interpretability in healthcare

digital twins and the ability to select highly predictive features

based on regression model weights, we aimed to discern the

relationships among these highly weighted features and their

connection to the disease processes in T2D and CKD. To
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TABLE 2 Description of the feature sets used in predicting clinical
trajectories. All feature sets include the baseline feature as one of the
variables.

Feature set #
Variables

Description

Baseline 1 Only using the t0 value of the clinical variable
being predicted.

Demographics
only

4 Age, sex, BMI (+ baseline)

Clinical—
selected

15 Selected clinical + demographic variables
associated with T2D

Clinical—full 71 All clinical + demographic variables (with less
than 10% missingness threshold)

Proteomics 263 All proteins with less than 10% missingness

Metabolomics 711 All metabolites with less than 10% missingness

All 1,043 All of the above combined

Zhang et al. 10.3389/fdgth.2024.1336050
accomplish this, we leveraged the SPOKE knowledge graph (13).

Our version of this graph consists of approximately 2 million

nodes (with 22 types) and over 14 million edges (54 types); a

description of the graph’s nodes and edges is in Supplementary

Table 3. Knowledge graphs such as SPOKE can be used to

explore the relationships among the most predictive features,

generate hypotheses regarding the connections between these

features and the disease processes in T2D and CKD, and identify

potentially significant yet unmeasured related features (genes,

proteins, metabolites) for subsequent investigation.

In our knowledge graph analyses, we applied Steiner tree

approximation (20) and topic PageRank (21) algorithms. We

used the python-igraph package for all of our knowledge graph

work (22), as well as some custom implementations of Steiner

tree approximation methods based on the Takahashi method

described in (20).
3 Results

3.1 Predicting clinical trajectories

As described in the Methods section, we trained various

classification and regression machine learning models to predict
TABLE 3 Table of changes in the clinical variables at 6 months and 1 year. The
decrease in the case of eGFR) in the variable of at least 5%.

Changes after 6 months

Count Min Mean
d_HbA1c 1,131 −1.50 −0.05
d_Glucose 1,131 −49.00 −0.48
d_GFR 1,131 −30.00 1.04

d_Insulin 1,131 −31.50 −0.89
d_HOMA-IR 1,131 −11.09 −0.24

Changes after 1 year
d_1y_HbA1c 639 −1.90 −0.11
d_1y_Glucose 639 −57.00 −0.18
d_1y_GFR 639 −28.00 −0.05
d_1y_Insulin 639 −33.20 −0.98
d_1y_HOMA-IR 639 −12.90 −0.25

Frontiers in Digital Health 05
the clinical trajectory of T2D-related variables. Results and

metrics for all of the tasks are shown in Supplementary Table 2.

Comparing the results across different models, we found that

LassoCV models for regression and L1-regularized logistic

regression models for classification tended to give the best

predictions. In most cases, treating the prediction as a binary

classification problem led to performance results that had lower

variance across the cross-validation runs, especially at 1 year, and

a clearer differentiation in the performance between the different

feature sets.

Results for the classification-based predictions are shown in

Figures 2B–E. This shows the F1 score of the L1-regularized

logistic regression classifier, with the F1 scores calculated on the

held-out test sets in a 10-fold cross-validation. From this, we

observed that the full clinical, proteomic, and metabolomic

feature sets all performed better than the demographics-only

feature set for predicting changes in HbA1C, Glucose, and eGFR

at 6 months and 1 year. We also observed that the proteomic

and metabolomic feature sets performed better than the clinical

feature sets for predictions of eGFR and Glucose at 6 months,

illustrating the utility of multiomic data. However, the

performance of the Insulin and HOMA-IR predictors were

approximately the same regardless of the feature set. In the

Arivale dataset, insulin levels tended to fluctuate more than the

other clinical variables (Table 3), and there appears to be a

regression-to-the-mean effect where high baseline insulin values

tend to lead to a future decrease (Supplementary Figure 4).

Our results highlight the application of multiomic data in

predicting T2D trajectories. Previously, multiomics have been

used to predict the progression of T2D, with some success (23–

26). Only the work by Prélot et al. (23) predicts clinical variables

(including fasting glucose, fasting insulin, and HbA1c) rather

than predicting T2D status, but the set of metabolites used are

mostly considered to be clinical variables in our study. In that

study, fasting insulin had the most accurate prediction at a 15-

year follow-up using metabolite features (with an R2 of 0.54),

while HbA1c was not able to be accurately predicted (with only a

0.15 R2 value). Our results here use much shorter time scales

than the previous studies—less than one year vs. multiple years

to decades. This could lead to more noise, as the values of
“# >= 5%” column indicates the number of samples that had an increase (or

Median Max Std # >= 5%
−0.10 1.40 0.29 185

0.00 39.00 7.78 299

0.00 45.00 9.44 250

−0.40 22.70 4.97 453

−0.12 7.09 1.43 455

−0.10 1.00 0.31 87

1.00 51.00 8.89 204

0.00 53.00 10.44 176

−0.60 54.40 5.41 247

−0.11 23.29 1.80 253
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clinical variables often fluctuate. However, despite the noise,

significant predictions of short-term changes were possible with

clinical, proteomic, and metabolomic data.
3.2 Exploring predictive models using
knowledge graphs

While predictive models are one key component of a digital

twin, another key component is the interpretability of the

predictions. The linear models we used provide weights for all

features, and the highest-weighted features for the dHbA1c

and deGFR (delta-HbA1c and delta-eGFR) 6-month predictors

are shown in Supplementary Figures 1,2. However, in a high-

dimensional multiomic setting, it might be difficult to

understand the significance of individual features. Leveraging

the knowledge graph’s rich connections might aid us

in understanding.
FIGURE 3

(A,C) show the top 10 highest weighted protein predictors for dHbA1c and d
The bars indicate the range that the coefficients take over the 10 cross-valida
the top 10 highest weighted proteins. A node outlined in red is part of the i
purple nodes are compounds. Light blue edges represent protein-protein int
are labeled with the edge type. (E,F) Show the shortest paths from each of
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First, we used SPOKE (13) to identify relationships between the

highly predictive features and T2D. Based on the Network

Parsimony principle (27), we identify the shortest paths from

each of the predictor protein nodes to the T2D node, which

might represent molecular pathways of action. The graph for the

dHbA1c predictors is shown in Figure 3E, while the graph for

the deGFR predictors is shown in Figure 3F. Examining the

shortest paths to T2D, we see that the paths run through many

known drugs for treating T2D, such as glipizide and glyburide

(8), and more proteins that are connected to both these drugs

and the predictive proteins. In a personalized medicine setting,

this could potentially identify treatment paths.

We also identified a subgraph of related nodes consisting of the

top predictive features (here, they are proteins mapped to nodes in

SPOKE), as well as the disease node for Type 2 Diabetes. We

constructed a subgraph using an approximate Steiner tree

approach described in (20). Expanding the Steiner tree to include

all edges within the tree’s nodes gives us the (approximately)
eGFR, respectively, at 6 months, using L1-regularized logistic regression.
tion runs. (B,D) Show the approximate Steiner subgraph on SPOKE using
nput set. Blue nodes are proteins, while orange nodes are diseases, and
eractions, while gray edges represent all other types of connections, and
the top 10 proteins to the nodes for T2D and CKD.
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smallest subgraph that contains all of the nodes of interest. These

results are shown in Figures 3B,D for the dHbA1c and deGFR

predictors. This shows both the relationships within the feature

sets as well as one possible relationship with T2D. Using

knowledge graphs allows us to explore indirect connections

among the top predictive features, and between features and the

disease of interest. We can see that the top predictive features are

densely connected by protein-protein interaction edges, and we

can see how some nodes are connected to T2D. Since the

proteomic data only included hundreds of proteins, there are

many additional proteins that could be predictive of a T2D

trajectory, but have not been measured, and identifying proteins

that are highly connected to measured predictive proteins could

suggest new features to measure. For example, NLRP3, which

connects the predictive proteins to the T2D node, is known to be

related to T2D progression (28, 29). In the deGFR predictors

subgraph, TNFA is connected to many predictive proteins and is

also known to be related to the progression of CKD (30). This

indicates using the knowledge graphs, we can not only find the

relationship between the predictive features and disease, but also

find additional features or genes that are relevant to the disease.

The topic PageRank algorithm is another way of identifying

features on the graph that are related to the features in question,

including potential features that are not currently being

measured but might be of interest for future study (31, 21).

Topic PageRank computes a random walk with restarts, where

the restarts will return to a set of query nodes, and returns as a

weight the probability of landing in each node in the graph. This

algorithm has been previously applied to gene prioritization,

identifying key genes for a disease by finding indirect

associations from a set of seed genes (32). This is essentially

what we are doing here, using highly predictive proteins as seed
FIGURE 4

This shows the highest topic pageRank scores for protein nodes in SPOKE
deGFR, respectively. The query set of features are the same as the protei
have positive weights for the given prediction task across all 10 cross-valida

Frontiers in Digital Health 07
nodes. Figures 4A,B show the protein nodes with the highest

topic PageRank scores when querying SPOKE with the top 10

highest-weighted protein predictors for dHbA1c and deGFR,

respectively. The proteins highlighted in red, UFO and IL10, are

not in the top 10 but are also highly weighted predictors for the

same target in the logistic regression model, with nonzero

weights across all cross-validation runs. This indicates that the

topic PageRank method is able to retrieve features that are

known to be relevant to the clinical target. As with the Steiner

tree-identified additional proteins, some of the additional topic

PageRank-identified proteins that are not measured in this study

have been shown to be associated with T2D, including TYRO3

and AKT1 (33–35). For deGFR, most of the topic PageRank-

identified proteins are part of the MMP (matrix

metalloproteinase) family, which have been shown to have

associations with chronic kidney disease (36, 37).
4 Discussion

In our digital twin system design, which incorporates machine

learning, knowledge graphs and mechanistic models, we have

demonstrated the utility of integrating machine learning with

knowledge graphs for predicting disease trajectories and

identifying key features as well as their relationships to the

disease. While digital twins have been applied extensively in

various engineering disciplines, their application to biomedical

research has been limited. Their limited application is primarily

attributed to the inherent complexity of biological systems, which

poses a unique challenge in their modeling and simulation. Here,

we attempt to overcome this challenge by integrating extensive

mechanistic information represented in an existing biomedical
, using the top 10 highest weighted protein predictors for dHbA1c and
ns in the figure above. Names with red text indicate proteins that also
tion runs, but were not one of the 10 highest.
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knowledge graph with deep phenotyping data to model T2D.

Through our work, we have identified proteomic, metabolomic,

and clinical features that can be used to predict changes in a

number of clinical variables related to T2D over the course of 6

months to 1 year. Our results suggested proteomic and

metabolomic features can provide a better prediction than

clinical features for some clinical tests. Our approach of

integration of the ML models with the knowledge graph

highlighted known disease targets and potential interventions.

Our results have two key implications. First, the improved

predictive power that comes from integrating multiomic data

with clinical features suggests that omic data could have added

value as part of standard clinical care. Zubair et al. showed that

on average, measures of metabolic health improved over the

course of the Arivale study, with a significant reduction in

HbA1c on average, due to the treatment and counseling provided

(14). However, this masks significant heterogeneity in the

outcomes. In fact, 374 and 167 subjects showed an increase in

HbA1c over 6 months and 1 year, respectively, as opposed to

604 and 399 who showed a decrease. There are hurdles

associated with translating omic technologies to clinical use—

including cost, technology development, and education (38)—but

our results show that their inclusion increases predictive value.

Other studies have shown that omic data integrated with clinical

labs can yield increased model performance, but these results are

for health metrics (15) and not clinically validated tests. Second,

the ability to interpret model predictions via a knowledge graph

provides a robust framework for the implementation of

biomedical digital twins. We have demonstrated that utilizing

knowledge graphs and phenomic data can interpret predicted

features, both validating known pathophysiology and predicting

novel disease targets.

One of the limitations encountered is the sparsity of

longitudinal data. Ideally, a system such as the one proposed

here would be validated using densely sampled time courses,

offering a high-resolution view into the dynamics of the disease

and continuously updating the DT with this information.

However, a densely sampled longitudinal phenomic dataset does

not yet exist; thus, we have addressed these limitations to the

best of our ability. Moreover, the limited sample size of the study

complicates the construction of predictive models, particularly

for high-dimensional multiomic data. Additionally, since the data

predominantly originated from generally healthy participants,

building models for progression specifically within a T2D disease

state was not feasible. Incorporating more data specifically from

participants with T2D would be valuable, but it would likely

introduce patients with more comorbidities and could introduce

confounders into the data that would need careful corrections.

The next steps for the framework proposed here is to move

beyond purely statistical modeling by directly integrating

mechanistic models into the pipeline. There has been a

significant amount of work on mechanistic modeling for

biological processes involved in T2D, but these models generally

do not involve multiomic data and tend to be over shorter time

scales (39). One way to approach this endeavor would be to use

machine learning to determine model parameters for a
Frontiers in Digital Health 08
mechanistic model (40), an approach that has proven useful in

the estimation of kinetic parameters in bacteria (41). Further

improvements would include a dashboard and user interface that

would enable a broader adoption of DTs, possibly with natural

language interfaces employing large language models to interpret

and return results (42).
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